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Abstract—We consider regular hypoelliptic operators and study some properties of completely
regular polyhedra. Basing on the obtained properties, we find an upper bound for the functional
dimension of the solution spaces of hypoelliptic equations.
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We consider regular hypoelliptic operators P (D) with constant coefficients and study the properties
of completely regular polyhedra. It is well known (see, for example, [1–3]) that

(1) if a polynomial P (ξ) is hypoelliptic then its characteristic polyhedron N(P ) is completely regular;
(2) if the characteristic polyhedron N(P ) of a regular polyhedron is completely regular then P (D) is

hypoelliptic.
It was shown in [4, 5] that the Gevrey classes to which the solutions to the equation P (D)U = f

belong are determined by the characteristic polyhedron of the hypoelliptic operator P (D). In [3, 6–9],
the upper and lower bounds for the functional dimension of the spaces of solutions were found for some
classes of hypoelliptic equations. In the present article, basing on the obtained properties of completely
regular polyhedra, we establish a sharper upper bound as compared to the available bounds for the
functional dimension of the solution spaces of hypoelliptic equations.

1. NOTATIONS AND DEFINITIONS

Consider the n-dimensional Euclidean space R
n of points ξ = (ξ1, . . . , ξn). Let

|ξ| =
(
ξ2
1 + · · · + ξ2

n

)1/2
,

C
n := R

n × iRn, R
n
+ := {ξ = (ξ1, . . . , ξn) ∈ R

n, ξj ≥ 0, j = 1, . . . , n},
R

n
0 := {ξ ∈ R

n, ξ1 �= 0, . . . , ξn �= 0}.
Further, N is the set of naturals; N0 := N ∪ {0}; while N

n
0 is the set of all n-dimensional multi-indices;

i.e., of points α = (α1, . . . , αn), where αj ∈ N0 for all j = 1, . . . , n.
Introduce the following notations for ξ, η ∈ R

n, α ∈ N
n
0 , ν ∈ R

n
+, and t > 0:

ξα = ξα1
1 . . . ξαn

n , (ξ, η) =
n∑

j=1

ξjηj , |ξ|ν = |ξ1|ν1 . . . |ξn|νn ,

tν = (tν1, . . . , tνn), |ν| = ν1 + · · · + νn, Dα = Dα1
1 . . . Dαn

n ,

where

Dj =
1
i

∂

∂xj
, i2 = −1, j = 1, . . . , n.
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Let A ⊂ R
n
+ be a finite collection. The characteristic polyhedron of A is the minimal convex

polyhedron N(A) ⊂ R
n
+ containing A ∪ {0}.

A polyhedron N ⊂ R
n
+ is called completely regular if

(1) the origin is a vertex of N ,
(2) N has vertices on each coordinate axis different from the origin;
(3) the components of the outward normals (with respect to N) of the (n − 1)-dimensional noncoor-

dinate faces are positive.

Let N ⊂ R
n
+ be a completely regular polyhedron. Introduce the notations:

• N0 is the set of the vertices of N,
• ∂N is the set of the points of N lying on the closures of the noncoordinate faces of N,
• ∧(N) is the set of the outward normals λ = (λ1, . . . , λn) (with respect to N) of the noncoordinate

faces of N normalized so that

dN(λ) := max
ν∈N

(ν, λ) = 1,

• ∧n−1(N) is the set of those λ ∈ ∧(N) that are the normals of the (n − 1)-dimensional (noncoordi-
nate) faces of N,

• ∧n−1
k (N) is the set of the normals λ ∈ ∧n−1(N) whose corresponding (n − 1)-face has a subface

lying in some coordinate hyperplane.

Remark 1. It is not hard to observe that, for every completely regular polyhedron N ⊂ R
n
+, the set

∧̃(N) := {μ, μ = λ/|λ|, λ ∈ ∧(N)}
coincides with the convex hull of

∧̃n−1(N) := {μ, μ = λ/|λ|, λ ∈ ∧n−1(N)}.

Remark 2. Let N ⊂ R
n
+ be a completely regular polyhedron. Then, for all λ = (λ1, . . . , λn) ∈ ∧(N),

we have λj > 0, j = 1, . . . , n.
Let P (D) =

∑
α γαDα be a differential operator with constant coefficients, where the sum ranges

over the finite set (P ) := {α ∈ N
n
0 , γα �= 0}, and let

P (ξ) =
∑

α∈(P )

γαξα

be the complete symbol of P (D).

Definition 1. The characteristic polyhedron of P (D) is the characteristic polyhedron of the
collection (P ).

Definition 2 [10]. The operator P (D) (the polynomial P (ξ)) is called regular (or nondegenerate)
if there exists a constant C > 0 such that, for every ν ∈ N(P ), we have

|ξν | ≤ C(|P (ξ)| + 1) for all ξ ∈ R
n.

Definition 3. The differential operator P (D) (the polynomial P (ξ)) is called hypoelliptic if all
solutions to the equation P (D)U = 0 are infinitely differentiable functions.

Hörmander proved (see [12, Definition 11.1.2, Theorem 11.1.3]) that P (D) is hypoelliptic if, for
ξ ∈ R

n and all α ∈ N
n
0 , α �= 0, we have

DαP (ξ)
P (ξ)

→ 0 as |ξ| → ∞

(see also [11, Chapter 3]).
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Let P be a regular hypoelliptic polynomial with characteristic polyhedron N(P ). Denote the weight
hypoellipticity set of P by

M(P ) :=
{

ν ∈ R
n
+, (ν, λ) ≤ 1/ min

1≤j≤n
λj, λ ∈ ∧n−1(N)

}
.

Obviously, M(P ) is a completely regular polyhedron.

Let M(P ) be a completely regular polyhedron. Denote by ΓM(P )(Ω) the multianisotropic Gevrey
class; i.e., the set of functions f ∈ C∞(Ω) such that, for every compact set K ⊂ Ω, there exists
a constant C = C(K, f) > 0 such that

sup
x∈K

|Dαf(x)| ≤ Cj+1jj , α ∈ jM(P ), j = 0, 1, . . . .

It is known (see [9]) that if P (D) is a regular hypoelliptic operator then, for every domain Ω ⊂ R
n,

we have

E(P,Ω) := {U ∈ D′(Ω), P (D)U = 0 on Ω} ⊂ ΓM(P )(Ω),

where D′(Ω) is the space of generalized functions.

Definition 4 [13]. A topological vector space E is called locally convex if there exists a fundamental
system of convex neighborhoods of zero.

Suppose that E is a locally convex space, U is a neighborhood of zero in E, and B is a set B ⊂ E.

Definition 5 [14]. Given ε > 0, a set F is called an ε-net for B with respect to U if B ⊂ F + εU .

Given ε > 0, the sets B and U , denote by N(B, εU) the least number of elements in an ε-net for B
with respect to U .

Definition 6 [15]. For a locally convex space E, the quantity

dfE := sup
U

inf
V

lim
ε→0+

ln ln N(V, εU)
ln ln ε−1

,

where U and V range over all neighborhoods of zero in E, is called the functional dimension of E.

2. PRELIMINARY RESULTS

Let N be a regular polyhedron. Put

∧̃n−1
k (N) :=

{
μ, μ = λ/|λ|, λ ∈ ∧n−1

k (N)
}
.

Proposition. Let N ⊂ R
n
+ be a completely regular polyhedron and put

M :=
{
ν ∈ R

n
+ (ν, λ) ≤ 1, λ ∈ ∧n−1

k (N)
}
.

Then

∧̃(M) \ ∧̃n−1
k (M) = ∧̃(N) \ ∧̃n−1

k (N).

Proof. It is not hard to observe that, by the definition of M,

∧̃n−1
k (M) = ∧̃n−1

k (N). (2.1)

Since, by Remark 1, ∧̃(M) coincides with the convex hull of ∧̃n−1
k (M); therefore, ∧̃(M) ⊂ ∧̃(N).

By (2.1), this gives

∧̃(M) \ ∧̃n−1
k (M) ⊂ ∧̃(N) \ ∧̃n−1

k (N).
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Prove the reverse inclusion. Let μ ∈ ∧̃(N) \ ∧̃n−1
k (N). Since, by the definition of M, the polyhedron

N ⊂ M and the set of vertices in M lying on the coordinate hyperplanes coincides with the set of vertices
in N also lying on the coordinate hyperplanes; therefore, we infer that

dM(μ) = max
ν∈M

(ν, μ) = dN(μ),

(α, μ) < dN(μ) for all α ∈ M0

lying in some coordinate hyperplane. Hence,

{ν ∈ M, (ν, μ) = dM(μ)} ⊂ R
n
0 ∩ R

n
+,

and so μ ∈ ∧̃(M) \ ∧̃n−1
k (M). The proposition is proved.

Corollary 1. For every completely regular polyhedron N ⊂ R
n
+, the set ∧̃(N) coincides with the

convex hull of ∧̃n−1
k (N).

Since ∧̃n−1
k (N) = ∧̃n−1(M), the proof is immediate from the above proposition and Remark 1.

Lemma 1. Let N ⊂ R
n
+ be a completely regular polyhedron. Then

max
λ∈∧̃(N)

dN(λ) = max
λ∈∧̃n−1

k (N)
dN(λ).

Proof. Suppose the contrary:

max
λ∈∧̃(N)

dN(λ) �= max
λ∈∧̃n−1

k (N)
dN(λ).

Since ∧̃n−1
k (N) ⊂ ∧̃(N), this means that there exists μ ∈ ∧̃(N) \ ∧̃n−1

k (N) for which
dN(μ) > max

λ∈∧̃n−1
k (N)

dN(λ). (2.2)

Consider the completely regular polyhedron

M :=
{
ν ∈ R

n
+, (ν, λ) ≤ dN(λ), λ ∈ ∧̃n−1

k (N)
}
.

Since ∧̃n−1
k (M) = ∧̃n−1

k (N) (see (2.1)) and obviously

N ⊂ M, dM(λ) = dN(λ) for all λ ∈ ∧̃n−1
k (M);

therefore, we have
dM(μ) > max

λ∈∧̃n−1
k (M)

dM(λ) = max
λ∈∧̃n−1

k (N)
dN(λ). (2.3)

Consequently, μ ∈ ∧̃(M).
Since, by 2.1, ∧̃(M) is the convex hull of ∧̃n−1

k (M), there exist some numbers

θ(λ) ∈ [0, 1],
∑

λ∈∧̃n−1
k (M)

θ(λ) = 1

for every λ ∈ ∧̃n−1
k (M) such that

μ =
∑

λ∈∧̃n−1
k (M)

θ(λ)λ.

Let ν0 ∈ M be such that (ν0, μ) = dM(μ). Then

dM(μ) = (ν0, μ) =
∑

λ∈∧̃n−1
k (M)

θ(λ)(ν0, λ) ≤
∑

λ∈∧̃n−1
k (M)

θ(λ)dM(λ)

≤ max
λ∈∧̃n−1

k (M)
dM(λ)

∑

λ∈∧̃n−1
k (M)

θ(λ) = max
λ∈∧̃n−1

k (M)
dM(λ).

This contradicts (2.3) and validates Lemma 1.
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Corollary 2. Given a completely regular polyhedron N ⊂ R
n
+, we have

min
λ∈∧(N)

|λ| = min
λ∈∧n−1

k (N)
|λ|.

Proof. Since λ/|λ| ∈ ∧̃(N) for every λ ∈ ∧(N), by the definition of ∧(N), we infer dN(λ/|λ|) = 1/|λ|.
Hence, Lemma 1 yields

max
λ∈∧(N)

1
|λ| = max

λ∈∧n−1
k (N)

1
|λ|

or, which is the same,

min
λ∈∧(N)

|λ| = min
λ∈∧n−1

k (N)
|λ|.

Corollary 2 is proved.

Lemma 2. For every completely regular polyhedron N ⊂ R
n
+, we have

max
λ∈∧(N)

max
1≤j≤n

|λ|
λj

= max
λ∈∧n−1

k (N)
max

1≤j≤n

|λ|
λj

.

Proof. Since ∧̃(N) = {μ = λ/|λ|, λ ∈ ∧(N)}, it suffices to demonstrate that

max
λ∈∧̃(N)

max
1≤j≤n

1
λj

= max
λ∈∧̃n−1

k (N)
max

1≤j≤n

1
λj

. (2.4)

Let μ ∈ ∧̃(M). Then, by Corollary 2, there are

θ(λ) ∈ [0, 1], λ ∈ ∧̃n−1
k (N),

∑

λ∈∧̃n−1
k (N)

θ(λ) = 1

such that

μ =
∑

λ∈∧̃n−1
k (N)

θ(λ)λ,

whence

μj =
∑

λ∈∧̃n−1
k (N)

θ(λ)λj , j = 1, . . . , n.

Consequently,

μj ≥ min
λ∈∧̃n−1

k (N)
λj

∑

λ∈∧̃n−1
k (N)

θ(λ) = min
λ∈∧̃n−1

k (N)
λj , j = 1, . . . , n,

whence

max
1≤j≤n

1
μj

≤ max
λ∈∧̃n−1

k (N)
max

1≤j≤n

1
λj

.

Since ∧̃n−1
k (N) ⊂ ∧̃(N), the arbitrariness of μ ∈ ∧̃(M) implies (2.4), and thus the proof of Lemma 2 is

complete.
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Let P be a polynomial of n variables. Put

D(P ) := {ζ ∈ C
n, P (ζ) = 0},

dP (ξ) := inf
ζ∈D(P )

‖ξ − ζ‖, ξ ∈ R
n,

E(P,Ω) := {U ∈ D′, P (D)U = 0 on Ω},

where D′ is the space of generalized functions.

Theorem 1 [3, Theorem 2]. Let P (D) be a hypoelliptic operator and let

M ⊂ MP :=
{
ν ∈ R

n
+, ∃ Cν > 0 |ξ|ν ≤ Cν(dP (ξ) + 1), ξ ∈ R

n
}

be a completely regular polyhedron. Then

dfE(P,Ω) ≤ 1 + max
j

sup
λ∈∧(Mj )

|λ|
dj,λ

,

where

dj,λ = sup
ν∈Mj

(ν, λ), Mj =
{
νj ∈ R

n
+, (ν1, . . . , νj−1, 0, νj+1, . . . , νn) ∈ M

}
,

and the maximum is taken over those j for which there exists α ∈ (P ) such that |α| = ord P with
αj �= 0.

3. THE MAIN RESULTS

Given a regular hypoelliptic polynomial P (ξ) = P (ξ1, . . . , ξn) with constant coefficients, denote
by M(P ) and E(P,Ω) the quantities

M(P ) :=
{
ν ∈ R

n
+, (ν, λ) ≤ min

1≤j≤n
1/λj , λ ∈ ∧̃(N)

}
,

E(P,Ω) := {U ∈ D′, P (D)U = 0 on Ω},

where D′ is the space of generalized functions.

Theorem 2. If P (ξ) = P (ξ1, . . . , ξn) is a regular hypoelliptic polynomial with constant coeffi-
cients then

dfE(P,Ω) ≤ max
λ∈∧̃n−1

k (N)
max

1≤j≤n

1
λj

. (3.1)

Proof. By (2.4), it suffices to show that

dfE(P,Ω) ≤ max
λ∈∧̃(N)

max
1≤j≤n

1
λj

. (3.2)

Since P (ξ) is a regular hypoelliptic operator and

dN(λ) = max
ν∈N

(ν, λ) = 1,

the proof of (3.2) is immediate from Theorem 1, which validates (3.1).

Let B denote the set of those completely regular polyhedra N ⊂ R
n
+ for which

∅ �= N0 \ {νj}n
j=1 ⊂ R

n
0 .

Here νj = (0, . . . , 0, νj
j , 0, . . . , 0), j = 1, . . . , n, are the vertices of the polyhedron N lying on the coordi-

nate axes.
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Obviously, if N ∈ B then it has the (n − 1)-dimensional noncoordinate face passing through the
points {νj}n

j=1,j �=l, l = 1, . . . , n. Let λl ∈ ∧n−1
k (N) denote the normal to the (n − 1)-face passing

through {νj}n
j=1,j �=l, l = 1, . . . , n.

Theorem 3. Let N ∈ B. Then

min
λ∈∧(N)

|λ| = min
1≤l≤n

|λl|.

Proof. In view of Corollary 2, it suffices to show that

min
λ∈∧n−1

k (N)
|λ| = min

1≤l≤n
|λl|. (3.3)

Suppose the contrary; i.e., (3.3) fails. Since {λl}n
l=1 ⊂ ∧n−1

k (N); therefore, this means that there exists
μ ∈ ∧n−1

k (N) for which

|μ| < min
1≤l≤n

|λl|. (3.4)

The condition μ ∈ ∧n−1
k (N) implies that an (n − 1)-face with normal μ passes through a vertex of N

lying in some coordinate hyperplane. The definition of B (since N ∈ B) implies that these vertices
lie on the coordinate axes. Suppose that an (n − 1)-dimensional noncoordinate face with normal μ
passes only through the vertices ν1, . . . , νr of N lying on the coordinate axes. The condition N ∈ B

implies that 1 ≤ r ≤ n − 1. Therefore, by assumption, (νj , μ) = 1 for j = 1, . . . , r and (νj , μ) < 1 for
j = r + 1, . . . , n. The definitions of ∧n−1(N) and {λl}n

l=1 imply that

μj = 1/νj
j = λl

j , j = 1, . . . , r, l = r + 1, . . . , n.

Let ν = (ν1, . . . , νn) ∈ R
n. Put ν ′ = (ν1, . . . , νr) and ν ′′ = (νr+1, . . . , νn). Hence, by (3.4),

|μ′′| < min
r+1≤j≤n

|λj,′′|. (3.5)

Consider the polyhedron

M :=
{
ν ′′ ∈ R

n−r
+ , (ν ′′, λj,′′) ≤ 1, j = r + 1, . . . , n, (ν ′′, μ′′) ≤ 1

}
.

Obviously, the vertices of M lying on the coordinate hyperplanes are
(
νr+1

r+1 , 0, . . . , 0
)
, . . . ,

(
0, . . . , 0, νn

n

)
∈ R

n−r
+ .

Moreover, since (νj, μ) < 1, j = r + 1, . . . , n, a face of M with normal μ′′ does not pass through these
vertices. Consequently,

∧n−r−1
k (M) = {λj,′′}n

j=r+1 μ′′ /∈ ∧n−r−1
k (M).

Hence, by Lemma 1, we conclude that

|μ′′| ≥ min
r+1≤j≤n

|λj,′′|.

This contradicts estimate (3.5) and hence estimate (3.4).
The so-obtained contradiction proves Theorem 3.

Theorem 4. Suppose that, for N ∈ B, we have N0 ⊂ N
n
0 . Then

max
λ∈∧n−1(N)

|λ| ≤ 1.

Proof. Since, by hypothesis, N ∈ B and N0 ∩ R
n
0 �= ∅; therefore, the condition N0 ⊂ N

n
0 implies that

α := (1, . . . , 1) ∈ N. Hence, |λ| = (α, λ) ≤ dN(λ) = 1 for every λ ∈ ∧n−1(N), Theorem 4 is proved.

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 13 No. 4 2019



ON THE PROPERTIES OF THE SYMBOLS OF ONE CLASS 705

Corollary 3. If, under the conditions of Theorem 4, the polynomial

P (ξ) :=
∑

α∈N0

ξα

is regular then

max
λ∈∧n−1(N)

|λ| ≤ 1
2
.
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