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Abstract—We propose a method for determining the number of sensors, their arrangement, and
approximate lower bounds for the number of sensors for the multiple covering of an arbitrary closed
bounded convex area in a plane. The problem of multiple covering is considered with restrictions
on the minimal possible distances between the sensors and without such restrictions. To solve these
problems, some 0–1 linear programming (LP) problems are constructed. We use a heuristic solution
algorithm for 0–1 LP problems of higher dimensions. The results of numerical implementation are
given and for some particular cases it is obtained that the number of sensors found can not be
decreased.
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INTRODUCTION

As a rule, a wireless sensor network has many sensors for monitoring (observing, covering) of some
given domain G. For constructing such networks, an important task is to determine the number and
arrangement of sensors for a k-fold covering (k ≥ 1) of G. The k-fold covering problem for sensors is
also known as the problem of k-covering with circles of given radius.

Let G be a bounded closed convex area with nonempty interior in a plane P on which we introduce the
Cartesian coordinates xOy. Suppose that d(t, s) is the Euclidean distance between the points t and s
on P and sensors have the covering radius r. Let the sensor s (the point s) be a center of a circle of
radius r. In some cases, we identify a circle of radius r with a sensor with the covering radius r.

A collection of sensors S = {s1, . . . , sm} with covering radius r generates a k-fold covering of G
(k-covering, for short), 1 ≤ k ≤ m, if for every point t ∈ G there exist at least k sensors sj such that
d(sj , t) ≤ r, sj ∈ S.

Problems of determining the number and arrangement of sensors (circles) for k-covering of domains
are studied by many authors (see, for example, [1–16]). There are many works on covering (1-covering)
with circles of the entire plane, as well as its bounded parts such as squares, circles, triangles, and some
other figures (see [17–29]). In those articles, as a rule, the minimization problem on the radius of the
covering circles is under study provided that their number is known. Min-max-min models [26], Voronoi
diagrams [17], bar models [29], etc. are used to solve these problems. Note that coverings of a triangle,
a square, and a circle with circles of the radius determined up to 19–20 decimal digits are obtained in
[25–27]. Though, achievement of such results for arbitrary domains is highly unlikely.

There are a few articles on k-coverings for k ≥ 2. For k-coverings, k ≥ 2, various methods are
proposed for determining the minimum radius for given number of circles or finding the number of circles
of given radius (see [11, 12, 15, 16, 18, 30, 31]). These covering problems are NP-complete (for instance,
see [32–36]).
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There are many publications on monitoring and multimonitoring with use of the sensor networks (see
[1–4, 6–8, 10, 11, 14–16]). In these networks, the following can be taken as a criterion: minimization of
the number of sensors, minimization of energy consumption, system communicative abilities guarantee,
detection upon accumulation of the received signal, and many others. In general, the problem of
monitoring is of high priority. There are various methods for solving the problems of monitoring of
connected domains G. One of the widely-used consists in constructing a grid on G and monitoring
the nodes of the grid instead of G. In some monitoring problems the goal is to cover given bounded set of
points with zones controlled by the sensors which, in their turn, are placed at the points from some finite
set. For instance, in [15] the arrangement of sensors at some of the vertices of a (finite) graph is under
study for monitoring all vertices of the graph.

In this article, we propose a method for determining an approximate number of circles (sensors) and
their arrangement for k-covering, k ≥ 1, of an arbitrary bounded closed convex set G with nonempty
interior on the plane P . Since placing of several sensors at one point is undesirable, the constraints
on minimal distances between sensors are introduced. To solve the problems of monitoring G with or
without the constraints, a rectangular grid is constructed whose nodes form a finite set TΔ on G. Then
with use of TΔ we construct 0–1 linear programming (LP) problems, and solving these problems leads
to estimation of the number of circles needed and their arrangement. We obtain some approximate lower
estimates on the number of circles for the given covering of G. The numerical implementation shows
that in some cases the estimates are attainable and thus unimprovable.

1. MATHEMATICAL MODELS OF THE PROBLEM

Given a set G, let Δ be the grid size on G. With Δx = Δy = Δ we construct a rectangular grid on G
whose lines form squares CΔ of side Δ. The nodes of the grid in G generate the finite set

TΔ = {t1, . . . , tn}, ti ∈ G.

If the square CΔ lies entirely in G then each vertex of it belongs to TΔ. If CΔ is partially contained
in G, so that the area of (CΔ ∩ G) is positive, then the points of entrance of the boundary frG of G into
CΔ and the points of exit of frG from CΔ are included into the set TΔ. If CΔ is partially contained in G
and D = CΔ ∩ G includes the center s of the square CΔ then s is added to TΔ. If the point s is not in D
then we draw line segments l1 and l2 of length Δ through s which lie in CΔ and are parallel to the sides
of CΔ. To the set TΔ we add the intersection points of fr G with l1 and l2. Moreover, if fr G intersects
with lj , j = 1, 2, by some line segment [d1, d2] then only d1 and d2 are included in TΔ.

If the grid size equals Δ/2 then TΔ/2 is constructed by analogy to TΔ with including all points of TΔ

in the set of the nodes obtained for Δ/2; therefore, TΔ ⊂ TΔ/2.

Let G, k, Δ, and r be given and the finite set TΔ be constructed so that TΔ has n elements. Consider
the problems:

Problem P1. Find a k-covering of G with circles of radius r such that to minimize the number
of covering circles.

Problem P2. Find a k-covering of G with circles of radius r such that to minimize the number
of covering circles under condition that, for each of the covering circles, the center coincides with
a point of the set TΔ and every point of TΔ coincides with at most one of the possible centers of
a circle.

Problem P3. Find a k-covering of TΔ with circles of radius r such that to minimize the number
of covering circles and place the center of each covering circle in TΔ, while every point of TΔ

coincides with at most one of the possible centers of a circle.

Firstly consider Problem Р3. Let Δ be selected and the set TΔ be constructed on G. Introduce some
parameter α and put

aij =

{
1, if d(ti, tj) ≤ r − α,

0, if d(ti, tj) > r − α.
(1)
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For (1) be correct, we need α < r. In what follows we assume Δ ≤ r/4. Define the next variables: Given
i, 1 ≤ i ≤ n, let zi be the number of circles of radius r − α whose centers coincide with the point ti.
Consider the problem

z1 + z2 + · · · + zn → min (2)

under the following restrictions:

a11z1 + a12z2 + · · · + a1nzn ≥ k,

a21z1 + a22z2 + · · · + a2nzn ≥ k,

. . . . . . . . . . . . . . .

an1z1 + an2z2 + · · · + annzn ≥ k.

(3)

zi ∈ {0, 1}, 1 ≤ i ≤ n. (4)

Conditions (3) guarantee that each point ti is covered with at least k circles.
If we put α = 0 in (1) then (2)–(4) becomes the problem of k-covering of TΔ with the minimal number

of circles of radius r such that the center of every circle coincides with some point of TΔ. This assertion
easily follows, for example, from [37, p. 71] if the subsets Sj of TΔ consist of the points of TΔ belonging to
the closed circle of radius r with center tj ∈ TΔ. Hence, for solving Problem P3 we should solve system
(2)–(4) with α = 0.

Consider Problem P2. Covering of TΔ with circles of radius r does not guarantee covering of the
given set G. The square CΔ generated by the rectangular grid has the diagonal length equal to

√
2Δ.

If we reduce the radius of the covering circles by half of the diagonal length (i.e., by α0 = Δ
√

2/2) and
the circles of radius r − α0 generate a k-covering of TΔ then the circles of the initial radius r form a k-
covering of G. The parameter α0 can be replaced by α, α0 ≤ α ≤ 2α0.

Lemma 1. Let Δ be selected, α = Δ
√

2, and TΔ and TΔ/2 be constructed. Then each k-covering
of TΔ with circles of radius r − α generates a k-covering of TΔ/2 with circles of radius r − α/2.

Proof. Suppose that we solved problem (2)–(4) for α = Δ
√

2 and obtained the minimal possible
number of circles with centers c1, c2, . . . , cm (ci ∈ TΔ) forming a k-covering of TΔ with circles of radius
r − α. Then for every ti ∈ TΔ there exists at least k points cl such that d(ti, cl) ≤ r − α.

For every point si ∈ TΔ/2 there is tj ∈ TΔ such that d(si, tj) ≤ α/2 and for tj there exists at least
k points cl such that d(tj , cl) ≤ r − α. Hence, we have

d(si, cl) ≤ d(si, tj) + d(tj , cl) ≤ α/2 + r − α = r − α/2;

therefore, the number (nα/2) of the circles of radius r − α/2 generating the k-covering of TΔ/2 does not
exceed the number (nα) of the circles forming the k-covering of TΔ (with circles of radius r − α).

In result we have

nα/2 ≤ nα. (5)

The proof of Lemma 1 is complete.

Let r and Δ be available, and put α = Δ
√

2.
Theorem 1. There is m such that a solution of (2)–(4) for

aij =

{
1, if d(ti, tj) ≤ r − α/2m,

0, if d(ti, tj) > r − α/2m,

gives the minimum number of circles M = nα/2m and for all j ≥ 1 we have nα/2m+j = M . These
M circles of radius r − α/2m generate the k-covering of the set TΔ/2m , and, moreover, for the
radius r generate the k-covering of G.
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Proof. Let Δ be chosen and TΔ be built. If we put α = Δ
√

2 in (1) and solve (2)–(4) then we obtain
the minimal number (nα) of circles of radius r − α generating a k-covering of TΔ. Note that if these nα

circles have a new radius r then they generate a k-covering of the set G.
Consecutively put Δ := Δ/2m (α := α/2m), build TΔ/2m , m = 0, 1, 2, 3, . . . , and solve (2)–(4),

where substituting α/2m for α in (1). As a result, we obtain the numbers nα/2m of the circles of radius
r − α/2m which form a k-covering of TΔ/2m . From (5) we have

nα ≥ nα/2 ≥ nα/22 ≥ nα/23 ≥ · · · ≥ nα/2m ≥ . . . . (6)

The sequence of integers (6) is nonincreasing and bounded below by a number M∗ > 0. Hence, starting
with some m, all nα/2m+j are the same for every j ≥ 1; say nα/2m+j = M . If we put the radius of these
circles equal to r then they generate a k-covering of the set G. Theorem 1 is proved.

Thus, to find an approximate solution to Problem Р2, we do not need to keep making Δ smaller
because, starting with some grid size (Δ := Δ/2m), any further decreasing of Δ does not change the
number of the circles sufficient for the covering of G. Then M is the least estimate for the number of
circles of radius r which generate a k-covering of G and are obtained as a solution of (2)–(4).

Theorem 1 implies that Problem Р2 can be solved by means of the 0–1 LP problem (2)–(4) with
an appropriate choice of Δ (Δ := Δ/2m). Obviously, by solving the indicated 0–1 LP problem for the
chosen Δ we obtain an upper estimate for the number of circles for covering of G.

Consider, for example, the problem of covering a unit square with circles of radius 0.3. If we choose
Δ successively equal to 0.1, 0.05, 0.025, and 0.0125 then the upper estimates for the number of circles
for a covering (1-covering) are equal to 9, 8, 7, and 7 respectively. It is well known that the minimum
possible number of circles equals 6.

The question of choosing Δ remains open. It is clear that Δ should be chosen sufficiently small, but
this increases the dimension of the indicated problem. Equality of nα and nα/2 can be a good test for
appropriate choice of Δ. We had to choose Δ taking into account our computer’s capacity to solve 0–1
LP problems. It is clear that in the general case we obtain an approximate solution of P2. Note that
henceforth we give a lower estimate for the number of sensors under some condition.

We take the approximate solution of Problem P2 as the approximate solution of Problem P1.

2. INTRODUCTION OF CONSTRAINTS ON DISTANCES BETWEEN SENSORS

As was already mentioned, placing several sensors in the same point is undesirable; therefore, we
introduce constraints on the minimal distance between sensors. Observe that in the statements of
Problems P2 and P3 it is mentioned that at most one sensor can be placed at one point. In the
mathematical model this is written in the form of condition (4): zi ∈ {0, 1}, 1 ≤ i ≤ n. Studying
problems of k-covering of a set by the minimal number of circles, it is obvious that there cannot be more
than k centers of circles at every point. If we consider the problem of covering by the minimal number
of circles provided that the centers of the circles can coincide then in problem (2)–(4) condition (4) is
replaced by

zi ∈ {0, 1, . . . , k}, 1 ≤ i ≤ n. (7)

To solve problem (2), (3), (7), we can use, for example, CPLEX library, but solving takes more time
then. For example, when we used system (2), (3), (7) instead of (2)–(4) for the problem of 3-covering of
a unit square with circles of radius 0.3, our calculations were approximately 1.5 times slower.

If the given minimal distance between sensors is greater than Δ then some additional conditions
should be introduced. To this end, in [11], for example, a cumbersome mathematical model is built.
We introduce this condition in the following way:

Suppose that the distance between sensors should be at least some λ. For of every two circles nearest
to each other, all points of the line segment connecting their centers should be covered; therefore, the
value of λ cannot be greater than 2r, where r is the radius of the covering circles. Moreover, from the
condition of 1-covering of an arbitrary G it is easy to find that λ ≤ r

√
3. For k-coverings, k > 1, it

is obvious that λ ≤ r. Thus, for 1-covering we choose λ such that 0 < λ ≤ r
√

3 and for k-covering,
k > 1, we take 0 < λ ≤ r. Depending on the covered domain G, various conditions on λ can appear. For
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example, for 3-covering of an equilateral triangle W with side c, it is easy to see that λ ≤ c; otherwise
the centers of the covering circles are outside W . We represent a general procedure for considering
constraints on the distance between the centers of circles as follows [38]:

Suppose that for each point ti in T there is pi points tj (i 	= j, 1 ≤ j ≤ n) such that d(ti, tj) < λ.
Define coefficients

bij =

{
1, if d(ti, tj) < λ

0, if d(ti, tj) ≥ λ
, i 	= j, 1 ≤ i, j ≤ n,

bii = pi, 1 ≤ i ≤ n.

Introduce the constraints:
b11z1 + b12z2 + · · · + b1nzn ≤ p1,

b21z1 + b22z2 + · · · + b2nzn ≤ p2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

bn1z1 + bn2z2 + · · · + bnnzn ≤ pn.

(8)

Constraints (8) guarantee that the distance between sensors is at least λ. Therefore, by solving
problem (2)–(4) with constraints (8), we can obtain an arrangement of the sensors taking the minimal
distances between them into account. Assume that λ is such that problem (2)–(4), (8) has a solution.

The constructed problems are 0–1 LP problems and can be solved by an integer-valued LP problems
solver. Decrease of Δ increases the dimension n of the problem under consideration and so the program
execution time can become inappropriate. And as many other authors, we propose a possible version of
a heuristic algorithm for the case of large n.

First of all, we observe that solving an LP problem takes less time than solving an integer LP problem.
If in some 0–1 LP problem we replace the condition zi ∈ {0, 1}, 1 ≤ i ≤ n, by 0 ≤ zi ≤ 1, 1 ≤ i ≤ n,
then the obtained problem is called a relaxed LP problem.

3. A HEURISTIC ALGORITHM OF SOLVING PROBLEMS (2)–(4)
One of the heuristic ways of solving 0–1 LP problems is using the solutions of the relaxed LP problem

(for instance, see [30, 39–42]). In some cases, for solving the original problem, only a relaxed problem
is posed, while in others, some additional new 0–1 LP problem is considered along with the relaxed.
By analogy with the above-cited articles, we use both the relaxed and the new 0–1 LP problems.
Represent the procedure as the following

Algorithm 1

Step 1. For problem (2)–(4), we build the relaxed problem by taking constraints 0 ≤ zi, 1 ≤ i ≤ n,
instead of assumption of integer values zi, which is the only difference from the initial statement.

Step 2. Solve the relaxed LP problem. Suppose that the solution is found and z∗1 , z
∗
2 , . . . , z∗n are the

optimal values of the variables. If all z∗i , 1 ≤ i ≤ n, equal either 0 or 1 then the initial 0–1 LP problem is
solved. If among z∗i there are some nonintegers then go to Step 3.

Step 3. Arrange z∗i , 1 ≤ i ≤ n, in nonincreasing order. Choose some number q and take q first values
from the ordered array z∗i , 1 ≤ i ≤ n. Among these q values there could be only v < p different from
zero. Add to these v nonzero values q − v zero values z∗i , 1 ≤ i ≤ n, which are chosen randomly (by
uniform distribution law). We act by analogy when it is necessary to choose one from several identical
values. Suppose that the values z∗j : z∗m1, z

∗
m2, . . . , z

∗
mq are chosen in that way. Introduce the variables yl,

1 ≤ l ≤ q, and coefficients bil = ai,ml, where 1 ≤ i ≤ n and 1 ≤ l ≤ q. Henceforth we build a new 0–1
LP problem, the so-called core problem:

y1 + y2 + · · · + yq → min

b11y1 + · · · + b1qyq ≥ k,

. . . . . . . . . . . . . . . . . . . . . . . .

bn1y1 + · · · + bn1yq ≥ k,

yi ∈ {0, 1}, 1 ≤ i ≤ q.
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Step 4. Solve the core problem. Suppose that the core problem is solved and the optimal values of all yi

are found: y∗1 , y
∗
2, . . . , y

∗
q . For every y∗l = 1 let the respective z∗il equal 1; and for all other y∗l let z∗il = 0.

The obtained values are taken as the solution of (2)–(4).

The value of q is chosen so that the core problem can be solved by some precise method, without
any heuristics or random procedures. In this article, Δ is mainly chosen equal to 0.01 under which the
number of variables in the so-obtained 0–1 LP problems approximately equals 10000. In some cases
we solved problems with 14000 variables choosing q equal to 300, by which we obtained the appropriate
solutions.

Introducing constraints (8), problem (2)–(4), (8) was solved without a heuristic. We can solve it
using the above-mentioned heuristic, but for construction of the core problem it is necessary to transform
constraints (8) using new variables yl, 1 ≤ l ≤ q.

4. LOWER ESTIMATE FOR NUMBER OF SENSORS

Suppose that r, Δ > 0, k (1 ≤ k ≤ 4), and λ = 3Δ are chosen, β = Δ
√

2 is defined and TΔ is
constructed.

Theorem 2. Suppose that nopt be the minimal number of circles of radius r which guarantees
k-covering of the set G when the minimal distance between sensors at least λ, n1 is the minimal
number of circles of radius r + β obtained as a solution to problem (2)–(4) for α = 0 (and
generating some k-covering of TΔ). Then

n1 ≤ nopt. (9)

Proof. Assume that for the chosen set G there exists the minimal number nopt of circles of radius r
which guarantees the k-covering of G when the minimal distance between sensors is at least λ. Let the
centers m = nopt (m ≥ 1) of the circles be placed at c1, . . . , cm, ci ∈ G, 1 ≤ i ≤ m. Since

min{d(ci, cj) ≥ λ | 1 ≤ i, j ≤ n, i 	= j},
all points c1, . . . , cm are different. Put C = {c1, . . . , cm}.

Given Δ, we find TΔ (independently of C). To find TΔ, we build a grid on G of grid size Δ, and so, the
distance from ci ∈ C to the nearest node of the grid is at most β. Suppose that by shift at most β from
ci we can reach some t from TΔ. Then ci belongs to the closed circle K of radius β with center t. Since
the diameter of K is less than 3Δ, in K there are no other points from C\{ci} reachable from t. Hence,
to each point from TΔ not coinciding with points from C, we can move at most one point from C. For
the indicated translations the minimal possible distance between the centers of the circles can decrease,
but will not be less than Δ.

Thus, if ci does not coincide with any point of TΔ then move ci to the nearest point from TΔ in which
there are no points of C. The indicated translation is done by at most β. In addition to translations,
we increase the radii of the circles by β. The circles of radius r with centers c1, . . . , cm generate the
k-covering of G. After translating the centers and increasing the radii by β, obviously, these m circles
with centers TΔ generate a k-covering of G and hence of TΔ; moreover, the minimal distance between
the centers of circles is at least Δ. Given Δ and TΔ, solve problem (2)–(4) for the radii r + β of the
circles (for α = 0). In result, we obtain the minimal number n1 of the circles of radius r + β generating
a k-covering of TΔ. Thus, we arrive at (9). The proof of Theorem 2 is complete.

The value of nopt is unknown yet, although, n1 is found as a solution of (2)–(4). The value of n1

obtained in (9) depends on Δ. In the same way as in proof of Theorem 1 we can show that, starting at
some Δ, further decrease of Δ has no effect on the value of n1.

We obtain the following procedure of determining the approximate lower estimate for the number of
circles for k-covering (1 ≤ k ≤ 4) of the given domain G, provided that the minimal possible distance
between the centers of circles is not less than 3Δ: Solve problem (2)–(4) for radii r + β, where
coefficients aij are determined by (1) for α = 0. The number of nonzero zi provides the lower estimate
for the number of circles for the indicated k-covering of G.
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For covering a unit square with circles of radius 0.3, we choose Δ equal to 0.1, 0.05, 0.025, and 0.0125
consecutively. Then the lower estimates for the numbers of circles for 1-coverings are equal to 4, 5, 5,
and 6 respectively. It is well known that the minimal possible number of circles is equal to 6.

Consider the case with constraints (8) when λ � 3Δ. Assume that there exists the least number M∗

of circles of radius r guaranteeing a k-covering of G such that the least distance between the centers
of circles is not less than λ. Choose Δ and construct TΔ. The centers of the circles that are not lying
in points from TΔ we move to the nearest points from TΔ not containing a center of a covering circle;
let this translation value be at most β = Δ

√
2. Increase the radii of the circles by β. Then M∗ circles of

radius r + β guarantee a k-covering of G, and thus a k-covering of TΔ. After the indicated translations,
conditions (8) hold for some λ∗ ∈ [λ− 2β, λ + 2β]. If we solve problem (2)–(4), (8) with λ replaced by λ∗

then we obtain number n1(λ∗) of the circles such that

n1(λ∗) ≤ M∗ (10)

In problem (2)–(4), (8) we minimize the number of circles, and hence, constraint (8) can only increase
the number of circles. To obtain the lower estimate of the number of circles, we choose λ∗ = λ − 2β.
Thus, (10) gives an estimate on the unknown number M∗.

5. NUMERICAL RESULTS

In many articles (for instance, see [19, 21–29]) we can find the number of circles needed for 1-
covering of some figures, for example a square, triangle, and circle, with circles of the least possible radii.
As for k-covering, k ≥ 2, only few results are known [12, 13, 15, 16, 30, 31]. We now obtain estimates for
the number of circles for k-covering (1 ≤ k ≤ 4) of an arbitrary set G and, moreover, can provide some
constraints on the minimal distances between circles.

For numerical implementation, we took a unit square, a rectangle with sides 1.22 and 0.82, and
a circle of radius 0.5642 as domains for covering. The sizes are chosen so that the areas of the figures
are almost the same. Henceforth symbol / is used as a separator. The minimal admissible distance λ
between the centers of circles is given by constraints (8) for λ > Δ and by constraints (4) for λ = Δ.
The obtained numbers of circles coincide with their upper estimates; therefore, we do not mention the
upper estimates.

In the table we give the numbers of circles and their approximate lower estimates for the square,
rectangle, and circle for the chosen values of radii r of the covering circles and the multiplicity of covering
k equal to 1, 2, and 3. In the upper row (for the chosen radius r), the lower estimate for the number of
circles for λ � 3Δ and then the obtained number of circles for λ ≥ Δ are presented. In the lower row
(for the chosen r) in parentheses, the lower estimate for the number of circles for λ ≥ r/2 and then the
obtained number of circles for λ ≥ r/2 are written.

The table demonstrates that for some coverings the obtained number of circles coincides with its
lower estimate, hence these results are unimprovable. For other coverings, the difference between the
estimate and the obtained number is small.

Let us discuss the results for 1-covering of the square. It follows from [17, 27–29] that for radii of
circles equal to 0.5, 0.45, 0.4, 0.35, and 0.25, the minimal possible number of circles for covering of
the square is equal to 4, 4, 4, 5, and 9 respectively, which coincide with the same numbers obtained in
this article. In this article, for radius 0.3, the number of circles equals 7, although a square can be covered
by 6 circles. Choosing Δ less than 0.01, the number of circles could be decreased by 1, but our computer
does not cope with this. The results in the table turn out to be appropriate since the given approach
allows us to find the necessary number of circles for an arbitrary bounded convex set G rather than only
for some domains.

There are a few articles in which distances between sensors are taken into account (see [5, 11]).
Such constraints can be introduced to consider effect of sensors on each other or for some other reason.
Introduction of constraints on the centers of circles in some cases does not change the number of
covering circles, while in others the number of circles and their arrangement change. For example, the
3-covering of the square with circles of radius 0.25 takes 27 circles, whereas after the introduction of
constraint (8) λ = r/2 we need 28 circles. Similarly, the 2-coverage of the rectangle with circles of radius
0.25 requires 18 circles, while it takes 19 circles after the introduction of condition (8) λ = r/2. For the
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Fig. 1. 2-Coverings of the square with circles of radius 0.3 without and with constraints on the
distance between the centers of circles.

cases when the number of circles does not coincide with its lower estimates, the difference between them
is small.

The table confirms that, depending on the type of figure, estimates for the number of circles vary,
though inessentially since the areas of the figures are almost the same. For example, the 2-covering of
the square with circles of radius 0.3 is performed with 13 circles, while for the rectangle, it takes 12 circles.

We obtain the arrangement of circles on the chosen domain solving either problem (2)–(4) or
problem (2)–(4), (8) under given radius of the circles and given value λ for (8). In Figs. 1–3 some
examples are shown of 2-coverings with circles of radius 0.3 in the cases of the square 1 × 1, the

Numbers of circles (sensors) and their estimates for covering of a square, a rectangle, and
a circle under given values of radii r of circles (zones of monitoring by sensors)

Multiplicity of covering (k)

The square 1 × 1 The rectangle 1.22 × 0.82 The circle of radius 0.5642

r 1 2 3 1 2 3 1 2 3

0.5 3/4 6/8 10/12 3/3 6/6 9/9 3/3 6/6 9/9

(3/4) (6/8) (10/12) (3/3) (6/6) (9/10) (3/3) (6/6) (9/10)

0.45 4/4 8/8 12/12 3/4 7/8 10/12 4/4 7/7 11/11

(4/4) (8/8) (12/12) (3/4) (7/8) (10/12) (4/4) (7/7) (10/11)

0.4 4/4 8/8 12/12 4/4 8/8 12/12 4/4 8/8 12/12

(4/4) (8/8) (12/12) (4/4) (8/8) (12/13) (4/5) (8/9) (12/13)

0.35 4/5 8/10 12/15 4/5 9/10 15/15 5/5 10/10 14/14

(4/5) (8/10) (13/16) (4/5) (9/10) (15/16) (5/5) (9/11) (14/16)

0.3 6/7 12/13 17/21 6/6 12/12 18/18 7/7 12/14 18/19

(6/7) (12/14) (17/21) (6/6) (12/12) (18/19) (6/7) (12/14) (18/21)

0.25 9/9 17/18 25/27 8/9 16/18 22/26 8/8 15/15 23/24

(9/9) (17/18) (25/28) (8/9) (16/19) (23/28) (8/9) (15/18) (23/28)
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Fig. 2. 2-Coverings of the rectangle with circles of radius 0.3 without and with constraints on
the distance between the centers of circles.

Fig. 3. 2-Coverings of the circle with circles of radius 0.3 without and with constraints on the
distance between the centers of circles.

rectangle 1.22 × 0.82, and the circle of radius 0.5642 without restrictions (8) (see the left plots (a)) and
with restrictions (8) (the right plots (b)) for λ = 0.5r, where r is the radius of the covering circles, r = 0.3.

The numerical implementation was carried out by CPLEX–12.6.3 library on Intel Core i7–4790K,
RAM 8 GB, Windows 10x64 computer. To obtain the data in the table, the computations took time
from several seconds to several minutes. For covering of the square, for example, it took approximately
10 seconds to obtain the estimate for the number of circles with r = 0.3 and k = 2. Since these results
must be computed a priori rather than on-line, here we do not give the computational time for each case.

CONCLUSION

In this article, we presented a mathematical model and method for determining the number of
circles (sensors), their arrangement, and the approximate lower estimates for k-covering (1 ≤ k ≤ 4)
of an arbitrary bounded convex domain G with nonempty interior on the plane. We found out that for
construction of grids with grid size Δ on G (discretization of the problem) there is no need to decrease Δ
infinitely because there exists Δ after which the results do not change.

We presented an effective and simple way of taking the minimal possible distance between the
centers of the covering circles (sensors) into account. We gave the approximate lower estimates for the
numbers of circles for k-coverings of the given domains provided that such covering exists. All results are
obtained for k-covering of a sufficiently arbitrary bounded domain. The numerical results demonstrate
effectiveness of the method and, for the known cases, coincide with those published earlier. Our method
is based on solving of 0–1 LP problems and can be extended on the case of k-covering in the three-
dimensional space.
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