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Abstract—The 3-coloring problem for a given graph consists in verifying whether it is possible
to divide the vertex set of the graph into three subsets of pairwise nonadjacent vertices. A complete
complexity classification is known for this problem for the hereditary classes defined by triples of
forbidden induced subgraphs, each on at most 5 vertices. In this article, the quadruples of forbidden
induced subgraphs is under consideration, each on at most 5 vertices. For all but three corresponding
hereditary classes, the computational status of the 3-coloring problem is determined. Consider-
ing two of the remaining three classes, we prove their polynomial equivalence and polynomial
reducibility to the third class.
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INTRODUCTION

A regular vertex coloring of a graph G is a mapping c : V (G) → N such that c(v1) �= c(v2) for all
adjacent vertices v1, v2 ∈ V (G). A regular vertex coloring c of G is called a k-coloring if c : V (G) → 1, k.
If G has a k-coloring then G is called k-colorable. The chromatic number of G is the least k such that
G is k-colorable. This number is denoted by χ(G).

The vertex coloring problem for G and k given consists in determining whether χ(G) ≤ k or not.
The vertex k-coloring problem (briefly, Problem k-VC) for a given graph G consists in determining
whether χ(G) ≤ k or not. Both problems are classical NP-complete problems on graphs.

A graph H is a subgraph of G if H can be obtained from G by removing vertices and edges. A graph H
is called an induced subgraph of G if H can be obtained from G by removing only vertices. A graph
class is a set of graphs closed under isomorphism. A graph class is called hereditary if it is closed under
vertex removal. A strongly hereditary graph class is a herediatary graph class closed also under edge
removal. As is known, each hereditary graph class X can be defined by the set of its forbidden induced
subgraphs Y , which is written as X = Free(Y). A strongly hereditary graph class X can be defined
by the set of its forbidden subgraphs Y , which is written as X = Frees(Y). If a hereditary class can be
defined by a finite set of its forbidden subgraphs then it is called finitely defined.

A hereditary graph class with polynomially solvable Problem 3-VC will be called 3-VC-simple.
A hereditary graph class with NP-hard Problem 3-VC will be called 3-VC-hard.

The vertex coloring problem is polynomially solvable for Free({H}) if H is an induced subgraph of
the graph P4 or of the graph P3 + K1; otherwise, it is NP-complete in this class (see [1]). But, with
two forbidden induced subgraphs, complete classification is no longer possible. For example, for all but
three hereditary classes with forbidden subgraphs at most 4 vertices each, the computational status
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Fig. 1. The bull, cricket, butterfly, and crown graphs.

of the vertex coloring problem is known (see [2]). For the remaining three cases, this status is unknown,
but for them it is possible to construct polynomial approximate algorithms [3]. Some recent results
on the complexity of the vertex coloring problem in hereditary classes with forbidden subgraphs of small
size are presented in [4–10].

For Problem k-VC, the complexity status remains open even for some classes with a single forbidden
induced subgraph. The computational complexity of Problem 3-VC is known for all classes of the
form Free({H}) with |V (H)| ≤ 6 (see [11]). An analogous result was obtained for Problem 4-VC
and all classes of the form Free({H}), where |V (H)| ≤ 5 [12]. For each fixed k, Problem k-VC
is solvable in polynomial time in the class Free({P5}) (see [13]). Problem 3-VC is polynomially
solvable in the class Free({P7}) (see [14]). For each fixed k ≥ 5, Problem k-VC is NP-complete
in the class Free({P6}) (see [15]). Problem 4-VC is NP-complete in the class Free({P7}) (see [15]).
The computational status of Problem k-VC is open for the class Free({P8}) and k = 3 and also for the
class Free({P6}) and k = 4.

There are many “white spots” on the “map” of the computational complexity of the vertex coloring
problem and the vertex k-coloring problem in the family of hereditary classes. There are two ways
of reducing the number of these “white spots.” The first is increasing the number of forbidden induced
subgraphs, and the second is increasing the size of such subgraphs. A constraint on the size or number
of forbidden induced subgraphs forms a subfamily of the family of hereditary classes of graphs. A possible
reduction of the family of “white spots” consists in obtaining a complete complexity dichotomy for larger
values of this bound.

In this article, we consider Problem 3-VC. In [16], a complete complexity dichotomy for this problem
was obtained in the family of hereditary classes with a pair of forbidden induced subgraphs each of which
has at most 5 vertices. In [17], a similar result was obtained for all triples of forbidden subgraphs
each of which has at most 5 vertices. In this article, we consider hereditary classes with a quadruple
of forbidden induced subgraphs each of which has at most 5 vertices and also, for all but three such
classes, we establish the computational status of Problem 3-VC. For two of the three remaining cases,
the polynomial equivalence and the polynomial reducibility to the third case are proved.

1. NOTATIONS

N(x) stands for the neighborhood of a vertex x, deg(x) is the degree of x, and Δ(G) is the maximal
vertex degree of a graph G.

Let Pn, Cn, Kn, and On denote the simple path, the simple cycle, the complete and the empty graphs
on n vertices respectively. The symbol Kp,q designates the complete bipartite graph with p vertices in one
part and q vertices in the other.

Let Fk (k ≥ 3) denote the graph that is obtained by adding to a simple path (x1, . . . , xk) a vertex x
and edges xx1, xx2, . . . , xxk. The diamond graph is isomorphic to F3. The wheel Wk (k ≥ 3) is a graph
obtained by adding a vertex x and edges xx1, xx2, . . ., xxk to a cycle (x1, . . . , xk). The odd wheel is
a member of {W3,W5,W7, . . .}.

Figs. 1 and 2 display the bull, cricket, butterfly, and crown graphs, and also spindle, kite, dart, banner,
house, and sun graphs.
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Fig. 2. The spindle, kite, dart, banner, house, and sun graphs.

Let G be a graph and let V ′ ⊆ V (G). Then G[V ′] is the subgraph in G induced by the subset
of vertices V ′ and G \ V ′ is the result of the removal from G of all elements of V ′ (together with all
incident edges). Let G1 + G2 be the disjoint union of G1 and G2 with disjoint vertex sets. Designate
the disjoint union of k copies of G as kG, and denote the complementary graph to W4 + K1 by W4 + K1.

2. THE NP-COMPLETENESS OF THE 3-COLORING PROBLEM IN SOME GRAPH
CLASSES WITH FORBIDDEN SUBGRAPHS HAVING FEW VERTICES

The following six graph classes are considered in [17, Section 2]:

• X ∗
1 is the set of all forests,

• X ∗
2 is the set of edge graphs of subcubic forests,

• X ∗
3 is the set of graphs in which every 5 vertices induce a subgraph

of X ∗
1 ∪ X ∗

2 ∪ {the cricket, the kite, the diamond + K1},

• X ∗
4 is the set of graphs in which every 5 vertices induce a subgraph

of X ∗
1 ∪ X ∗

2 ∪ {the kite, the diamond + K1, the butterfly, the crown},

• X ∗
5 is the set of graphs in which every 5 vertices induce a subgraph

of X ∗
1 ∪ X ∗

2 ∪ {the kite, the diamond + K1, the house, C4 + K1, F4,W4, the dart, the crown},

• X ∗
6 is the set of graphs in which every 5 vertices induce a subgraph

of X ∗
1 ∪ X ∗

2 ∪ {the cricket, the house, the banner, C4 + K1, C5}.

It was shown in [17, Lemma 4] that each of the graph classes X ∗
3 –X ∗

6 is 3-VC-hard. In what follows
we will prove the NP-completeness of Problem 3-VC for three more graph classes with forbidden
subgraphs each of which has at most 5 vertices. To this end, consider the graphs G1, G2, and G3 depicted
in Figs. 3 and 4.

Lemma 1. G1 is 3-colorable, and in each 3-coloring of G1, the vertices u3 and u4 have the same
color.

Proof. Color a1, a2, a3, a4, and v1 with the first color; b1, b3, b4, v2, and u2, with the second color; and
b2, c1, c2, v3, u1, u3, and u4, with the third color. We so obtain the 3-coloring of G1; therefore, G1 is
3-colorable.

Prove that, in every 3-coloring of G1, the vertices u3 and u4 have identical colors. Consider some
3-coloring c of G1. Suppose that c(c1) = 1 and c(v3) = 2. Then c(v2) = 3 and c(v1) = 1. Since c(u1) �=
c(u2), we have c(c2) �= 1, and so c(c2) = 2.
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Fig. 3. The graphs G1 and G2.

Fig. 4. The graph G3.

Let c(b1) = 1. Then, necessarily,

c(a1) = 3, c(b4) = 2, c(a4) = 3, c(b3) = 1, c(a3) = 3, c(b2) = 2.,

Therefore, c(u1) = c(u2) = 1; a contradiction.

Let c(b1) = 3. Then

c(a2) = 2, c(b2) = 3, c(a3) = 1, c(b3) = 3,
c(a4) = 2, c(b4) = 3, c(a1) = 1.

Therefore, c(u1) = c(u2) = 2; a contradiction.

If c(c1) = c(v3) then also c(c1) = c(v3) = c(u3) = c(u4). Lemma 1 is proved.

Lemma 2. The graph G2 is 3-colorable, and, in each 3-coloring of G2, the vertices t1 and t2
have the same color.

Proof. Color x3, y1, and z1 with the first color; x1, y2, and z2, with the second; and x2, y3, z3, t1, and t2,
with the third color. Such a coloring is a 3-coloring of G2; therefore, G2 is 3-colorable.

Prove that, in every 3-coloring of G2, the vertices t1 and t2 have identical colors. Consider some
3-coloring c of G2. Suppose that there exists i such that c(yi) �= c(zi). We may assume that i = 1
and c(y1) = 1 while c(z1) = 2. Owing to the presence of the edges x1x2 and x1x3, none of the sets
{c(y2), c(z2)} and {c(y3), c(z3)} coincides with {1, 2}. If at least one of the sets is a singleton then
the color in it must be the third, and the other set must coincide with {1, 2}, which is impossible. If
{c(y2), c(z2)} = {1, 3} then c(z2) = 1, c(y2) = 3 and c(x1) = 3, c(x2) = 2, and c(x3) = 1; therefore,
each of the three colors is forbidden for z3. If {c(y2), c(z2)} = {2, 3} then c(y2) = 2, c(z2) = 3, and
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c(x1) = 3, c(x2) = 1, and c(x3) = 2; thus, each of the three colors is forbidden for y3. Hence, we may
assume that

c(y1) = c(z1) = 1, c(y2) = c(z2) = 2, c(y3) = c(z3) = 3;

therefore, c(t1) = c(t2) = 3. Lemma 2 is proved.

Lemma 3. The graph G3 is 3-colorable, and, in each 3-coloring of G3, the vertices a1, a2, z1,
and z2 have the same color.

Proof. Color the vertices a1, a2, v1, u1, z1, and z2 with the first color; the vertices b1, b2, v2, y1, and y2,
with the second color; and the vertices c1, c2, u2, x1, and x2, with the third color. This yields a 3-coloring
of G3; therefore, G3 is 3-colorable.

Prove that, in each 3-coloring of G3, the vertices a1, a2, z1, and z2 have the same color. Indeed, it is
not hard to verify that the graph G3[{a1, a2, b1, b2, c1, c2}] has a unique 3-coloring (up to a permutation
of colors) in which the vertices a1 and a2 have the first color, b1 and b2 have the second color, and c1

and c2 have the third color. Then, in every 3-coloring of G3, the vertices y1 and y2 have the second color,
and x1 and x2 have the third color. Hence, the vertices z1 and z2 have the first color.

This completes the proof of Lemma 3.

Let G be an arbitrary graph and let x be a vertex of G whose neighborhood is consists of the ver-
tices v1, v2, v3, and v4. The operation of Gi-bypass consists in removing x from G, adding the graph Gi

and the edges v1u3, v2u3, v3u4, v4u4 (if i = 1) or the edges v1t1, v2t1, v3t2, v4t2 (if i = 2) or the edges
v1a1, v2a2, v3z1, v4z2 (if i = 3).

By Lemmas 1–3, the so-obtained graph is 3-colorable if and only if G is 3-colorable.

Define the following three graph classes:

• X ∗
7 is the set of graphs in which every 5 vertices induce a subgraph inX ∗

1 ∪X ∗
2 ∪ {the cricket, C5},

• X ∗
8 is the set of graphs in which every 5 vertices induce a subgraph

in X ∗
1 ∪ X ∗

2 ∪ {the cricket, the banner, the house,C4 + K1},

• X ∗
9 is the set of graphs in which every 5 vertices induce a subgraph

in X ∗
1 ∪ X ∗

2 ∪ {the kite, the diamond + K1, the dart, C4 + K1, the banner, W4, C5}.

Each of the classes X ∗
7 –X ∗

9 is hereditary.

Lemma 4. Each of the graph classes X ∗
7 –X ∗

9 is 3-VC-hard.

Proof. Problem 3-VC is NP-complete in the class Y of connected graphs in which the degree of each
vertex is equal to 4 (see [18]). Let G ∈ Y . Choose i ∈ 1, 3 and simultaneously apply Gi-bypass to each
of the vertices of G. Denote the so-obtained graph by G′

i. The graph G′
i is 3-colorable if and only if such

is Gi by Lemmas 1–3.

It is not hard to see that G′
i ∈ X ∗

i+6. Indeed, let Hi be a 5-vertex induced subgraph in G′
i. If it is

disconnected then Hi ∈ X ∗
1 ∪ X ∗

2 or i = 2, H2 = C4 + K1, or i = 3, H3 = diamond + K1. In the last
two cases, we have Hi ∈ X ∗

i+6. If Hi is an induced subgraph in Gi then Hi ∈ X ∗
i+6. Suppose that Hi is

connected but not an induced subgraph in Gi. Then one or two vertices in Hi belong to the same copy
of the induced subgraph Gi of G′

i, and four or three belong to another copy; therefore, Hi ∈ X ∗
1 .

Thus, Problem 3-VC in the class Y is polynomially reducible to the same problem in each
of the classes X ∗

7 –X ∗
9 . Hence, each of the graph classes X ∗

7 –X ∗
9 is 3-VC-hard.

Lemma 4 is proved.
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3. SOME RESULTS CONNECTED WITH THE POLYNOMIAL REDUCIBILITY
AND POLYNOMIAL SOLVABILITY OF THE 3-COLORING PROBLEM

In [17] the notion of an irreducible graph was introduced. A graph G is irreducible if the following are
fulfilled simultaneously:

(1) G is connected and contains no vertices x and y such that N(y) ⊆ N(x),

(2) G has no joints,

(3) G has no odd wheel as an induced subgraph,

(4) G does not include spindle as a subgraph,

(5) Δ(G) ≥ 4, and G has no vertices of degree at most 2.

It was shown in [17, Lemma 5] that for an arbitrary hereditary class X Problem 3-VC is polynomially
reducible to the same problem for the family of reduced graphs in X .

Lemma 5. If G ∈ Free({K1,4, W3, W4, W5, the butterfly, the cricket}) then Δ(G) ≤ 4. Moreover,
if deg(x) = 4 then G[N(x)] ∈ {K1,3, P3 + K1, P4}.

Proof. Let x∗ be a vertex of maximal degree in G. Suppose that G[N(x∗)] has a connected compo-
nent G∗ with at least four vertices. Since

G ∈ Free({W3, W4, W5, the butterfly}),
G∗ is a tree of diameter at most 3. Clearly, Δ(G∗) ≤ 3. If Δ(G∗) = 2 then G∗ = P4. If Δ(G∗) = 3
and G∗ �= K1,3 then G∗ has an induced subgraph K2 + 2K1; therefore, G �∈ Free({the cricket}). Thus,
G∗ = K1,3 if Δ(G∗) = 3.

Since G ∈ Free({K1,4, cricket}), the graph G[N(x∗)] has at most three connected components.
Moreover, if there are exactly three of them, G[N(x∗)] is empty. If there are exactly two such components
then one of them is K1 since G ∈ Free({butterfly}). Suppose that G[N(x∗)] = H + K1, where H is
connected and |V (H)| ≥ 3. Since G ∈ Free({K1,4,W3, the cricket}), the last paragraph implies that
the graph H must have exactly three vertices, which implies that H = P3. Hence, Δ(G) ≤ 4.

If deg(x) = 4 then

G[N(x)] ∈ {K1,3, P3 + K1, P4}.
This follows from the arguments of the previous paragraphs. Lemma 5 is proved.

Lemma 6. Problem 3-VC in the class

Free({K1,4, the butterfly, the cricket, the dart})
is polynomially reducible to the same problem for the class

Free({K1,4,W4, the butterfly, the cricket, the dart}).

Proof. Obviously, the neighborhood of every vertex of a graph in Free({K1,4, W4}) induces a subgraph
in Free({K3, O4}). By the Ramsey Theorem, this subgraph contains at most 8 vertices.

Let G be an irreducible graph of class Free({K1,4, the butterfly, the cricket, the dart}) containing
an induced subgraph W4. Denote the vertices of this subgraph by v, v1, v2, v3, and v4, where C =
(v1, v2, v3, v4) is the induced 4-cycle. We assume that the set of the vertices of G situated at distance 3
from v is nonempty. Otherwise, G contains at most 1 + 8 + 8 · 7 + 8 · 72 vertices since this graph is
connected.

Since G ∈ Free({the butterfly, the cricket}), all but possibly one elements of N(v) belong to

̂V =
4

⋃

j=1

N(vj).
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Let us prove that there exists an induced path of length 3 starting at the vertex v and passing through
the vertices of C. Suppose the contrary. Then the induced path (v, a, b, c) contains no elements of V (C).
By assumption, each neighbor of every element of ̂V \N(v) belongs to ̂V ∪ {a}. If a vertex a′ �∈ {v2, v4}
is a common neighbor of v and v1 then a′ must be adjacent to v3 and simultaneously not adjacent to any
of the vertices v2 and v4 since G ∈ Free({W3, the dart}). For the same reasons, each neighbor of a′

belongs to ̂V ∪ {a}. Hence, the vertex a is a joint of G; therefore, G is not irreducible.

Consider an induced path (v, a1, b1, c1) in which a1 ∈ V (C) and c1 �∈ ̂V . Without loss of generality,
we may assume that a1 = v1. Since G is irreducible and belongs to Free({the dart}); therefore,
the vertex b1 is adjacent exactly to two vertices of the cycle C which are neighboring. This is easy to see
by exhausting all cases of intersection of N(b1) and V (C): one vertex, two nonadjacent vertices, and two
adjacent vertices respectively. We may assume that b1v2 ∈ E(G). If b1 has a neighbor c′ �∈ {v1, v2, c1};
then

c′ ∈ N(v1) ⊗ N(v2), since G ∈ Free({W3, the butterfly, the cricket}).
By symmetry, it suffices to consider the case when c′ ∈ N(v1) \ N(v2). Since G ∈ Free({W3,W5}), we
have c′v4 �∈ E(G). Then the vertices v1, v2, v4, b1, and c′ induce dart.

Suppose that b2 ∈ ̂V \ (V (W4) ∪ {b1}). The vertex b2 cannot have exactly one neighbor on the cy-
cle C because G ∈ Free({the dart}). If

N(b2) ∩ V (C) ∈ {{v1, v4}, {v2, v3}, {v1, v2}}
then b1b2 ∈ E(G) since G ∈ Free({the butterfly, the cricket}); but then G �∈ Free({W3,W5}). Let
N(b2) ∩ V (C) = {v1, v3}. If b2b1 ∈ E(G) then v1, v2, v4, b1, and b2 induce dart. If b2b1 �∈ E(G) then
either v1, v2, v4, v, and b2 (if b2v �∈ E(G)) or v1, v4, v, b1, and b2 induce dart (if b2v ∈ E(G)). The case
of N(b2) ∩ V (C) = {v2, v4} is considered by analogy. In all cases, when |V (C) ∩ N(b2)| ≥ 3, we have
b2v �∈ E(G) and b1b2 �∈ E(G) since G ∈ Free({W3,W5}). Then G contains an induced subgraph dart.
Thus, every element of the set ̂V \ (V (W4) ∪ {b1}) is adjacent in C only to v3 and v4.

Thus, N(b2) ∩ V (C) = {v3, v4}. Moreover, by the previous arguments and the fact that G ∈
Free({W3, the cricket}), we infer that N(v3) ∩ N(v4) = {b2, v}.

Since G is spindles-free, we have b1b2 �∈ E(G). If there exists a vertex c2 ∈ N(b2) \ {v3, v4} then
c2v �∈ E(G); otherwise, G ∈ Free({the dart}). Thus, c2 �∈ ̂V ∪ N(v) and deg(b2) = 3 since

G ∈ Free({the butterfly, the cricket}).
Hence,

deg(b1) = 3, deg(b2) ≤ 3, deg(v) ≤ 5.

Remove from the graph G all vertices of V (C), add to it vertices w1 and w2 and also the edges w1w2,
w1b1, w2b1, w1v, w2v, w1b2, and w2b2. Denote the so-obtained graph by G∗. It is not hard to see that G
is 3-colorable if and only if so is G∗. Moreover,

G∗ ∈ Free({K1,4, the butterfly, the cricket, the dart}).

If ̂V = V (W4) ∪ {b1} then, by analogy, we can carry a reduction in which the edges w1b2 and w2b2 are
not reduced. Applying the transformation an appropriate number of times, in result we obtain a graph
from Free({K1,4,W4, the butterfly, the cricket, the dart}).

The proof of Lemma 6 is complete.

Lemma 7. Problem 3-VC in the class Free({K1,4,W4, the butterfly, the cricket}) is polynomially
reducible to the same problem in the class Free({K1,4,W4, the butterfly, the cricket, the crown}).
This is also true for the classes

Free({K1,4,W4, the butterfly, the cricket, the dart}),
F ree({K1,4,W4, the butterfly, the cricket, the crown, the dart}).

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 12 No. 4 2018



766 SIROTKIN, MALYSHEV

Proof. Suppose that an irreducible graph G of class Free({K1,4,W4, the butterfly, the cricket})
contains an induced subgraph crown whose vertices of degree 2 we denote by x1, x2, and x3. Lemma 5
implies that each of the vertices x1, x2, and x3 has degree at most 3 in G. In G, contract the subgraph
under consideration to a vertex x and denote the result of this contraction by G∗. Obviously, the graph
G∗ is 3-colorable if and only if so is G. It is also obvious that the degree of the vertex x in G∗ is at most 3.
If this degree is at most 2 or x is a vertex of degree 3 in the induced subgraph W4 of G∗ then G∗ is 3-
colorable if and only if so is the graph G∗ \ {x} = G \ V (the crown). Therefore, henceforth, we assume
that this case is not realized and G∗ ∈ Free({W4}). Then G contains vertices y1, y2, and y3 such that

yi ∈ N(xi) \
3

⋃

j=1
j �=i

N(xj)

for all i ∈ 1, 3. Clearly, in G∗, the vertices y1, y2, and y3 form a neighborhood of x. Since, in passing
from G to G∗, the degrees of the vertices y1, y2,and y3 remain unchanged, we have G∗ ∈ Free({K1,4}).
If G∗ �∈ Free({the butterfly}) then, also in G∗, the vertex x has degree 2 in an induced copy of the graph
butterfly; and we may assume that x, y1, and y2 constitute a traingle in this subgraph butterfly and y3

does not belong to it. But then all vertices of the butterfly subgraph but x and also the vertex x1 induce
a cricket subgraph in G. If G∗ �∈ Free({the cricket}) then the vertex x in G∗ is a vertex of degree 1
in the induced copy of the graph cricket (and then, obviously, G �∈ Free({the cricket})) or is a vertex
of degree 2 in the induced copy of the graph cricket (and then, obviously, G �∈ Free({K1,4})). Therefore,

G∗ ∈ Free({K1,4,W4, the butterfly, the cricket}).
If in addition G ∈ Free({the dart}) then an induced subgraph dart can exist in G∗ only if it is induced
by x, y1, y2, y3, and some vertex z. We may assume that (y1, y2, y3) is an induced path in G∗ and

z ∈ N(y2) \ (N(y1) ∪ N(y3)).

Then in G the vertices y1, y2, y3, x2, and z induce the subgraph K1,4.
Applying the above-described reduction appropriately many times, we obtain some graph

HG ∈ Free({K1,4, W4, the butterfly, the cricket, the crown}),
where HG ∈ Free({the dart}) if G ∈ Free({the dart}). Clearly, G is 3-colorable if and only if so is HG.

The proof of Lemma 7 is complete.

Lemma 8. The class Free({K1,4, the butterfly, the cricket, the dart}) is 3-VC-simple.

Proof. By Lemmas 6 and 7, Problem 3-VC in the class

Free({K1,4, the butterfly, the cricket, the dart})
is polynomially reducible to the same problem in the class

Free({K1,4,W4, the butterfly, the cricket, the crown, the dart}).

Recall that a 2-tree is a graph obtainable from the graph K3, which is regarded as the simplest 2-tree,
by the same rule: Add a new vertex to the previously obtained graph and join the new vertex by edges
with two adjacent vertices of the old graph. It is not hard to see that each 2-tree has a unique 3-coloring
which can be found in linear time.

Let G be a 2-tree of class

X = Free({K1,4,W4, the butterfly, the cricket, the crown, the dart}).
Then Δ(G) ≤ 4 by Lemma 5. Using this and inducting on the number of vertices, it is not hard to prove
each of the following three assertions:

If G �∈ {K3, the diamond, F4, the sun} then all its vertices but x1, x2, y1, and y2 have degree 4.
Moreover,

deg(x1) = deg(x2) = 2, deg(y1) = deg(y2) = 3,
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where (x1, y1) ∈ E(G) and (x2, y2) ∈ E(G), while

G[{x1, x2, y1, y2}] = 2K2 or G[{x1, x2, y1, y2}] = P4.

In a 3-coloring of G, all three colors occur among the colors of the vertices x1, x2, y1, and y3; moreover,
the colors of x1 and x2, or of y1 and y2, or of x1 and y2 coincide. This holds also for the diamond graphs
and F4. In a 3-coloring of K3 and the sun graphs, their vertices of degree 2 acquire pairwise distinct
colors.

Let G be an irreducible graph of class X . Refer to an inclusion maximal subgraph in G that is a 2-tree
and belongs to X as a 2G-tree. Lemma 5 implies that every two 2G-trees do not intersect by vertices,
2G-trees cover all vertices of degree 4 in G, and each vertex of degree 2 or 3 in a 2G-tree has degree 3
in G.

Remove from G all vertices of degree 3 whose neighborhoods induce an empty graph and all edges ab
such that

G[N(a)] = K2 + K1.

It is not hard to see that the result is the disjoint union of all possible 2G-trees. Therefore, the set of all
2G-trees can be found in polynomial time.

Consider a 2G-tree and its 3-coloring. If G has an edge joining two vertices of the 2G-tree of one color
then G is not 3-colorable. Show that if for each 2G-tree there is no such edge then G is 3-colorable. To
this end, apply some process of graph reduction.

Let G′ be the current graph; i.e., G′ = G at the beginning of the process. Consider G′ and a 3-coloring
of some of its 2G-trees. Remove from G′ the 2G-tree under consideration, then add a triangle and,
for each i ∈ 1, 3, join the vertex of the triangle with index i with exactly those vertices of the obtained
graph to which the vertices of color i of the remote 2G-tree were adjacent. The triangle must contain
a vertex of degree 2. After eliminating all 2G-trees, remove all vertices of degree 2 from the so-obtained
graph, and denote the resulting graph by G∗. The graph G∗ contains no induced copy of K4 and has
maximal vertex degree at most 3. Clearly, G is 3-colorable if and only if so is G∗. By the Brooks Theorem
(see [19]), G∗ is 3-colorable. Hence, G is 3-colorable.

The proof of Lemma 8 is complete.

4. THE MAIN RESULT AND ITS PROOF

Introduce the notations

X ′
1 = Free({K1,4, the butterfly, the cricket, C4}),

X ′
2 = Free({K1,4, the butterfly, the cricket, C4 + K1}),
X ′

3 = Free({K1,4, the butterfly, the cricket, W4}).

Theorem. Let X be a graph class with at most four forbidden induced subgraphs each
of which has at most 5 vertices; and let X be different from each of the graph classes X ′

1–X ′
3.

Then X is 3-VC-hard if X includes at least one of the classes X ∗
1 –X ∗

9 ; otherwise, X is 3-VC-
complete. Problem 3-VC in the class X ′

1 is polynomially equivalent to the same problem in X ′
2;

and Problem 3-VC in the class X ′
2 is polynomially reducible to the same problem in X ′

3.

Proof. It was proved in [20] that a finitely defined graph class that includes at least one of the graph
classes X ∗

1 or X ∗
2 is 3-VC-hard. Therefore, if X includes at least one of the classes X ∗

1 –X ∗
9 then X is

3-VC-hard.
Assume that X includes none of the classes X ∗

1 –X ∗
9 . It was proved in [16] that if G1 ∈ X ∗

1 and
G2 ∈ X ∗

2 are arbitrary graphs with at most 5 vertices each and

{G1, G2} �= {K1,4, the bull}, {G1, G2} �= {K1,4, the butterfly};
then the class Free({G1, G2}) is 3-VC-simple. But, it was proved (see the proof of Theorem 1 in [17])
that if G is a graph with at most 5 vertices and the class Free({K1,4, the bull, G}) includes none
of the classes X ∗

3 –X ∗
6 then Free({K1,4, the bull, G}) is 3-VC-simple.
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Therefore, we may assume that

X = Free({K1,4, the butterfly, G1, G2}),
where max(|V (G1)|, |V (G2)|) ≤ 5 and none of the graphs G1 or G2 belongs to any of the classes X ∗

1

and X ∗
2 . Nevertheless, since X � X ∗

7 , we have G1 = cricket or G1 = C5.
Obviously, if H ∈ Free({H ′ + K1}) then

either H ∈ Free({H ′}) or |V (H)| ≤ |V (H ′)|(Δ(H) + 1).

Problem 3-VC in the class X is polynomially reducible to the same problem for the set of irreducible
graphs of this class; moreover, by the Ramsey Theorem, the maximal vertex degree of an irreducible
graph in X is at most 8. Hence, if G2 = H ′ + K1 then Problem 3-VC in the class X is polynomially
reducible to the same problem in the class Free({K1,4, the butterfly, G1, H ′}). Thus, if G1 = C5 then
we may assume that

G2 ∈ {the cricket, the kite, the diamond}
because X � X ∗

3 . This is impossible since X � X ∗
5 and X � X ∗

8 . Assume that G1 = cricket. Then

G2 ∈ {the kite, the diamond + K1, the dart, C4, C4 + K1,W4}
since X � X ∗

5 and X � X ∗
9 . The classes

Free({K1,4, the butterfly, the cricket, the kite}),
F ree({K1,4, the butterfly, the cricket, the diamond})

are 3-VC-simple (see Lemmas 7 and 8 in [17]). By Lemma 32, the class

Free({K1,4, the butterfly, the cricket, the dart})
is 3-VC-simple. The cases when G2 ∈ {C4, C4 + K1, W4} are impossible.

Obviously, X ′
1 ⊆ X ′

2 and X ′
1 ⊆ X ′

3. Thus, Problem 3-VC in the class X ′
1 is polynomially reducible

to the same problem in each of the classes X ′
2 and X ′

3. By the arguments of the previous paragraph, Prob-
lem 3-VC in the class X ′

2 is polynomially reducible to the same problem in the class X ′
2 ∩ Free({C4}),

i.e., in X ′
1.

Therefore, the first two cases are polynomially equivalent and each of them is polynomially reducible
to the third.

The proof of the theorem is complete.
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