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Abstract—The existence of a generalized weak solution is proved for the nonstationary problem
of motion of a rigid body in the flow of a viscous incompressible fluid filling a cylindrical pipe of
arbitrary cross-section. The fluid flow conforms to the Navier–Stokes equations and tends to the
Poiseuille flow at infinity. The body moves in accordance with the laws of classical mechanics under
the influence of the surrounding fluid and the gravity force directed along the cylinder. Collisions of
the body with the boundary of the flow domain are not admitted and, by this reason, the problem is
considered until the body approaches the boundary.
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1. CLASSICAL STATEMENT OF THE PROBLEM

We study the problem of dynamics of a rigid body in the flow of a viscous incompressible fluid. The
fluid fills a straight cylindrical pipe of arbitrary cross-section, its flow obeys the Navier-Stokes equations
and tends to the Poiseuille flow at infinity. The body moves according to the laws of classical mechanics
under the action of the ambient fluid and the force of gravity directed along the pipe.

Let Σ be a bounded domain in R
2 with boundary ∂Σ of class C0,1. Suppose that the mechanical

system under consideration occupies the cylindrical domain Ω = Σ × R ⊂ R
3. We denote the boundary

of Ω by Γ; i.e., Γ = ∂Σ × R. Let {e1, e2, e3} be an orthonormal basis for R
3 such that Σ lies in the plane

of the vectors e1 and e2. Let the coordinates of y ∈ R
3 be denoted by yi, i = 1, 2, 3. We use the same

notation for the vectors in R
3.

Denote by ˜B(t) the subdomain of Ω occupied by the body at time t and by ˜S(t), its boundary of
class C0,1. The fluid occupies the domain ˜F (t) = Ω \ ( ˜B(t) ∪ ˜S(t)). We assume that the fluid and body
are homogeneous; i.e., their densities ρf and ρb are positive constants. In solving the problem, some
difficulty arises connected with the fact that the body is carried away by the fluid flow and eventually
leaves every finite segment of the pipe. We will try to eliminate this difficulty at the very beginning, already
in the statement of the problem. Let ṽ and p̃ be the velocity and pressure fields in ˜F (t), and let ŷ(t) be
the body center of gravity that coincides with the geometric center of the domain ˜B(t) since the body is
homogeneous. Let us introduce the function h(t) = (0, 0, ŷ3(t)) and perform the change of variables:

x = y − h(t), v(x, t) = ṽ(x + h(t), t), p(x, t) = p̃(x + h(t), t),

B(t) = ˜B(t) − h(t), S(t) = ˜S(t) − h(t), F (t) = Ω \ (B(t) ∪ S(t)).
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Without loss of generality, we suppose that ŷ3(0) = 0, i.e., at time t = 0 the geometric center x̂(t) of
B(t) coincides with ŷ(0). The point x̂ moves in the plane of the vectors e1 and e2: x̂(t) = ŷ(t) − h(t),
x̂1(t) = ŷ1(t), x̂2(t) = ŷ2(t), and x̂3(t) = 0 for all t. Since Ω is a cylindrical domain, Ω = Ω − h(t)
for all t, and x ∈ Ω is equivalent to y ∈ Ω. Note that we replace the spatial variable y rather than
the coordinate system: the velocity vector and pressure remain the same at the points y and x that
correspond to each other.

Collisions of the body with the boundary of the flow region are not allowed. So we consider the
problem on the time interval [0, T ], T < ∞, such that

dist(B(t),Γ) = dist( ˜B(t),Γ) ≥ δ∗ > 0 for all t ∈ [0, T ], (1.1)

where δ∗ is some fixed positive number.

The functions v and p obey the Navier–Stokes equations which are written in the new variables as
follows:

ρf

(

∂tv + (v · ∇)v − (h′ · ∇)v
)

= div P (v, p) + ρfg in F (t), (1.2)

divv = 0 in F (t), (1.3)

P (v, p) = −pI + 2μD(v), (1.4)

where μ = const is the fluid viscosity, g = (0, 0,−g), g is the value of the gravitational acceleration and
h′ means the derivative of h with respect to t, while I is the unit tensor, P is the stress tensor and D(v)
is the strain-rate tensor having the following components in the basis {ei}:

Dij(v) =
1
2

(

∂vi

∂xj
+

∂vj

∂xi

)

.

Let us write the equations of dynamics of the body. The functions ŷ and x̂ are defined as follows:

ŷ(t) = | ˜B(t)|−1

∫

˜B(t)

y dy, x̂(t) = |B(t)|−1

∫

B(t)

x dx,

where |A| is the three-dimensional Lebesgue measure of A ⊂ R
3. The body is rigid, and so we have the

representation for its velocity field

ζ(t) + ω(t) × (y − ŷ(t)) = ζ(t) + ω(t) × (x− x̂(t)) for y ∈ ˜B(t), x ∈ B(t),

where ζ(t) =
dŷ(t)

dt
and ω(t) is the angular velocity vector.

According to the laws of classical mechanics, ζ and ω satisfy the equations

m
dζ

dt
=

∫

S(t)

P (v, p)n ds +
∫

B(t)

ρbg dx, (1.5)

dJω

dt
=

∫

S(t)

(x − x̂) × P (v, p)n ds, (1.6)

where m = ρb|B(t)| is the body mass, n is the normal vector to S(t) directed towards the fluid,

J(t) = ρb

∫

B(t)

(

|x− x̂(t)|2I − (x− x̂(t)) ⊗ (x − x̂(t))
)

dx

is the moment-of-inertia tensor of the body relative to the center of gravity. Note that the gravity torque,
acting on the body, relative to x̂, is equal to zero.
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We complement (1.2)–(1.6) with the boundary and initial conditions:

v(x, t) = 0 for x ∈ Γ, (1.7)

v(x, t) = ζ(t) + ω(t) × (x− x̂(t)) for x ∈ S(t), (1.8)

ζ(0) = ζ0, ω(0) = ω0, B(0) = B0, (1.9)

v(x, 0) = v0(x) for x ∈ F0 = Ω \ B0. (1.10)

Finally, the flow tends to the Poiseuille flow at infinity:

(v(x, t) − vp(x)) → 0 as x3 → ±∞, (1.11)

where vp(x) = (0, 0, Vp(x1, x2)) and the function Vp : Σ → R is the solution of the problem

∂2
1Vp + ∂2

2Vp = λ = const, (x1, x2) ∈ Σ, Vp(x1, x2) = 0, (x1, x2) ∈ ∂Σ.

To each value of λ there corresponds a particular Poiseuille flow. To select one of them, it is more
convenient to use another parameter instead of λ, namely, the fluid flow rate across Σ:

Q =
∫

Σ

Vp(x1, x2) dx1dx2.

It is not difficult to see that

λ = − 1
Q

∫

Σ

|∇Vp|2 dx1dx2.

The problem of finding the functions v, ζ, and ω that satisfy (1.2)–(1.11) will be called Problem A. We
have not included B(t) into the list of the sought-for functions because B(t) can be uniquely determined,
provided B0, ζ(t), and ω(t) are given. Note that h in (1.2) can also be uniquely found from ζ because
h(0) = 0 and h′(t) = (0, 0, ζ3(t)).

There are many papers considering the problems close to Problem A (see, for example, [1–9]). In
most of them, the flow region Ω either coincides with the entire space or is bounded. In the first case,
the velocity tends to zero at infinity, while in the second it vanishes at the boundary of the flow region.
Nonstationary problems of this type with a noncompact boundary and nonzero conditions at infinity
have not been studied by now. In [10, 11], the case of inhomogeneous conditions at infinity is considered
for the problem of an unbounded flow of a viscous fluid satisfying the Navier–Stokes equations and
streaming around a body. It seems that, for the first time, the problem in a domain with a noncompact
boundary (namely, in a cylindrical pipe) was under study in [12]. In this article the fluid flow is described
by the Stokes equations, whereas it tends to the Poiseuille flow at infinity. We prove the existence of
a stationary solution of the problem.

We consider a nonstationary version of the problem in a cylindrical pipe. The main result is formulated
in Theorem 1 which claims that a weak generalized solution of the problem exists at least until the first
collision of the body with the boundary of the flow region. Generally speaking, it can be shown by the
technique of [4] that the solution exists on an arbitrary span of time, while the collisions of the body
with the boundary are allowed. But, such a study would be rather sophisticated and lengthy, and its
significance would be questioned by the recent article [13] in which the impossibility of collisions is
proved, provided that the fluid flow is described by the Navier–Stokes equations. It should be noted that,
in that article, the body is a sphere and the boundary is a plane; thus this result cannot be applied to
our case. Nevertheless, this result most likely can be generalized (we would even say, for sure) although
the authors have not yet published any generalization. Since we are rather confident of the possibility of
such a generalization, we decided to prove the solvability of our problem until the first collision.

2. THE GENERALIZED STATEMENT OF THE PROBLEM AND THE MAIN RESULT

We define the velocity field in the entire domain Ω as follows:

u(x, t) =

{

v(x, t), x ∈ F (t),
ζ(t) + ω(t) × (x − x̂(t)), x ∈ B(t).
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By (1.8), the field u does not have any discontinuity on S(t). Moreover, divu = 0 in Ω. Next, it is not
difficult to check that D(u) = 0 in B(t).

The converse statement is well known (for example, see [14]); namely, if D(u) = 0 in some domain of
the space R

3 then in this domain the field u is the velocity field of some rigid body motion. In accordance
with these requirements, we define the function spaces that the velocity field solving Problem A must
belong to.

Let the spaces of scalar and vector functions be denoted in the same way. For an arbitrary real number
α > 0, we define the domain Ωα = Σ × (−α,α). Let G be a domain in R

3 that coincides either with Ω or
with one of the domains Ωα. Along with the classical Lebesgue Lp(G) spaces and the Sobolev spaces
H1(G), we use the standard function spaces of mathematical hydrodynamics:

C∞
σ (G) = {u ∈ C∞(G) | divu = 0 in G, u|Γ∩G = 0},
L2

σ(G) is the closure of C∞
σ (G) ∩ L2(G) in L2(G),

H1
σ(G) is the closure of C∞

σ (G) ∩ H1(G) in H1(G).

Moreover, we define the function classes related to the problem of the motion of a rigid body in a fluid.
For arbitrary domain G0 ⊂ R

3, we consider the spaces

L2
R(G,G0) =

{

u ∈ L2
σ(G) | D(u) = 0 in G0 ∩ G

}

,

H1
R(G,G0) =

{

u ∈ H1
σ(G) | D(u) = 0 in G0 ∩ G

}

.

These space were introduced and studied in [1, 3] (also see [4, 15]). Let us use the same norms on
L2
R(G,G0) and H1

R(G,G0) as on L2(G) and H1(G) respectively.

The norm on L2(Ω) will be denoted by ‖ · ‖. As it follows from the Korn inequality, the norm on H1
σ(G)

and H1
R(G,G0) can be equivalently given as

(∫

G |D(u)|2 dx
)1/2.

If G0 depends on time then denote by Lp
(

0, T ;H1
R(G,G0)

)

the set of functions from Lp
(

0, T ;H1
σ(G)

)

which belong to H1
R(G,G0) for almost all t ∈ [0, T ]. We use the same norms on these spaces.

Note that the velocity field of the Poiseuille flow belongs neither to L2
σ(Ω) nor H1

σ(Ω); however,
it belongs to H1

σ(Ωα) for all α > 0. Another important fact for us is that if w ∈ H1
σ(Ω) then

∫

Σ

w · e3 ds = 0, (2.1)

where Σ is an arbitrary section of Ω by the plane orthogonal to e3.
The domain B(t) moves without deformation; therefore, there exists a family of orientation preserving

isometries Ut,s : R
3 → R

3 such that Ut,s(B(s)) = B(t) for all s, t ∈ [0, T ]. It is not difficult to see that
x(t) = Ut,s(ξ) is a unique solution of the problem:

dx
dt

= u(x, t) − h′(t), x(s) = ξ ∈ B(s). (2.2)

In order to describe the motion of the body, we will use the characteristic function ϕ of B(t); i.e.,
ϕ(x, t) = 1 for x ∈ B(t) and ϕ(x, t) = 0 for x ∈ Ω \ B(t). By (2.2), ϕ is the solution of the problem:

∂tϕ + div((u − h′)ϕ) = 0, ϕ(·, 0) = ϕ0,

where ϕ0 is the characteristic function of B0. It is immediate from the definition of Ut,s that ϕ(x, t) =
ϕ0(U0,t(x)) = ϕ(Us,t(x), s).

We can also describe the density field in Ω in terms of ϕ:

ρ(x, t) = ρbϕ(x, t) + ρf (1 − ϕ(x, t)).

We are ready now to give the definition of generalized solution of Problem A:

Definition 1. Say that a pair of functions {u : Ω × [0, T ] → R
3, ϕ : Ω × [0, T ] → R} is a general-

ized solution of Problem A on [0, T ] if the following are fulfilled:
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(1) ϕ(·, t) is the characteristic function of B(t) ⊂ Ω for all t ∈ [0, T ]; ϕ ∈ C(0, T ;Lp(Ω)) for all
p ∈ [1,∞);

∫

Ω ϕ0x3 dx = 0, where ϕ0 = ϕ(·, 0) is the characteristic function of B0 = B(0);

(2) for an arbitrary compactly-supported function η ∈ C1(Ω × [0, T ]) such that η(·, T ) = 0, the
function ϕ satisfies the integral identity

T
∫

0

∫

Ω

ϕ(∂tη + (u − h′) · ∇η
)

dxdt = −
∫

Ω

ϕ0η0 dx, (2.3)

where

η0 = η(·, 0), h′(t) =
(

0, 0, h′
3(t)

)

, h3(0) = 0, h′
3(t) = |B(t)|−1

∫

Ω

ϕ(x, t)u(x, t) · e3 dx;

(3) there is a family of orientation-preserving isometries Ut,s : R
3 → R

3 such that Ut,s(B(s)) = B(t)
for all s, t ∈ [0, T ];

(4) for all α > 0

u ∈ L∞(

0, T ;L2
σ(Ωα)

)

∩ L2
(

0, T ;H1
R(Ωα, B)

)

, (u − vp) ∈ L2
(

0, T ;H1
σ(Ω)

)

, (2.4)

and the integral identity
T

∫

0

∫

Ω

(ρu · (∂tψ + ((u − h′) · ∇)ψ) − 2μD(u) : D(ψ) + ρg · ψ) dxdt = −
∫

Ω

ρ0u0 · ψ0 dx (2.5)

holds for an arbitrary compactly-supported function ψ ∈ W 1,2(Ω × [0, T ]) ∩ L4
(

0, T ;H1
R(Ω, B)

)

such
that ψ(·, T ) = 0. Here, ρ0, u0, and ψ0 are the initial distributions of the functions ρ, u, and ψ,
respectively.

An analog of this definition in the case of a flow in bounded domain is a standard one by now. Its
substantiation can be found in the papers on this topic, for example, in [1, 4]. If {u, ϕ} is a generalized
solution of Problem A then the functions v, ζ, and ω appearing in the setting of the original problem
can be reconstructed as follows: Firstly, by Condition 1, for each t ∈ [0, T ] the function ϕ(·, t) is the
characteristic function of a certain set B(t). Since u ∈ L2

(

0, T ;H1
R(Ωα, B)

)

, we have D(u(·, t)) = 0 for
x ∈ B(t). Hence, there are functions ζ : [0, T ] → R

3 and ω : [0, T ] → R
3 such that u(x, t) = ζ(t) +

ω(t) × (x − x̂(t)) for x ∈ B(t), where x̂(t) is the geometric center of B(t), which, by Condition 2,

moves without deformation. Moreover, it is not difficult to derive from Condition 2 that ζ(t) =
dx̂(t)

dt
and ω(t) is the angular velocity of B(t). We find the function v(·, t) as the restriction of u(·, t) to the
set F (t) = Ω \ B(t). It is shown in [1, 4] that, if the so-defined v is differentiable with respect to time
and twice differentiable with respect to spatial variables then there exists a function p such that for all t
in the domain F (t) the equations (1.2)–(1.4) are fulfilled. In this case, ζ and ω satisfy equations (1.5)
and (1.6).

It may seem that Condition 3 in the definition is superfluous and follows from the fact that the
velocity field u(·, t) is a rigid body field on B(t). However, Condition 3 is necessary since the smoothness
required from u (Condition 4) does not allow us to uniquely determine the particle trajectories. Therefore,
generally speaking, nothing forbids the body to “disperse to dust” at some time. We can only show that
the body will not disintegrate into finitely many pieces. Condition 3 is just necessary in order for the body
to remain “solid” during the time interval under consideration.

The purpose of this article is to prove the following

Theorem 1. Suppose that (u0 − vp) ∈ L2
σ(Ω), B0 ⊂ Ω, and dist(B0,Γ) > δ∗. Then there is T > 0

such that a generalized solution of Problem A exist on the interval [0, T ]. Moreover,
(1) T can be taken arbitrarily large if dist(B(t),Γ) > δ∗ for all t ∈ [0, T ];
(2) the isometries Ut,s are Lipschitz continuous in t and s.
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3. PROOF OF THEOREM 1

We fix an arbitrary α∗ > 2 diam B0. In this case, B(t) ⊂ Ωα∗/2 for all t ≥ 0 since x̂ moves orthogo-
nally to e3. Let ṽp be a smooth stationary solenoidal vector field in Ω such that

(1) ṽp(x) = vp(x) in Ω \ Ωα∗ ;

(2) ṽp(x) = 0 for x ∈ Γ;

(3) ṽp(x) = 0 for x ∈ Ωα∗/2 such that dist(x,Γ) > δ∗/2.
Obviously, such a vector field can be constructed.

Put w = u− ṽp. Then w → 0 as x3 → ±∞; and, more precisely w ∈ L2
(

0, T ;H1
σ(Ω)

)

as follows
from (2.4).

Rewrite the equations from Definition 1 in terms of w. Since ϕṽp = 0 in Ω, we simply replace u by w
in (2.3):

T
∫

0

∫

Ω

ϕ(∂tη + (w − h′) · ∇η) dxdt = −
∫

Ω

ϕ0η0 dx. (3.1)

Then (2.5) looks as follows:

T
∫

0

∫

Ω

(

ρw · (∂tψ + ((w − h′) · ∇)ψ) − 2μD(w) : D(ψ)
)

dxdt

+

T
∫

0

Φ(w,ψ) dt +

T
∫

0

Ψ(h,ψ) dt = −
∫

Ω

ρ0w0 · ψ0 dx, (3.2)

where

Φ(w,ψ) = ρf

∫

Ω

(w ⊗ ṽp + ṽp ⊗ w) : D(ψ) dx,

Ψ(h,ψ) =
∫

Ω

ψ · (ρf ((h′ − ṽp) · ∇)ṽp + μΔṽp + ρg) dx,

h′(t) =
(

0, 0, h′
3(t)

)

, h3(0) = 0,

h′
3(t) = |B(t)|−1

∫

Ω

ϕ(x, t)w(x, t) · e3 dx, w0 = u0 − ṽp.

Note that |B(t)| = |B0| for all t > 0. We do not include ṽp into the list of arguments of Φ and Ψ since
this function is fixed.

Let us consider Ψ in more detail. If |x3| > α∗ then ṽp(x) = vp(x) and, so, ((h′ − ṽp) · ∇)ṽp = 0,
whereas μΔṽp + ρg = const e3. Owing to (2.1), we obtain

Ψ(h,ψ) =
∫

Ωα∗

ψ · (ρf ((h′ − ṽp) · ∇)ṽp + μΔṽp + ρg) dx. (3.3)

Given a natural number k > α∗, we consider Problem Ak in the domain Ωk consisting in finding the
functions wk and ϕk vanishing in Ω \ Ωk and satisfying the integral identities:

T
∫

0

∫

Ωk

ϕk

(

∂tη +
(

wk − h′
k

)

· ∇η
)

dxdt = −
∫

Ωk

ϕ0η0 dx, (3.4)
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T
∫

0

∫

Ωk

(

ρkwk ·
(

∂tψ +
((

wk − h′
k

)

· ∇
)

ψ
)

− 2μD(wk) : D(ψ)) dxdt

+

T
∫

0

Φ(wk,ψ) dt +

T
∫

0

Ψ(hk,ψ) dt = −
∫

Ω

ρ0w0
k · ψ0 dx, (3.5)

h′
k(t) =

(

0, 0, h′
k3(t)

)

, hk3(0) = 0, h′
k3(t) = |B(t)|−1

∫

Ω

ϕk(x, t)wk(x, t) · e3 dx,

ρk(x, t) = ρbϕk(x, t) + ρf (1 − ϕk(x, t)).

The function w0
k is the initial value of wk. Also, w0

k is zero in Ω \ Ωk and belongs to L2
R(Ω). In addition,

we assume that w0
k → w0 in L2

R(Ω) as k → ∞.

Given k, we have a problem in a bounded domain with zero boundary conditions for the function wk.
Therefore, we can apply the well-known methods of [1, 4, 7] and prove that Problem Ak has a generalized
solution on [0, Tk] for k > α∗, having the properties:

(1) ϕk(·, t) is the characteristic function of Bk(t) ⊂ Ωα∗/2, and there exists some constant C such
that ‖ϕk‖C(0,Tk ;Lp(Ω)) ≤ C for all k;

(2) there exist isometries Uk
t,s Lipschitz continuous in t and s such that Bk(t) = Uk

t,s(Bk(s)) for all
t, s ∈ [0, Tk];

(3) wk ∈ L∞(

0, Tk;L2
σ(Ω)

)

∩ L2
(

0, Tk;H1
R(Ω, Bk)

)

and wk(x, t) = 0 for x ∈ Ω \ Ωk for all k; (4)
there exists a constant C such that for each k and almost all t ∈ [0, Tk] we have

∫

Ω

|wk(x, t)|2 dx +

t
∫

0

∫

Ω

|D(wk)|2 dxds

≤
t

∫

0

|Φ(wk,wk)| ds +

t
∫

0

|Ψ(hk,wk)| ds + C

∫

Ω

∣

∣w0
k

∣

∣

2
dx. (3.6)

The only restriction on Tk is that dist(Bk(t),Γ) > δ∗ for all t ∈ [0, Tk]. After (3.8), we will estimate the
value of Tk from below.

Since we will pass to the limit as k → ∞, we need to deduce the estimates uniform in k from these
properties. All constants independent of k will be denoted by C.

Let us start with the function wk using (3.6). Taking it into account that the values of the modulus
of vp and all its derivatives up to the second order are bounded in Ω, it is not difficult to see that

|Φ(wk(·, t),wk(·, t))| ≤ C‖wk(·, t)‖2 +
1
2
‖D(wk(·, t))‖2,

and, in view of (3.3), |Ψ(hk(t),wk(·, t))| ≤ C‖wk(·, t)‖2 + C for almost all t ∈ [0, Tk]. Inserting these
estimates into (3.6) and using the Gronwall inequality, we have

∫

Ω

|wk(·, t)|2 dx +

t
∫

0

∫

Ω

|D(wk)|2 dxds ≤ C (3.7)

for almost all t ∈ [0, Tk].

For each k and almost all t ∈ [0, Tk], the function wk(·, t) defines the velocity field of some rigid
motion on Bk(t), i.e., on the support of ϕk(·, t). Therefore, there exist ζk(t) and ωk(t) such that
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wk(x, t) = ζk(t) + ωk(t) × (x− x̂k(t)) for x ∈ Bk(t), where x̂k(t) is the geometric center of Bk(t),

whereas ζk(t) =
dx̂k(t)

dt
. Using (3.7), we can easily obtain

‖ζk‖L∞(0,Tk) + ‖ωk‖L∞(0,Tk) ≤ C. (3.8)

For this purpose, the integral in (3.7) should be taken not over the entire domain Ω, but only over Bk.
We note also that h′

k3(t) = ζk3(t), and so
∥

∥h′
k

∥

∥

L∞(0,Tk)
≤ C. (3.9)

It follows from (3.8) that the geometric center of Bk(t) can move with the velocity not exceeding some
constant C independent of k. The angular velocity of the body is also uniformly bounded. Therefore, there
exists T > 0 such that

dist(Bk(t),Γ) > δ∗ for all t ∈ [0, T ] and k > α∗.

Since T ≤ Tk for all k, estimates (3.7)–(3.9) are valid on [0, T ]. It follows from (3.7) that there exist in
L∞(

0, T ;L2
σ(Ω)

)

∩ L2
(

0, T ;H1
σ(Ω)

)

a function w and a subsequence of the sequence {wk}, which we
again denote by {wk}, such that

wk → w ∗-weakly in L∞(

0, T ;L2
σ(Ωα)

)

,

wk → w weakly in L2
(

0, T ;H1
σ(Ωα)

) (3.10)

for all α > α∗ as k → ∞.

By analogy, (3.8) and (3.9) yield the existence of ζ,ω,h′ ∈ L∞(0, T ) such that, again up to a subse-
quence,

ζk → ζ, ωk → ω, h′
k → h′ ∗-weakly in L∞(0, T ).

In addition, h′ =
(

0, 0, h′
3

)

, h′
3 = ζ3, and h3(0) = 0. It is not difficult to derive from these relations that

x̂k → x̂ in C0,γ(0, T ) for arbitrary γ ∈ [0, 1), where x̂ is some function acting from (0, T ) to Ω.

Since Uk
t,0(ξ) is a solution of the problem

dUk
t,0(ξ)
dt

= ζk(t) − h′
k(t) + ωk(t) ×

(

Uk
t,0(ξ) − x̂k(t)

)

, Uk
0,0(ξ) = ξ,

the sequence
{

Uk
t,0

}

converges in C0,γ(0, T ), γ ∈ [0, 1), to the mapping Ut,0 solving the problem:

dUt,0(ξ)
dt

= ζ(t) − h′(t) + ω(t) × (Ut,0(ξ) − x̂(t)), U0,0(ξ) = ξ.

As follows from this equation, for each t > 0 the mapping Ut,0 is an orientation preserving isometry
of R

3; therefore, the inverse mapping U0,t is an isometry as well. Thus, for all t and s the mapping Ut,s

is an orientation-preserving isometry. From the same equation, we deduce the Lipschitz continuity of
Ut,s in t and s. Moreover, it is not difficult to see that x̂(t) is the geometric center of B(t) = Ut,0(B0),

ζ(t) =
dx̂(t)

dt
, while ω(t) is the angular velocity of B(t).

We introduce the function ϕ(x, t) = ϕ0(U0,t(x)). It is clear that for each t ∈ [0, T ] this is the
characteristic function of B(t) and ϕk → ϕ as k → ∞ in every space Lp(Ω× [0, T ]), 1 ≤ p < ∞. Passing
to the limit in (3.4), we find that ϕ satisfies (3.1). The convergence of {ϕk} yields the convergence of the
sequence {ρk} to ρ = ρbϕ + ρf (1 − ϕ) in every space Lp(Ω × [0, T ]), 1 ≤ p < ∞.

The strong convergence of {ϕk} in Lp(Ω × [0, T ]) yields another important fact. Since
∫ T

0

∫

Ω
ϕkD(wk) dxdt = 0
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for all k, this equality also remains valid in the limit as k → ∞:

T
∫

0

∫

Ω

ϕD(w) dxdt = 0.

Therefore, D(w(·, t)) = 0 in B(t) and w ∈ L2(0, T ;H1
R(Ωα, B)) for all α > α∗.

We will prove now that the limit functions satisfy the integral identity (3.2) for arbitrary ψ satisfying
the requirements of Condition 4 of Definition 1. To this end, we pass to the limit as k → ∞ in (3.5).
Generally speaking, there is an extra difficulty in carrying out this limit transition that is typical for the
problems concerning the topic under consideration. The difficulty is that the test function ψ depends on
the solution, to be more precise, on the domain B occupied by the body. On this set, ψ is subject to the
condition D(ψ) = 0. Thus, one more hidden nonlinearity is present in this integral identity.

We will overcome this difficulty as follows: First, we note that for arbitrary ε > 0 there exists kε ∈ N

such that Bk(t) ⊂ [B(t)]ε for all k > kε and all t ∈ [0, T ], where [B(t)]ε is the ε-neighborhood of B(t)
in R

3. This follows from the uniform convergence of Uk
t,0 to Ut,0. We put

Kα(ΩT ) =
{

ψ ∈ L4
(

0, T ;H1
R(Ω, B)

)

| ∂tψ ∈ L2(Ω × [0, T ]), ψ = 0 in Ω \ Ωα

}

,

Kα
ε (ΩT ) =

{

ψ ∈ L4
(

0, T ;H1
R(Ω, [B]ε)

)

| ∂tψ ∈ L2(Ω × [0, T ]),ψ = 0 in Ω \ Ωα

}

.

Note that

Kα
ε (ΩT ) ⊂ Kα(ΩT ), Kα(ΩT ) = lim

ε→0
Kα

ε (ΩT )

for all α > α∗ under the condition dist(B(t),Γ) > 0, t ∈ [0, T ]. This equality means that for each ψ ∈
Kα(ΩT ) we can find the functions ψε ∈ Kα

ε (ΩT ) such that ψε → ψ in L4(0, T ;H1(Ω)) and ∂tψε → ∂tψ
in L2(Ω × [0, T ]) as ε → 0. The proof of these facts can be found in [1, 4, 7]. Fixing ε > 0 and α > α∗
arbitrarily, we may take in (3.5) ψ ∈ Kα

ε (ΩT ) independent of k, for k > max{kε, α}. In what follows, we
assume that ψ ∈ Kα

ε (ΩT ).
In (3.5), only the convective terms depend nonlinearly on the solution, namely,

T
∫

0

∫

Ωk

ρkwk ·
(

∂tψ +
((

wk − h′
k

)

· ∇
)

ψ
)

dxdt.

Passage to the limit in other terms presents no difficulty. Since the sequence {ρk} converges strongly in
Lp(Ω × [0, T ]), p ≥ 1, it follows from (3.10) that

lim
k→∞

T
∫

0

∫

Ωk

ρkwk · ∂tψ dxdt =

T
∫

0

∫

Ω
ρw · ∂tψ dxdt.

To perform passage to the limit in the remaining convective terms, we use the technique of [7]. We
need to apply for s ∈ (0, 1/2) the results that are proved for Hs

R(Ωα, B) in Sec. 7 of that paper. Recall
that s ∈ (0, 1) there. A useful property of the functions from these spaces is that they have no trace for
x3 = ±α. In other words, C∞

0 (Ωα) is dense in Hs
R(Ωα, B) for s ∈ (0, 1/2).

As it follows from (3.5) and (3.7), there exists some constant C such that
∣

∣

∣

∣

∣

∣

T
∫

0

∫

Ω

ρkwk · ∂tψ dxdt

∣

∣

∣

∣

∣

∣

≤ C‖ψ‖L4(0,T ;H1(Ω))

for all k > max{kε, α} and ψ ∈ Kα
ε (ΩT ), satisfying the condition ψ|t=0 = ψ|t=T = 0. Since ε can be

taken however small in the last estimate, the results of [7, Sec. 7] allows us to prove that wk → w
in L2(Ωα × [0, T ]) as k → ∞ for an arbitrary α > α∗. Using this fact, it is not difficult to pass to the limit
in the convective term.
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Thus, (3.2) is valid for an arbitrary ψ in Kα
ε (ΩT ). Since ε is arbitrary and

lim
ε→0

Kα
ε (ΩT ) = Kα(ΩT ),

this equation also holds for an arbitrary ψ in Kα(ΩT ). Owing to the arbitrariness of α, we conclude that
(3.2) is true for an arbitrary function ψ satisfying the requirements of Condition 4 of Definition 1. Thus,
Theorem 1 is proved.
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