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Abstract—We investigate the Boolean functions that combine various properties: the extremal
values of complexity characteristics of minimization, the inapplicability of local methods for reducing
the complexity of the exhaustion, and the impossibility to efficiently use sufficient minimality
conditions. Some quasicyclic functions are constructed that possess the properties of cyclic and
zone functions, the dominance of vertex sets, and the validity of sufficient minimality conditions
based on independent families of sets. For such functions, we obtain the exponential lower bounds
for the extent and special sets and also a twice exponential lower bound for the number of shortest
and minimal complexes of faces with distinct sets of proper vertices.
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INTRODUCTION

The two equivalent models are usually used for representing Boolean functions: analytical and
geometric. The analytical model uses the notions of a Boolean function, implicants, and the diswjoint
normal form (DNF) that depend on n variables. The equivalent notions of the geometric model are
a subset of vertices, a face, and a complex of faces in the n-dimensional unit cube. In our exposition,
we will use the following notions and notations for the n-dimensional unit cube Bn and the set Pn

of Boolean functions of n variables:
A face in the unit cube Bn is a set of vertices

Bn,α1,...,αk
i1,...,ik

= {x̃ = (x1, . . . , xn) ∈ Bn | xi1 = α1, . . . , xik = αk},

where 1 ≤ i1 ≤ · · · ≤ ik ≤ n and αs ∈ {0, 1} for s = 1, . . . , k. The set of indices {i1, . . . , ik} is called the
direction of the face. The rank and the dimension of a face are the numbers k and n − k respectively.
A vertex of the unit cube Bn is a face of rank n and dimension 0. Denote the vertices (0, . . . , 0) ∈ Bk and
(1, . . . , 1) ∈ Bk by 0̃k and 1̃k respectively.

The Cartesian product of faces g1 = Br,α1,...,αs

i1,...,is
and g2 = Bn−r,β1,...,βt

j1,...,jt
is the face

g = g1 × g2 = Bn,α1,...,αs,β1,...,βt

i1,...,is,j1+r,...,jt+r.

Introduce the following notation in the unit cube Bn:
Bn

m is the layer of the cube with number m; i.e., the set of vertices for which the number of unit
coordinates equals m, where 0 ≤ m ≤ n;

Sn
m−h,m is a zone of the cube; i.e., the set of layers of the cube with indexes m − h, . . . ,m, where

0 ≤ h ≤ m ≤ n;
Gn is the set of all different faces;
NM =

⋃

g∈M
g ⊆ Bn is the set of all vertices of a complex of faces M ⊆ Gn;

Nf = {α̃ ∈ Bn | f(α̃) = 1} ⊆ Bn is the set of unit vertices of a function f ∈ Pn.
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A face g ⊆ Nf is called a face of f ; if no face g′ ⊃ g is contained in Nf then g is called a maximal
face of f . A complex of faces M ⊆ Gn is called a complex of f ∈ Pn if NM = Nf .

Denote the sets of all faces and maximal faces of f by Gf and Sf respectively. Designate the set
of maximal faces of f that contain α̃ ∈ Nf as Sf (α̃) = {g ∈ Sf | α̃ ∈ g}. The minimal number of maxi-
mal faces containing a vertex of f will be denoted by

σf = min
α̃∈Nf

|Sf (α̃)|.

The complexity measure of complexes of faces (or the DNF) is the functional L defined on the set
of complexes of faces and satisfying the axioms of nonnegativity, monotonicity under multiplication,
convexity under addition, and invariance under isomorphism [10]. A comlexity measure is called
additive if the complexity of an arbitrary complex of faces is equal to the sum of the complexities
of the faces.

The problem of minimizing a Boolean function f consists in finding a complex of faces of minimal
complexity L(f) containing the set of unit vertices of the function. The sets of all complexes of maximal
faces of a function f and of all such complexes minimal with resepct to a complexity measure L are
denoted by M(f) and ML(f) respectively.

If the complexity of each face is 1 then the additive measure is denoted by l and called the length.
If the complexity of every face is equal to the rank of the face then the complexity measure is denoted by L.
Minimal complexes with respect to the complexity measures l and L are called shortest and minimal
respectively. Denote the sets of shortest and minimal complexes of a function f by Ml∩L(f).

The problem of minimizing Boolean functions for an additive complexity measure can be formulated
as the problem of a minimal covering of a set of a generalized form [11].

The combinatorial statement of the problem of a minimal covering of a set is defined by a system
of sets 〈X,Y 〉, where X is a finite set of elements, Y ⊆ 2X \ {∅} is a family of different sets, and
by a nonnegative additive complexity functional C : Y → R

+. A family S ⊆ Y is a covering of XS =
⋃

x∈S y, and the complexity of S is defined as C(S) =
∑

y∈S C(y). The minimal covering problem
〈X,Y,C〉 consists in finding a family S ⊆ Y of minimal complexity C(X,Y ) for which XS = X.

Given an arbitrary subset A ⊂ X, define the two problems of generalized form 〈A,X, Y,C〉: Find
a family S ⊆ Y of minimal complexity such that (i) covers A, i.e., A = XS ; or (ii) contains A, i.e,
A ⊆ XS . Denote the complexity of a minimal covering for these problems by C(A,X, Y ) and ˜C(A,X, Y )
respectively. Obviously, ˜C(A,X, Y ) ≤ C(A,X, Y ) for every A ⊂ X, and these problems are reducible
to the standard statement of the minimal covering problem.

The extent of a function is the diameter of the greatest component of the interval graph whose
vertices are the maximal faces of the function and whose edges are pairs of intersecting faces. The extent
of a function f is denoted by p(f).

The dependence between the unit vertices of a function is determined by the dependence graph
whose vertices are the unit vertices of a function and whose edges are the pairs of vertices belonging
to one face.

The distances between vertices x̃, ỹ ∈ Bn and sets of vertices X,Y ⊂ Bn are

ρ(x̃, ỹ) = |{i | xi 
= yi, i = 1, . . . , n}|, ρ(X,Y ) = min
x̃∈X, ỹ∈Y

ρ(x̃, ỹ)

respectively.
All undefined notions can be found in [1, 10].

The integer and upper integer parts of a real x are denoted by �x� and x� respectively. The sym-
bol o(1) stands for a quantity tending to zero as n → ∞, and Θ(ϕ(n)) for a function ϕ(n) > 0 means
an aribtrary function ψ(n) > 0 for which there are constants c1 > 0 and c2 > 0 such that c1ϕ(n) ≤
ψ(n) ≤ c2ϕ(n) as n → ∞.

Investigations of optimization problems for Boolean functions related to finding the minimal DNF
and the minimal complexity of the transformations performed for simplifying the DNF show that such
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problems are natural optimization problems contained in the second level of the polynomial hierar-
chy [13]. Therefore, the main direction of research is the development of efficient methods for reducing
the complexity of searching for an exact solution of the minimization problem.

Local approaches make it possible to postpone the use of exhaustion schemes and reduce their
computational complexity. They are based on the study of the “geometric” structure of the set of maximal
faces of a Boolean function. However, the local approaches prove to be inefficient in minimizing Boolean
functions of large extent, for example, for cyclic functions [4, Section 2.2.14]. In this case, if the maximal
number of elements covered by one set is equal to k then the minimal covering problem is polynomially
solvable for k = 2 and is NP-hard for each fixed value k ≥ 3 [2, Appendix A3].

The solution of the problem of minimizing a Boolean function for an unreducible set of maximal faces,
which is called a cyclic kernel [12], is carried out with the use of exhaustion schemes. The local extrema,
i.e., irredundant complexes of a function, are found quite efficiently in a certain amount. The search
for a global extremum, i.e., for a minimal complex, is impossible without a complete search of all local
extrema if there are no efficiently verifiable sufficient minimality conditions. Accordingly, the number
of irredundant complexes and the number of minimal complexes are the generalized characteristics
for the feasibility of the search while minimizing a particular Boolean function.

The results of investigations of different classes of Boolean functions with extremal and typical values
of the parameters characterizing the complexity of different approaches to the minimization of Boolean
functions are presented in the reviews [1, 5, 8]. For example, the “dense” functions have bounded
extent, an exponential spread of lengths, and a twice exponential number of irredundant complexes
(see [1, Section 3.2.7]).

1. DESCRIPTION OF THE CONSTRUCTION

For constructing and estimating the characteristics of quasicyclic Boolean functions, we use

(i) cyclic functions of exponential extent,

(ii) zone functions of bounded extent,

(iii) the domination of sets in the minimal covering problem,

(iv) sufficient conditions based on independent families of sets,

(v) transformations of sets that preserve the metric properties of sets of vertices in a unit cube.

A quasicyclic function is determined from a cyclic function and zone functions with the use of the op-
eration of repetitionless product. The properties of cyclic, zone functions, and repetitionless product
guarantee the possibility of applying sufficient minimality conditions for describing the shortest and
minimal complexes for quasicyclic functions.

Definition 1. A Boolean function f ∈ Pn is called k-cyclic if the interval graph of f is a cycle,
the maximal dimension of faces is k, and each intersection of maximal faces contains one vertex. Denote
the set of k-cyclic functions of n variables by Cn,k.

For a k-cyclic function f , under a certain numbering sequence If = {1, . . . , p + 1} of maximal faces
Sf = {gi, i ∈ If}, the edges of the interval graph constitute the set

{(gi, gi+1)}p
i=1 ∪ (gp+1, g1)

and the extent p(f) is equal to |Sf | − 1 = p.
Introduce notations for a k-cyclic function f :
kf = {ki, i ∈ If} are the dimensions of the maximal faces;
Af = {α̃i, i ∈ If} are the vertices contained in the intersection of maximal faces, where gi ∩ gi+1 =

{α̃i+1} for i = 1, . . . , p and gp+1 ∩ g1 = {α̃1}; i.e., α̃i, α̃i+1 ∈ gi for i = 1, . . . , p and α̃1, α̃p+1 ∈ gp+1;
df = {di, i ∈ If} are the distances between vertices in Af , where di = ρ(α̃i, α̃i+1) for i = 1, . . . , p

and dp+1 = ρ(α̃p+1, α̃1);
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Iker
f = {i ∈ If | ki ≥ 2} are the numbers of the kernel faces, which are all faces of dimension greater

than 1.
Denote the set of the proper vertices of the kernel faces by

Wf = Nf \ Af =
⋃

i∈Iker
f

(gi \ Af ).

Given a k-cyclic function f∗, the corresponding sequences will be denoted by If∗ , kf∗ = {k∗
i , i ∈

If∗}, Af∗ = {α̃∗
i , i ∈ If∗}, etc.

Since d1 + · · · + dp+1 ≡ 0 (mod 2) for a k-quasicyclic function, a function has oddly many of max-
imal faces whenever the distance di is an odd number for an odd number of faces. A 1-cyclic function
always has evenly many of maximal faces.

The properties of k-cyclic functions stem from the properties of a cycle graph with m vertices and
m edges, for which the cardinality of the maximal independent set is equal to �m/2� and the length
of a shortest edge covering is m/2�. Therefore, for m even, the shortest coverings consist of nonadjacent
edges, and their number equals to 2; and for odd n, they consist of two adjacent and nonadjacent edges,
and their number is equal to m.

For 1-cyclic functions, there are exactly two shortest coverings [4, Section 2.2.14]. The maximal
value of the extent of a function f ∈ Pn has order 2n and is attained at 1-cyclic functions [3].

Constructing k-cyclic functions with certain properties is based on special transformations of cyclic
functions.

Lemma 1. (i) For a function f ∈ Cn−k,k, there exists a transformation into a function f∗ ∈ Cn,k

for which there exists a subset of indices I ⊂ If∗ such that ki = k∗
i and di = d∗i if i ∈ If∗ \ I ,

k∗
i = d∗i = k and the intersection vertices of the face g∗i are the minimal and maximal vertices

of the face if i ∈ I , and

p(f∗) ≥ p(f) + |I| ≥ p(f) + 2
⌊

(p(f) + 1)/4
⌋

.

(ii) For f ∈ Cn−3k,k and 0 < Δk < k, there exists a transformation to f∗ ∈ Cn,k∗, such that
p(f∗) = p(f), ki ≤ k∗

i ≤ ki + Δk for i ∈ If = If∗ , and k∗ = max{k∗
i , i ∈ If∗}.

Every face gi ∈ Sf of dimension ki ≥ 2 for which the minimal and maximal vertices are the intersec-
tion vertices can be replaced by a monotone chain of faces that are contained therein, intersect pairwise
by the maximal and minimal vertices, and have total dimension ki. Therefore, if one such face is replaced
by two faces, the oddity of the number of maximal faces of the function changes.

Denote the vectors of (x1, . . . , xn) and (xr, . . . , xr+k) by x̃n and x̃r,r+k respectively.

Definition 2. Refer to a Boolean function f ∈ Pn for which Nf = Sn
m−h,m, where 0 ≤ h ≤ m ≤ n,

as a zone function and denote it by Sn
m−h,m(x̃n).

The maximal faces of a zone function have dimension h, and the minimal and maximal vertices are
contained in the cube layers Bn

m−h and Bn
m respectively. The value of a zone function does not change

under any permutation of variables; i.e., a zone function is symmetric. For a zone function f = Sn
m−h,m,

we have

p(f) = n/h�, |Nf | =
m

∑

i=m−h

(

n

i

)

, |Sf | =
(

n

m

)(

m

h

)

,

σf = min
{(

n − m + h

h

)

,

(

m

h

)}

, l(f) = max
{(

n

m − h

)

,

(

n

m

)}

,

L(f) = l(f)(n − h);

the cube layers Bn
m−h and Bn

m are independent sets of vertices; each maximal face is contained
in a shortest and minimal complex.
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If the parameters of a zone function f = Sn
m−h,m satisfy the conditions

1 ≤ h < m ≤ n/2, 0 ≤ n/2 − m = o(
√

n), 0 < ε ≤ h/m ≤ 1 − ε

then [9]

p(f) = Θ(1), |Nf | ∼ 2n−1, |Sf | = 2n+mH(h/m)Θ(n−1) ≥ 2n(1+1/2·H(ε))Θ(n−1),

log μL(Sn
m−h,m) ∼

(

n

m

)

log
(

m

h

)

as n → ∞,

where H(z) = −z log z − (1 − z) log(1 − z) for 0 < z < 1, and log is the logarithm with base 2. Such
a function has bounded extent, a twice exponential number of minimal complexes, and the number of its
maximal faces exponentially exceeds the number of unit vertices.

Definition 3. A system of sets 〈X,Y 〉 and subsets A and B in a set X satisfies the domination
condition A � B, if, for every family of sets S ⊆ Y , from A ⊆ XS it follows that B ⊆ XS .

Obviously, from A1 � B1 and A2 � B2 it follows that A1 ∪ A2 � B1 ∪ B2. In the minimal covering
problem, for reducing the dimension of the system of sets 〈X,Y 〉, only the domination relation for
the singletons A = {xA} and B = {xB} is used [12]. In this case, it suffices to consider sets y ∈ Y
rather than families of sets S ⊆ Y ; i.e., A � B whenever for every y ∈ Y the relation xA ∈ y implies
xB ∈ y.

Definition 4. Given a system of sets 〈X,Y 〉, an independent family of sets is a family A = {A |
A ⊂ X} such that every y ∈ Y intersects at most one set A ∈ A.

Lemma 2. Let f = f1 ∨ f2 ∈ Pn−2 and put

Df (x̃n) = xn−1xnf(x̃n−2) ∨ xn−1xnf1(x̃n−2) ∨ xn−1xnf2(x̃n−2)

= xn−1f1(x̃n−2) ∨ xnf2(x̃n−2). (1)

(i) For a system 〈NDf
, SDf

〉, the sets of vertices
{

N0,1
Df

, N1,0
Df

}

constitute an independent set and

N0,1
Df

∪ N1,0
Df

� N0,0
Df

, where

N
σn−1,σn

Df
= NDf

∩ B
n,σn−1,σn

n−1,n for σn−1, σn ∈ {0, 1}.

(ii) The minimal covering problem 〈NDf
, SDf

,L〉 satisfies

L(Df ) = L(xn−1f1) + L(xnf2),

and if M1 ∈ ML(xn−1f1) and M2 ∈ ML(xnf2) then M1 ∪ M2 ∈ ML(Df ).

(iii) In the unit cube Bn, a face g belongs to SDf
if and only if either g = g̃ × B2,0

1 and g̃ ∈ Sf1 , or

g = g̃ × B2,0
2 and g̃ ∈ Sf2 , or g = g̃ × B2,0,0

1,2 and g̃ ∈ Sf \ (Sf1 ∪ Sf2).

For the covering problem for sets, the sufficient minimality conditions [11] use the notion of an inde-
pendent family of sets.

Denote the family of sets that intersect A ⊆ X by YA ⊆ Y . Note that every A ⊂ X admits a unique
representation as the union of pairwise disjoint sets:

XYA
= A ∪ X�

A ∪ X̄�
A ⊆ X,

where A � X�
A , X̄�

A = XYA
\ (A ∪ X�

A ), and some sets may be empty. Then an indepenedent family
of sets A of the system 〈X,Y 〉 satisfies [11, p. 96]

C(X,Y ) ≥
∑

A∈A

˜C(A,X, Y ), (2)

C(X,Y ) =
∑

A∈A

˜C(A,X, Y ) if X =
⋃

A∈A
(A ∪ X�

A ). (3)
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Definition 5. A product of functions that have no common variables is called repetitionless.

Introduce the following notation for f1 ∈ Pr and f2 ∈ Pn−r:
f1 × f2 ∈ Pn is the repetitionless product of functions, where Nf1×f2 is the Cartesian product

of the sets Nf1 ⊆ Br and Nf2 ⊆ Bn−r;
M1 × M2 = {g = g1 × g2 ∈ Gn | gi ∈ Mi ⊆ M(fi), i = 1, 2} is the product of complexes of faces;
M(f1) ×M(f2) = {M1 × M2 | Mi ∈ M(fi), i = 1, 2} ⊆ M(f1 × f2) is the product of the sets

of the complexes of faces M(f1) and M(f2).
The set of all faces and maximal faces of functions satisfy

Gf1×f2 = Gf1 × Gf2 , Sf1×f2 = Sf1 × Sf2.

Observe that

l(M1 × M2) = l(M1)l(M2), L(M1 × M2) = L(M1)l(M2) + l(M1)L(M2), (4)

but possibly l(f1)l(f2) > l(f1 × f2) [1, Section 3.2.4].

Lemma 3. For the repetitionless product of f1 ∈ Pr and f2 ∈ Pn−r, a set of vertices Q1 ⊂ Nf1 ,
and an independent set of vertices Q2 ⊂ Nf2 of f2, the family of sets A = {Q1 × {x̃}, x̃ ∈ Q2} is
an independent family of sets for the function f1 × f2 ∈ Pn.

Define the binary relation Rf,L on sets of vertices and complexes of maximal faces of a function f
which is a sufficient condition for the membership of a complex in Ml∩L(f).

Definition 6. A pair (Q,M) satisfies (Q,M) ∈ Rf,L if Q is an independent set of vertices of f , for
each α̃ ∈ Q all g ∈ Sf (α̃) have the same complexity, M ∈ M(f), and |M | = |Q|.

Lemma 4. (i) If (Q,M) ∈ Rf,L then M ∈ Ml∩L(f).
(ii) If (Q1,M1) ∈ Rf1,L and (Q2,M2) ∈ Rf2,L then

(Q1 × Q2,M1 × M2) ∈ Rf1×f2,L and M1 × M2 ∈ Ml∩L(f1 × f2).

(iii) If for each face gi ∈ Sfi
there is a pair (Qi,Mi) ∈ Rfi,L and gi ∈ Mi, where i = 1, 2, then

each maximal face of f1 × f2 is contained in some shortest and minimal complex.

2. THE MAIN RESULTS

For a cyclic function f ∈ Cr,k, where 1 ≤ k < r, let fA and fW denote the functions for which the unit
vertices are given by the sets of vertices Af and Wf = Nf \ Af respectively. Then

fA(x̃r) = 1 for x̃r ∈ Af = {α̃i, i ∈ If},
fW (x̃r) =

∨

i∈If

wi(x̃r),

where wi(x̃r) = 1 if x̃r ∈ gi \ Af and gi ∈ Sf for i ∈ If = {1, . . . , p + 1}.
Obviously, f(x̃r) = fA(x̃r) ∨ fW (x̃r) and fA(x̃r)fW (x̃r) ≡ 0.
The function wi(x̃r), i ∈ If , is a connected component of the function fW (x̃r) and is representable as

a ki-dimensional face of the cube Br with two zero vertices from Af at distance di ≤ ki. Consequently,
wi(x̃r) ≡ 0 if ki = 1 and fW (x̃r) ≡ 0 for f ∈ Cr,1.

The set of quasicyclic functions Fn
r,k(m,h, h1, h2) ⊂ Pn is defined from the cyclic functions by the re-

lation

Ff (x̃n) = f(x̃r)H(x̃r+1,n−2)xn−1xn ∨ fW (x̃r)
(

H1(x̃r+1,n−2)xn−1xn ∨ H2(x̃r+1,n−2)xn−1xn

)

,

where f ∈ Cr,k and H , H1, and H2 are the zone functions for which

NH = Sn−r−2
m−h,m, NH1 = Sn−r−2

m−h,m−h1
, NH2 = Sn−r−2

m−h2,m,

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 12 No. 3 2018



432 CHUKHROV

and the parameters satisfy the constraints

1 ≤ k < r < n, 1 ≤ h1 − 1 ≤ h2 < h < m ≤ (n − r − 2)/2.

Denote the functions H(x̃r+1,n−2)xn−1xn, H1(x̃r+1,n−2)xn−1, and H2(x̃r+1,n−2)xn by ̂H(x̃r+1,n),
̂H1(x̃r+1,n), and ̂H2(x̃r+1,n) respectively.

A quasicyclic function admits the representation

Ff (x̃n) = FA(x̃n) ∨ FW (x̃n),

where

FA(x̃n) = fA(x̃r) ̂H(x̃r+1,n),

FW (x̃n) = fW (x̃r)( ̂H1(x̃r+1,n) ∨ ̂H2(x̃r+1,n)) = FW,1(x̃n) ∨ · · · ∨ FW,p+1(x̃n), (5)

FW,i(x̃n) = wi(x̃r)( ̂H1(x̃r+1,n) ∨ ̂H2(x̃r+1,n))

= wi(x̃r) ̂H(x̃r+1,n) ∨ wi(x̃r)( ̂H1(x̃r+1,n) ∨ ̂H2(x̃r+1,n)), i ∈ If . (6)

Given functions ϕ and ψ with Nψ ⊂ Nϕ, let ˜L(ϕ,ψ) and ˜ML(ϕ,ψ) denote the complexity and the set
of L-minimal complexes of faces of the function ϕ that include Nψ ⊂ Nϕ.

Theorem 1. Given Ff ∈ Fn
r,k(m,h, h1, h2), we have

(i) SFf
= Sf × S

̂H ∪ SFW
and SFW

=
⋃

i∈If
SFW,i

, where

SFW,i
=

{

Swi × S
̂H1

∪ Swi × S
̂H2

for i ∈ Iker
f ,

∅ for i ∈ If \ Iker
f .

(ii) N0,1
FW,i

∪ N1,0
FW,i

� N0,0
FW,i

for i ∈ Iker
f , and then N0,1

FW,i
∪ N1,0

FW
� N0,0

FW
, where

Nσ1,σ2

F = NF ∩ Bn,σ1,σ2
n−1,n for F ∈ Pn and σ1, σ2 ∈ {0, 1}.

(iii) L(Ff ) = ˜L(f , FA) + L(FW ), and if M1 ∈ ˜ML(Ff , FA) and M2 ∈ ML(FW ) then

M1 ∪ M2 ∈ ML(Ff ).

(iv) If a function fA,α̃ ∈ Pn is such that NfA,α̃
= Af × {α̃} × 0̃2, where α̃ ∈ Bn−r−2

m , then A =
{

NfA,α̃
, α̃ ∈ Bn−r−2

m

}

is an independent set of the system 〈NFf
, SFf

〉, and for every vertex α̃ ∈ Bn−r−2
m

we have
˜L(Ff , FA) ≥ ˜L(Ff , fA,α̃)

∣

∣Bn−r−2
m

∣

∣. (7)

(v) The relations

l̃(Ff , FA) = l̃(f, fA)l( ̂H), ˜L(Ff , FA) ≥ ˜L(f, fA)l( ̂H) + l̃(f, fA)L( ̂H), (8)

hold; here equality is obtained if Ml∩L(f, fA) 
= ∅; i.e., the complex M1 × M2 ∈ ˜Ml∩L(Ff , FA) if

M1 ∈ ˜Ml∩L(f, fA), M2 ∈ ML( ̂H) = Ml( ̂H).

(vi) Each maximal face of Ff is contained in some complex M ∈ Ml∩L(Ff ) if every maximal face of f

is contained in some complex ˜M ∈ ˜Ml∩L(f, fA).

Obviously, ˜Ml∩L(f, fA) 
= ∅ when the maximal faces of f ∈ Cr,k satisfy: either all faces have
the same complexity or consecutive pairs of intersecting faces have the same complexity for an even
number of faces (Lemma 4(i)).

Corollary 1. Given Ff ∈ Fn
r,k(m,h, h1, h2) we have (i) p(Ff ) ≥ p(f), |SFf

| ≥ |Sf | × |SH |, and
σFf

≥ min{σH , σH1 , σH2}.
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(ii) The number and the cardinality of connected components of dominated and dominating sets are
at most

∣

∣Iker
f

∣

∣ and min{|NH |, |NH1 |, |NH2 |}.

(iii) An independent family of sets
{

NfA,α̃
, α̃ ∈ Bn−r−2

m

}

for the system 〈NFf
, SFf

〉 consists

of
(n−r−2

m

)

sets of cardinality p(f) + 1.

Theorem 2. For certain values of the parameters k, r, m, h, h1, and h2, the set Fn
r,k(m,h, h1, h2)

contains functions possessing all of the following properties:

• their extents are exponential;

• their number of maximal faces exponentially exceeds the number of unit vertices, any
unit vertex belongs to an exponential number of maximal faces, and each maximal face
is contained in a shortest and minimal complex;

• their number of connected components of dominated and dominating sets of unit vertices
that have exponential cardinality;

• the minimality of complexes of faces is justified by sufficient conditions that use an inde-
pendent set of exponential cardinality or an independent family of sets in which each set
has exponential cardinality;

• their number of shortest and minimal complexes of faces having different sets of proper
vertices is twice exponential.

The study of quasicyclic functions makes it possible to extend the understanding of problems
of minimizing Boolean functions with the use of known approaches. The application of local methods
for reducing the complexity of minimization for quasicyclic Boolean functions proved to be inefficient.
Therefore, relevant is the study of classes of Boolean functions for which the application of local methods
is efficient [7] of which reflect the specifics of applied problems [6].

3. PROOFS

Proof of Lemma 1. (i) Given gi ∈ Sf of f ∈ Cn−k,k, denote gi × 0̃k and gi × 1̃k in Bn by g0
i and g1

i
respectively.

Define f0 ∈ Cn,k that coincides with f on Bn,0,...,0
n−k+1,...,n; i.e., f0 has the set of maximal faces

Sf0 =
{

g0
i | gi ∈ Sf

}p+1

i=1
⊂ Bn,0,...,0

n−k+1,...,n.

Obviously, kf0 = kf and df0 = df .

Given α̃i ∈ Af ⊂ Bn−k, denote by gα̃i the face of dimension k in Bn with minimal vertex α̃0
i = α̃i ×

0̃k and maximal vertex α̃1
i = α̃i × 1̃k. Addition of k-dimensional faces to a k-cyclic function f0 ∈ Cn,k is

fulfilled for three or four consecutive maximal faces
{

g0
i , g

0
i+1, g

0
i+2, g

0
i+3

}

depending on the distance di,
where 1 ≤ i < i + 3 ≤ p + 1.

If di = 1 then the faces
{

g0
i , g

0
i+1

}

are replaced by
{

g1
i , g

1
i+1

}

⊂ Bn,1,...,1
n−k+1,...,n, the k-dimensional faces

{gα̃i , gα̃i+2} are added, and the faces
{

g0
i+2, g

0
i+3

}

remain unchanged.

If di > 1 then
{

g0
i

}

is replaced by g1
i ⊂ Bn,1,...,1

n−k+1,...,n, the k-dimensional faces {gα̃i , gα̃i+1} are added,

and the faces
{

g0
i+1, g

0
i+2

}

remain unchanged. The distance between these and subsequent added faces
is at least 2.

Such a trasformation can be applied at least �(p(f) + 1)/4� times, and each time two faces of dimen-
sion k are added in which the minimal and maximal vertices are the intersection vertices of the faces.
In result, we obtain some k-cyclic function f∗ ∈ Cn,k for which I is the set of the indices of the added
faces,

p(f∗) ≥ p(f) + |I|, |I| ≥ 2�(p(f) + 1)/4�.
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(ii) For the sequence {k∗
i | ki ≤ k∗

i ≤ ki + Δk}p+1
i=1 , the function f∗ ∈ Pn is defined by the complex

of faces M = {g∗i | g∗i = gi × Δg∗i , gi ∈ Sf}p+1
i=1 , where Δg∗i = 0̃3k for k∗

i = ki and Δg∗i = Δgi × 0̃2k

for i = 1 (mod 3), Δg∗i = 0̃k × Δgi × 0̃k for i = 2 (mod 3), and Δg∗i = 0̃2k × Δgi for i = 0 (mod 3),
where Δgi = Bk,0,...,0

1,...,k∗
i −ki

⊂ Bk, with k∗
i > ki for i = 1, . . . , p + 1.

Obviously, the dimension of g∗i is equal to k∗
i , for different faces ρ(g∗i , g∗j ) ≥ ρ(gi, gj) for i, j =

1, . . . , p + 1, g∗i ∩ g∗i+1 = {α̃∗
i+1} if i = 1, . . . , p, while g∗p+1 ∩ g∗1 = {α̃∗

1}, where α̃∗
i = α̃i × 0̃3k ∈ Bn for

α̃i ∈ Af .

Let us prove that all faces of the complex M are maximal and there are no other maximal faces
of f∗ ∈ Cn,k∗ . If a maximal face g of f∗ is not contained in M then g contains distinct vertices from
different faces of M . Consequently, there exist vertices x̃∗, ỹ∗ ∈ g such that ρ(x̃∗, ỹ∗) = 1, x̃∗ ∈ g∗i , and
ỹ∗ ∈ g∗j , where i, j ∈ 1, . . . , p + 1. Then ρ(x̃∗, ỹ∗) ≥ ρ(g∗i , g

∗
j ) ≥ ρ(gi, gj) and for a k-cyclic function

the distance between disjoint faces is at most 2 and can be 1 only for two faces intersecting with one
face, and the intersection vertices are located at distance 1. Therefore, we may assume that x̃∗ ∈ g∗1 and
ỹ∗ ∈ g∗2 or ỹ∗ ∈ g∗3 .

Denote the vertices of Bn−3k coinciding with the vertices x̃∗ and ỹ∗ at the coordinates 1, . . . , n − 3k
by x̃ and ỹ respectively. Obviously, ρ(x̃, ỹ) ≤ ρ(x̃∗, ỹ∗) = 1.

Consider the possible cases:
(1) In the case of x̃∗ ∈ g∗1 , ỹ∗ ∈ g∗2 , and ρ(x̃, ỹ) = 0; i.e., x̃ = ỹ = α̃2, we infer that if x̃∗ = x̃ then

x̃∗, ỹ∗ ∈ g∗2 ; if ỹ∗ = ỹ then x̃∗, ỹ∗ ∈ g∗1 ; if x̃∗ 
= x̃ and ỹ∗ 
= ỹ then ρ(x̃∗, ỹ∗) ≥ 2.

(2) In the case of x̃∗ ∈ g∗1 , ỹ∗ ∈ g∗2 , and ρ(x̃, ỹ) = 1, we conclude that if x̃ = α̃2 and ỹ 
= α̃2 then
x̃, ỹ ∈ g2 ⊆ g∗2 and x̃∗ 
= x̃ or ỹ∗ 
= ỹ; if x̃ 
= α̃2 and ỹ = α̃2 then x̃, ỹ ∈ g1 ⊆ g∗1 and x̃∗ 
= x̃ or ỹ∗ 
= ỹ;
if x̃∗ 
= x̃ or ỹ∗ 
= ỹ then ρ(x̃∗, ỹ∗) > ρ(x̃, ỹ) = 1.

(3) In the case of x̃∗ ∈ g∗1 , ỹ∗ ∈ g∗3 , and ρ(x̃, ỹ) ≤ 1; i.e., x̃ ∈ g1, ỹ ∈ g3, and 1 ≤ d2 = ρ(α̃2, α̃3) ≤
ρ(x̃, ỹ), which is possible only for d2 = 1, x̃ = α̃2, and ỹ = α̃3; we conclude that if x̃∗ = α̃∗

2 and ỹ∗ = α̃∗
3

then x̃∗, ỹ∗ ∈ g∗2 ; if x̃∗ 
= α̃∗
2 or ỹ∗ 
= α̃∗

3 then ρ(x̃∗, ỹ∗) > ρ(x̃, ỹ) = 1.

Thus, we have a contradiction: the vertices either belong to one face or are nonadjacent.
Lemma 1 is proved.

Given the face g = Bn,α1,...,αt

j1,...,jt
⊆ Bn and the set of indices {i1, . . . , ik}, where 1 ≤ i1 < · · · < ik ≤ n,

denote the face in the cube Bn−k obtained from g by removing the coordinates i1, . . . , ik by g̃i1,...,ik .

Proof of Lemma 2. (i) Every complex of faces M of Df is uniquely representable as the union of disjoint
complexes M = M0,0 ∪ M0,1 ∪ M1,0, where

M0,0 =
{

g ∈ M | g ⊆ Bn,0,0
n−1,n

}

,

M0,1 =
{

g ∈ M | g ∩ Bn,0,1
n−1,n 
= ∅

}

, M1,0 =
{

g ∈ M | g ∩ Bn,1,0
n−1,n 
= ∅

}

since
{

N0,1
Df

, N1,0
Df

}

is an independent family of sets for 〈NDf
, SDf

〉.
A complex of maximal faces M satisfies

NM0,1 = Nxn−1f1 , NM1,0 = Nxnf2, NM0,1 ∪ NM1,0 = NDf
.

This means that

N0,1
Df

= NM0,1 ∩ Bn,0,1
n−1,n � NM0,1 ∩ Bn,0,0

n−1,n, N1,0
Df

= NM1,0 ∩ Bn,1,0
n−1,n � NM1,0 ∩ Bn,0,0

n−1,n

and hence

N0,1
Df

∪ N1,0
Df

� (NM0,1 ∪ NM1,0) ∩ Bn,0,0
n−1,n = N0,0

Df
.
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(ii) The independence and domination properties of the family of sets
{

N0,1
Df

, N1,0
Df

}

and relations
(2) and (3) imply

L(Df ) ≥ ˜L
(

N0,1
Df

, NDf
, SDf

)

+ ˜L
(

N1,0
Df

, NDf
, SDf

)

= L(f1xn−1) + L(f2xn),

where ˜L(A,NDf
, SDf

) is the complexity L of the minimal complex M ⊆ SDf
that contains A ⊆ NDf

.
For complexes M1 ∈ ML(xn−1f1) and M2 ∈ ML(xnf2), we have

NM1 ∪ NM2 = NDf
, L(M1) + L(M2) = L(xn−1f1) + L(xnf2),

i.e., M1 ∪ M2 ∈ ML(Df ).

(iii) The following cases are possible for g ∈ SDf
and the face g̃n−1,n, obtained from g by removing

the coordinates n − 1 and n:

If g ∩ Bn,0,1
n−1,n 
= ∅ then

g̃n−1,n ⊆ Nf1, g ⊆ g̃n−1,n × B2,0
1 ⊆ Nf1 × B2,0

1 ⊆ NDf
.

Therefore, g ∈ SDf
if and only if g̃n−1,n ∈ Sf1 and g = g̃n−1,n × B2,0

1 .

If g ∩ Bn,1,0
n−1,n 
= ∅ then

g̃n−1,n ⊆ Nf2, g ⊆ g̃n−1,n × B2,0
2 ⊆ Nf2 × B2,0

2 ⊆ NDf
.

In this case, g ∈ SDf
if and only if g̃n−1,n ∈ Sf2 and g = g̃n−1,n × B2,0

2 .

If g ⊂ Bn,0,0
n−1,n then

g̃n−1,n ⊆ Nf = Nf1∨f2 , g = g̃n−1,n × B2,0,0
1,2 ⊆ Nf × B2,0,0

1,2 ⊆ NDf
.

Moreover, if g̃n−1,n ∈ Sf1 then g ⊂ g̃n−1,n × B2,0
1 ⊆ NDf

, and if g̃n−1,n ∈ Sf2 then g ⊂ g̃n−1,n × B2,0
2 ⊆

NDf
. Therefore, g ∈ SDf

if and only if g̃n−1,n ∈ Sf \ (Sf1 ∪ Sf2).

Lemma 2 is proved.

Proof of Lemma 3. Suppose that A is not an independent family of sets; i.e., there are two sets
{Ai, Aj} ∈ A and a face g ∈ Gf1×f2 for which g ∩ Ai 
= ∅ and g ∩ Aj 
= ∅. This means that

g ∩ (Q1 × {α̃1}) 
= ∅, g ∩ (Q1 × {α̃2}) 
= ∅

for some α̃1, α̃2 ∈ Q2. But then the face g̃1,...,r ⊂ Nf2 obtained from g by removing the coordinates
1, . . . , r contains α̃1 and α̃2, which contradicts the independence of Q2. Lemma 3 is proved.

Proof of Lemma 4. (i) For a pair (Q,M) ∈ Rf,L, the complex of faces M ∈ M(f) has the form
M = {gα̃ ∈ Sf (α̃) | α̃ ∈ Q}, and for M the lower bounds are attainable for the length and complexity
of the minimal covering (2). Consequently, M ∈ Ml(f), M ∈ ML(f), and M ∈ Ml∩L(f).

(ii) Obviously, for the function f1 × f2, we have

Nf1×f2 = Nf1 × Nf2, Sf1×f2 = Sf1 × Sf2,

Sf1×f2(α̃1 × α̃2) = Sf1(α̃1) × Sf2(α̃2)

for every vertex α̃1 × α̃2 ∈ Nf1×f2 , The set of vertices Q = Q1 × Q2 is independent and

M1 × M2 = {gα̃1×α̃2
= gα̃1

× gα̃2
| α̃1 × α̃2 ∈ Q = Q1 × Q2,

α̃i ∈ Qi, gα̃i
= Mi ∩ Sfi

(α̃i), i = 1, 2} ∈ M(f1 × f2).
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Moreover, each g ∈ Sf1×f2(α̃1 × α̃2) is uniquely representable as g = g1 × g2, where gi ∈ Sfi
(α̃i) for

i = 1, 2; i.e.,

L(g) = L(g1) + L(g2) = Lα̃1
+ Lα̃2

.

Consequently, (Q1 × Q2,M1 × M2) ∈ Rf1×f2,L.

(iii) Each face g ∈ Sf1×f2 admits a unique representation g = g1 × g2, where gi ∈ Sfi
and gi ∈ Mi for

some pair (Qi,Mi) ∈ Rfi,L for i = 1, 2. Then

g ∈ M1 × M2 ∈ Ml∩L(f1 × f2).

Lemma 4 is proved.

Proof of Theorem 1. (i) Use the following representation for the function Ff :

Ff (x̃n) = F (x̃n−2)xn−1xn ∨ F1(x̃n−2)xn−1xn ∨ F2(x̃n−2)xn−1xn,

where
F (x̃n−2) = f(x̃r)H(x̃r+1,n−2),

Fj(x̃n−2) = fW (x̃r)Hj(x̃r+1,n−2), j = 1, 2.

Then SF = Sf × SH ,

SFj = SfW
× SHj =

⋃

i∈Iker
f

(Swi × SHj) for j = 1, 2,

SF ∩ (SF1 ∪ SF2) = ∅; and Lemma 2 implies that

SFf
= SF × B2,0,0

1,2 ∪ SF1 × B2,0
1 ∪ SF2 × B2,0

2 .

Moreover,

SFW
= SF1 × B2,0

1 ∪ SF2 × B2,0
2 =

⋃

i∈If

SFW,i
,

where SFW,i
= Swi × S

̂H1
∪ Swi × S

̂H2
, and for the function wi ∈ Pr the set of unit vertices Nwi is

representable by a face of dimension ki in the cube Br with two zero vertices the distance between
which is equal to di.

Denote the function on Bk having exactly two zero vertices α̃, ˜β ∈ Bk by v
α̃,˜β

, and if α̃ = 0̃k and
˜β = 1̃d0̃k−d then denote the function by vd.

If π is a permutation of the coordinates of Bk for which π(α̃ ⊕ ˜β) = 1̃d0̃k−d then vd(π(x̃ ⊕ α̃)) =
v
α̃,˜β

(x̃). In application to the vertices of Bk of the transformation π(x̃ ⊕ α̃), faces go to faces; and
the dimensions of faces and the membership relations for vertices, faces, and complexes of faces are
preserved. Therefore, the properties of complexes of faces of the function v

α̃,˜β
are uniquely determined

by the properties of complexes of faces of vd.

In Bk, denote by gi,j and gj the faces Bk,0,1
i,j and Bk,1

j respectively, where i, j = 1, . . . , k and i 
= j.
For the function vd, the sets of the shortest and minimal complexes of faces coincide, every

maximal face is contained in some minimal complex, and the sufficient minimality conditions are based
on an independent set of vertices of the layer Bk

1 because

v1(x̃k) = Sk−1
1,k−1(x̃

2,k), Sv1 = ML(v1) = Ker(v1) = {gj}k
j=2,

vd(x̃k) = Sd
1,d−1(x̃

d) ∨ Sk−d
1,r−d(x̃

d+1,k), 1 < d < k,

Svd
= {gi,j , i 
= j}d

i,j=1 ∪ Ker(vd), Ker(vd) = {gj}k
j=d+1,

ML(vd) =
{

M × Bk−d ∪ Ker(vd) | M ∈ ML

(

Sd
1,d−1

)}

,

vk(x̃k) = Sk
1,k−1(x̃

k), Svk
= {gi,j , i 
= j}k

i,j=1, ML(vk) = ML

(

Sk
1,k−1

)

,
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where Ker(vd) is the set of the kernel faces of vd.

(ii) The domination relation N0,1
FW,i

∪ N1,0
FW,i

� N0,0
FW,i

, where i ∈ Iker
f , follows from Lemma 2 since (6)

holds.

(iii) Note that

NFA
= N0,0

FA
, N0,0

FA
∩ N0,0

FW
= ∅, g ∩

(

N0,1
FW

∪ N1,0
FW

)

= ∅ for g ∈ SFf
\ SFW

and g ∩ NFA
= ∅ for a face g ∈ SFW

; i.e., the family
{

NFA
, N0,1

FW
, N1,0

FW

}

is independent for the system
〈NFf

, SFf
〉 and

L(Ff ) ≥ ˜L(Ff , FA) + ˜L(Ff , FW xn−1xn) + ˜L(Ff , FW xn−1xn),
˜L(Ff , FW xn−1xn) = ˜L(Ff , FW xn−1), ˜L(Ff , FW xn−1xn) = ˜L(Ff , FW xn).

Since the family
{

N0,1
FW

, N1,0
FW

}

is independent for the system 〈NFW
, SFW

〉, N0,1
FW

∪ N1,0
FW

� N0,0
FW

and

N0,1
FW

∪ N1,0
FW

∪ N0,0
FW

= NFW
; it follows from (3) that

˜L(FW , FW xn−1xn) + ˜L(FW , FW xn−1xn) = L(FW ).

Therefore, L(Ff ) ≥ ˜L(Ff , FA) +L(FW ) and equality is attained since the union of every two complexes

M1 ∈ ˜ML(Ff , FA) and M2 ∈ ML(FW ) is a complex of Ff .

(iv) Suppose that α̃1, α̃2 ∈ Bn−r−2
m × 0̃2 and π is a permutation of the coordinates of the cube Bn for

which π(x̃ × α̃1) = x̃ × α̃2 for every x̃ ∈ Br. Then, for each complex M ∈ ˜M(Ff , fA,α̃1
), the complex

π(M) ∈ ˜M(Ff , fA,α̃2
) has the same complexity L by the axiom of invariance under isomorphism.

Therefore, ˜L(Ff , fA,α̃1
) = ˜L(Ff , fA,α̃2

).

Since Bn−r−2
m × 0̃2 ⊂ Bn−r is an independent vertex set for the function ̂H ∈ Pn−r and Af ⊂

Nf ⊂ Br; therefore, Lemma 3 implies that the family A is independent for the system 〈N
f× ̂H

, S
f× ̂H

〉.
Since NfA,α̃

⊂ NFA
for α̃ ∈ Bn−r−2

m , NFA
∩ NFW

= ∅, and SFf
= Sf × S

̂H ∪ SFW
; therefore, A is

independent for the system

〈NFf
, SFf

〉 = 〈N
f× ̂H

∪ NFW
, S

f× ̂H
∪ SFW

〉,

and estimate (7) stems from (2).

(v) Every complex of maximal faces M ∈ ˜M(Ff , fA,α̃) has the form

M = {gi = gi,A × g
i, ̂H

∈ SFf
| gi,A ∈ Sf , g

i, ̂H
∈ S

̂H
}l

i=1,

where MA = {gi,A}l
i=1 ∈ ˜M(f, fA) and l = l(M) = l(MA). Consequently,

l(MA) ≥ l̃(f, fA), L(MA) ≥ ˜L(f, fA).

For every face g
i, ̂H

∈ S
̂H

, the rank of R
̂H

equals L(g
i, ̂H

) = n − r − h; therefore,

L( ̂H) = l( ̂H)R
̂H , l( ̂H) = l(H) =

∣

∣Bn−r−2
m

∣

∣.

Since L(g1 × g2) = L(g1) + L(g2) for every faces g1 and g2, we infer
∑

gi∈M

(L(gi,A) + L(g
i, ̂H

)) = L(MA) + l(MA)R
̂H
≥ ˜L(f, fA) + l̃(f, fA)R

̂H
.

Hence, ˜L(Ff , fA,α̃) ≥ ˜L(f, fA) + l̃(f, fA)R
̂H ; and from (7) we obtain

l̃(Ff , FA) ≥ l̃(f, fA)l( ̂H),
˜L(Ff , FA) ≥ (˜L(f, fA) + l̃(f, fA)R

̂H
)l( ̂H) = ˜L(f, fA)l( ̂H) + l̃(f, fA)L( ̂H).
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Using (4), we can show that these lower bounds are attainable. Note that M1 × M2 ∈ M(Ff , FA)
for every complexes M1 ∈ M(f, fA) and M2 ∈ M( ̂H). Let M2 ∈ ML( ̂H) = Ml( ̂H); i.e., let L(M2) =
L( ̂H) and l(M2) = l( ̂H).

If M1 ∈ Ml(f, fA) then

l(M1) = l̃(f, f, fA), l(M1 × M2) = l(f, f, fA)l( ̂H);

i.e., M1 × M2 ∈ ˜Ml(Ff , FA).
If M1 ∈ Ml∩L(f, fA) then

l(M1) = l̃(f, fA), L(M1) = ˜L(f, fA),

L(M1 × M2) = L(f, fA)l( ̂H) + l(f, fA)L( ̂H);

in other words, M1 × M2 ∈ ˜Ml∩L(Ff , FA).

(vi) Items (i) and (iii) of Theorem 1 imply that SFf
= Sf × S

̂H ∪ SFW
and M1 ∪ M2 ∈ ML(Ff ) for

every complexes M1 ∈ ˜ML(Ff , FA) and M2 ∈ ML(FW ). Therefore, it suffices to consider the following
two cases for a face g ∈ SFf

: g ∈ Sf × S
̂H

or g ∈ SFW
.

If g ∈ Sf × S
̂H

then g is uniquely representable as g = gf × g
̂H

, where gf ∈ Sf and g
̂H
∈ S

̂H
. There

always exists a complex of faces M
̂H of the function ̂H for which g

̂H ∈ M
̂H ∈ ML( ̂H) = Ml( ̂H).

If there always exists a complex Mf of f for which gf ∈ Mf ∈ ˜Ml∩L(f, fA) then Theorem 1(v) implies

g = gf × g
̂H
∈ Mf × M

̂H
∈ ˜Ml∩L(Ff , FA),

and g is contained in some complex in Ml∩L(Ff ).

If g ∈ SFW
then g ∈ SFW,i

for some i ∈ Iker
f because the functions FW,i are connected components

of FW for i ∈ Iker
f . For FW,i, the set of maximal faces is equal to SFW,i

= Swi × S
̂H1

∪ Swi × S
̂H2

(Theorem 1(i)). Therefore, every g ∈ SFW,i
is uniquely representable as g = gwi × g1 or g = gwi × g2,

where gwi ∈ Swi and g1 ∈ S
̂H1

or g2 ∈ S
̂H2

. The functions wi, ̂H1, and ̂H2 satisfy the hypotheses
of Lemma 4(iii); i.e., for every faces gwi ∈ Swi , g1 ∈ S

̂H1
, and g2 ∈ S

̂H2
, there are complexes Mwi ,

M
̂H1

, and M
̂H2

containing these faces and independent sets of vertices Qwi , Q
̂H1

, and Q
̂H2

identical
for different maximal faces. Moreover, the maximal faces of each function that contain any vertex
of the corresponding set have the same rank.

Consequently,

(Qwi ,Mwi) ∈ Rwi,L, (Q
̂H1

,M
̂H1

) ∈ R
̂H1,L

, (Q
̂H2

,M
̂H2

) ∈ R
̂H2,L

.

Obviously, for the function FW,i, the set of vertices

Q = Qwi × Q
̂H1

∪ Qwi × Q
̂H2

is an independent set and the complex of faces

M = Mwi × M
̂H1

∪ Mwi × M
̂H2

is such that |M | = |Q|. In addition, all maximal faces of FW,i containing any vertex of Q have the same
rank. Consequently, the hypotheses of Lemma 4(i) hold and M ∈ Ml∩L(FW,i).

The proof of Theorem 1 is complete.

Proof of Theorem 2. The function Ff ∈ Fn
r,k(m,h, h1, h2) is obtained from f ∈ Cr,k for the parameters

r = �(n − 2)/2� = n/2 − Θ(1), r − 4k > n/4 − 4k = Θ(n),

m = �(n − r − 2)/2� = n/4 − Θ(1), h = �m/2� = n/8 − Θ(1),

h1 = h2 = �h/2� =
n

16
− Θ(1) as n → ∞.
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The construction of f ∈ Cr,k is based on the transformations of Lemma 1. At the first step, from
f0 ∈ Cr−4k,1, the k-cyclic function f1 ∈ Cr−3k,k is obtained for which the number of maximal faces can
be of a certain oddity, at least 2

⌊

1
4(p(f0) + 1)

⌋

faces have dimension k; moreover, the distance between
the intersection vertices of these faces is equal to k, and the extent satisfies the estimate

p(f1) ≥ p(f0) + 2
⌊

(p(f0) + 1)/4
⌋

.

At the second step, from f1 ∈ Cr−3k,k, we obtain a k-cyclic function f ∈ Cr,k for which the dimensio-
then of the faces can be increased to a value not exceeding k with preservation of other properties of f1;
i.e., p(f) = p(f1). From the function f0 ∈ Cr−4k,1 for which p(f0) = 2Θ(n) for r − 4k = Θ(n), we can
obtain f ∈ Cr,k having the number of maximal faces of a certain oddity, exponential values of the extent
and of the number of maximal faces of dimension k.

Then Theorem 1 and Corollary 1 yield the estimates:
the extent satisfies

p(Ff ) ≥ p(f) = Θ(2r−4k) = 2Θ(n);

for the ratio of the number of maximal faces and the number of unit vertices, from the fact that

|Sf | = p(f) + 1 ≥ Θ(2
n
2−4k), |SH | ≥ 2(n−r)+mH(h/m)Θ(n−1) = 2

n
2 +

n
4 Θ(n−1),

it follows that

|SFf
| ≥ |Sf | × |SH | ≥ 2n+Θ(n) ≥ |NFf

|2Θ(n);

the number of maximal faces σFf
that contain any vertex is at least

min{σH , σH1 , σH2} = min
{(

m

h

)

,

(

m − �h/2�
h − �h/2�

)

,

(

m

�h/2�

)}

≥ 2Θ(n).

For the connected components of dominated and dominating sets of the unit vertices of a function
(Theorem 1(ii)), we have:
number of them is at least

∣

∣Iker
f

∣

∣ ≥ 2
⌊

(p(f0) + 1)/4
⌋

= Θ(2
n
2
−4k) = 2Θ(n),

and their size is at least

min
{∣

∣N0,1
FW,i

∣

∣,
∣

∣N1,0
FW,i

∣

∣,
∣

∣N0,0
FW,i

∣

∣

}

≥ |Nwi |min{|NH |, |NH1 |, |NH2 |} = 2Θ(n).

For the independent family of sets that is used for justifying the minimality of complexes of faces
(Theorem 1(iv)), the number of sets in the family is equal to

∣

∣Bn−r−2
m

∣

∣ =
(

n − r − 2
m

)

= 2Θ(n),

and the size of each set in the family is p(f) + 1 = 2Θ(n).
Theorem 1(vi) implies that every maximal face of Ff is contained in some complex M ∈ Ml∩L(Ff ) if

any maximal face of f is contained in some complex ˜M ∈ ˜Ml∩L(f, fA).
For constructing complexes with different sets of proper vertices, we use the representation of a zone

in the cube in the form

Sn−r−2
m−h,m =

h
⋃

i=0

Ci, m ≤ (n − r − 2)/2,

where Ci includes the monotone sequences of i + 1 neighboring vertices with maximal vertex in the
layer m and minimal vertex in the layer m − i for i = 0, . . . , h [9]. Every such a sequence of vertices is
contained in one maximal face of the zone, and the set of such faces constitute a shortest and minimal
complex of the zone function. Hence,

|Ci| =
(

n − r − 2
m − i

)

−
(

n − r − 2
m − i − 1

)

, i = 0, . . . , h − 1, |Ch| =
(

n − r − 2
m − h

)

.
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The function ̂H for which the set of unit vertices coincides with Sn−r−2
m−h,m in Bn−r−2 × 0̃2 possesses

the same properties.

Represent the set of vertices Bn−r−2
m × 0̃2 as the union of disjoint sets

Z0 = C0 × 0̃2, Z0 =
(

Bn−r−2
m × 0̃2

)

\ Z0.

Denote the function for which the set of unit vertices is N
̂H
\ Z0 by HZ . For the function HZ , let

SHZ
=

⋃

α̃∈Z0
S

̂H
(α̃) be the set of maximal faces, Z0 be an independent set of vertices, and let

MZ = {gα̃ | gα̃ ∈ S
̂H
(α̃), α̃ ∈ Z0}

be a complex of maximal faces in which each face gα̃ contains a monotone sequence of neighboring
vertices with maximal vertex α̃ ∈ Z0.

Then MZ satisfies the conditions of Lemma 4 (i) and MZ ∈ Ml∩L(HZ).

Represent the family A =
{

NfA,α̃
, α̃ ∈ Bn−r−2

m × 0̃2
}

(see Theorem 1) as A = A1 ∪A2, where

A1 = {NfA,α̃
= Af × {α̃}, α̃ ∈ Z0}, A2 = NFA

\ A1.

Define the complex M1 = MA × MZ , where MA is a complex in the set ˜M(f, fA); i.e., NM1 ⊂ NFf
,

and NFA
\ NM1 contains only vertices of the family A2. Define the complex M2 containing all vertices

of NFA
\ NM1 and representable in the form

M2 =
⋃

α̃∈Z0

M2,α̃, where M2,α̃ = {g1 × g2 | g1 ∈ MA,α̃, g2 ∈ S
̂H
(α̃)} ∈ M(Ff , NfA,α̃

)

and the complexes MA,α̃ ∈ ˜M(f, fA) can be distinct for distinct vertices α̃ ∈ Z0.

Then M = M1 ∪M2 ∈ ˜M(Ff , FA) and, by analogy to Theorem 1(v), if M1,MA,α̃ ∈ ˜Ml∩L(f, fA) for
all vertices α̃ ∈ Z0 then

L(M) = ˜L(f, fA)l( ̂H) + l̃(f, fA)L( ̂H), M ∈ ˜Ml∩L(Ff , FA).

Let the complexes MA,α̃ be chosen in M ⊆ ˜Ml∩L(f, fA) in which the complexes have different
sets of proper vertices (for example, if |Sf | is an odd number and all maximal faces are of one rank).
If for defining the complex M2 different collections of complexes {MA,α̃ ∈ M, α̃ ∈ Z0} are used then

the complexes MA ∈ ˜MA ⊆ ˜Ml∩L(Ff , FA) appear with different sets of proper vertices.

Then the complexes of the form MA ∪ MW ∈ Ml∩L(Ff ) if MA ∈ ˜MA and MW ∈ ML(FW ) (Theo-
rem 1(iii)) have different sets of proper vertices, and the number of such complexes is at least |M||Z0|,
where |M| ≥ 2 and |Z0| = 2Θ(n).

The proof of Theorem 2 is complete.
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