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Abstract—We study some available methods for solving the stochastic problems on the basis of
statistical testing procedure (the Monte Carlo method). In order to perform comparative analysis of
the effectiveness of these methods, we solve several problems in the theory of technical systems with
inaccurately specified and random parameters and characteristics.
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INTRODUCTION

In system simulation, it is often necessary to take into account the error in the initial data [1, 2].
Among the appropriate methods, the method of a small parameter (or perturbation method) is often
used. Its accuracy depends on the error in initial data. Another shortcoming of this method is the lack
of guaranty of the reliability of estimates. A relatively new approach is the use of two-sided methods
[3–7]; but these methods are effective only for a small error in the model. The approach described in [5]
is based on the use of a variational principle. It can be used both in the case of the systems with lumped
and distributed parameters, and does not impose any significant restrictions on the value of the inherent
error. The above methods allow us to solve only one of the problems in the theory of tolerances; namely,
the problem of calculating the so-called worst case. In addition, the two-sided methods are ineffective
in solving the stochastic problems in which the random parameters have large variances. The Monte
Carlo methods [1, 3, 8, 9] have wide capabilities. However, their use often leads to large computational
costs since we need to solve one and the same problem many times for different values of the initial data
[1, 8].

To improve the effectiveness of statistical methods, some approaches are proposed: the method of
stratified sampling, the method of essential sampling, the method of correlated processes, the sampling
method with a “ratio estimate,” the method of random quadrature formulas, and the method of selecting
the leading part [3, 8, 9]. In general, an increase in efficiency is achieved by decreasing the variance of the
statistical estimate.

In the method of stratified sampling, the accuracy is increased due to selecting the largest number of
random variables from those regions of the space of their values, where the simulation results have the
greatest dispersion. When implementing stratified sampling, the space of values of random variables is
divided into several pairwise disjoint subsets (layers), and a simple random sample of fixed size is taken
from each layer. Using a special kind of function to calculate the probability characteristic allows us to
ensure the unbiasedness of its estimation, and the sample sizes in the layers are selected in such a way
as to ensure that the variance of the estimate is smaller than for a simple random sample. The method
of essential sampling is based on a similar idea, but here the choice of points is regulated not by setting
the number of points in the regions, but by means of a special function of probability density. One of the
universal approaches to reducing the variance estimates is the method of random quadrature formulas
(a generalization of the Monte Carlo method). The sampling method with a “ratio estimate” as well as
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the method of correlation sample uses a function that approximates well the operator of the problem with
known values of the probability characteristics. In many respects, this is also applicable to the method
of stratified sampling.

Thus, the common methods of accelerating the statistical simulation involve the construction of
a simplified model that approximate the operator of the problem under consideration. This circumstance
requires taking into account the specificities of applied problems. We consider the technology of the
method of correlated processes as applied to the problems of simulation of the oscillatory systems and
the electrical circuits with inaccurately specified or random parameters.

1. DESCRIPTION OF THE METHOD OF CORRELATED PROCESSES

Let λ denote the sought-for n-dimensional vector of the probabilistic characteristics of the original
system, and let μ stand for the m-dimensional vector of probabilistic characteristics of the simplified
system: λ = M [R] and μ = M [S]. Here M [. . . ] is the mathematical expectation of the quantity in paren-
theses; while R and S are the n- and m-dimensional vectors whose components are some functions
of the process values in the original and simplified systems, respectively. Suppose that N independent
experiments according to the Monte Carlo method are carried out under the same conditions for the
initial and simplified systems. The statistical values λ∗ and μ∗ of vectors λ and μ obtained from these N
experiments are as follows:

λ∗ =
1
N

N∑

j=1

Rj, (1)

μ∗ =
1
N

N∑

j=1

Sj. (2)

Without loss of generality, we assume that the experiments with the same external influences on the
original and simplified systems have the same number; i.e., the values of Rj and Sj are obtained under
the same influences. It is assumed that the exact value of the vector μ of the probabilistic characteristics
of the simplified system can be found analytically or by a suitable approximate method but with high
accuracy (for example, using a one-factor model of the original system). The method of correlated
processes is based on the optimal estimate λ0 of the vector λ that uses the values of the vectors λ∗,
μ∗, and μ; to that end, the estimates of the probabilistic characteristics of the original system are sought
using the statistical values of the probabilistic characteristics of the original and simplified systems.
Thus, the results of analytical study of the simplified problem are used in statistical simulation. The
sought-for estimates have the form [9]

λi0 = λ∗
i − KRiSK−1

SS (μ∗ − μ), (3)

where

λ∗
i =

1
N

N∑

j=1

Rij, KRiS = M [Ri(S − μ)T ], KSS = M [(S − μ)(S − μ)T ].

Here, λi0 and λ∗
i are the ith components of vectors λ0 and λ∗, respectively, while Rij is the ith component

of Rj . The difference μ∗ − μ is equal to the statistical error in the determination of the vector μ which can
be found by the available exact or practically exact value μ of this vector. The quantity KRiSK−1

SS (μ∗ − μ)
is the value of the error recalculated for the quantity λ∗

i , taking into account the correlation relation
between λ∗

i and μ∗. To obtain the estimate λi0, this recalculated error value is subtracted from the
statistical value λ∗

i of λi. In result, the estimate λi0 turns out to be more accurate than the statistical
value λ∗

i . The evaluation of each of the components of vector λ can be performed independently of the
evaluation of other components. To use formula (3), we need to know the correlation row matrix KRiS

and the matrix KSS . Since the simplified system can be studied by an analytical or, in many cases,
an economical approximate method (at least, for the determination of vector μ); therefore, in principle,
it is possible to economically calculate with high accuracy the values of the correlation matrix KSS by
an analytical or an approximate method. However, in some cases the determination of KSS may turn out
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Table 1.

N δ, % g1 g2

50 0.65 80 20

200 0.3 80 30

800 0.16 100 20

to be difficult. Thus, instead of KSS , we can find its statistical value K∗
SS calculated from the same N

experiments from which λ∗ and μ∗ were obtained, i.e. by the formula

K∗
SS =

1
N

N∑

j=1

(Sj − μ)(Sj − μ)T .

The original system cannot be studied analytically; therefore, instead of the correlation row matrix KRiS ,
we can only find its statistical value K∗

RiS
according to the formula

K∗
RiS =

1
N

N∑

j=1

(Rij − μ)(Sj − μ)T .

The construction of an approximate model is an important problem. As a rule, this is achieved by
linearizing or decreasing the level of details, the number of factors, and so forth of the original model.
An important advantage of the method is the following: Even if the approximate model is very inaccurate,
the accuracy of the statistical method will not be worse than when using the usual Monte Carlo method.
To increase the calculation accuracy, it is necessary that there be a correlation between the estimated
parameters of the original and approximate models. The presence of a systematic error in the statistical
evaluation of the parameters is indicated in [8] as the main shortcoming the method.

2. EXAMPLES OF APPLICATION OF THE METHOD OF CORRELATED PROCESSES

2.1. Comparison of Efficiency Between the Method of the Leading Part Selection
and the Method of Correlated Sampling in the Computation of Integrals

Suppose that we need to calculate the integral J =
∫
Ω Ψ(u) du. Assume known the function Ψ1(u) ≈

Ψ(u) and the value of the integral I =
∫
Ω Ψ1(u) du. Let ξ be some random variable (scalar or vector)

uniformly distributed in the domain of integration Ω whose volume, without loss of generality, is set
equal to unity. In this case,

R = Ψ(ξ), S = Ψ1(ξ), λ = MΨ(ξ),
μ = MΨ1(ξ), KSS = DΨ1, KRS = cov(Ψ(ξ)Ψ1(ξ)).

Estimation of the integral value in the method of correlated sampling is carried out by the formulas
(1)–(3). In the case of the usual Monte Carlo method, J ≈ λ∗. When using the widely applied method
of selecting the leading part (also called the controlled variable method [8]), the value of the integral
is estimated by the formula J ≈ λ∗ − (μ∗ − μ). As a numerical example, we consider the case when
Ω = [0, 1], Ψ(u) = u + εu2, and Ψ1(u) = u. The results of calculations are presented in Table 1 (for
ε = 0.5) and Table 2 (for ε = 0.1). In the tables we let δ to be the relative error of the method of correlated
sampling, while g1 and g2 are the gain in accuracy in comparison with the Monte Carlo methods and the
method of selecting the leading part, respectively. For ε = 0.01, the gain in accuracy of the method of
correlated processes in comparison with the Monte Carlo method is already about 2500; for ε = 0.001,
it is about 20 000. These regularities remain valid also for other more complicated variants of integrands.
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Table 2.

N δ, % g1 g2

50 0.16 200 25

200 0.08 300 30

800 0.04 300 25

2.2. Comparison of Efficiency Between the Methods under Consideration
in Simulation of the Nonlinear Oscillations under Random Influences

The equations of a nonlinear oscillatory circuit can be written in normalized form:

d2x

dt2
= −x − kx3 + f(t), t > 0;

x(0) = x0,
dx

dt
(0) = x1,

(4)

where k = const is the nonlinearity coefficient, whereas f(t) is some random function.
It is required to estimate the mathematical expectation of the solution for t = tF . When using the

Monte Carlo method, we have to solve N times the problem (4) with the corresponding realizations
f1(t), . . . , fN (t) of the random process f(t). As an approximate solution, we take the arithmetic mean
of the obtained values x(tF ): M [x(tF )] ≈ x∗(tF ). In the method of correlated processes,

M [x(tF )] ≈ x∗(tF ) − (y∗(tF ) − M [y(tF )]) cov(x(tF ), y(tF ))/D[y(tF )],

where y(t) is the solution of the linearized problem

d2y

dt2
= −y + f(t), t > 0; y(0) = x0,

dy

dt
(0) = x1,

calculated for the same realizations f1(t), . . . , fN (t) of the random process f(t). The mathematical
expectation and variance of y(t) can be found analytically or numerically, the value of cov(x(tF ), y(tF ))
is calculated approximately using the appropriate statistical estimate. On the computer, the test Cauchy
problem (4) was solved by the method of finite differences for the specific case

f(t) = a∗ sin(ωt)(1 − ω2 + k∗a2 sin2(ωt)),

where ω = π/2, and a is a random variable uniformly distributed on the interval (0, 1). For the initial

conditions x(0) = 0 and
dx

dt
(0) = aω, the Cauchy problem (4) has the solution x(t) = a∗ sin(ωt). In the

calculations, the following parameter values were taken: k = 0.01 ÷ 1 and N = 50 ÷ 1000. The relative
accuracy of statistical estimation by the method of correlated processes was about 0.005–0.5 %. The
accuracy gain in comparison with the usual Monte Carlo method was 100–1000 times. As a rule, with
decrease of the coefficient of nonlinearity, the accuracy of the method of correlated processes increased.

When choosing a method for solving more complicated stochastic problems, some caution is needed
since the costs of analyzing the auxiliary problem in the methods of the type of correlated or stratified
sampling may not pay off. The Monte Carlo method seems most reliable in general, although not
always optimal. The two-sided method on the basis of the maximum principle can also be evaluated
positively [5]. These conclusions are obtained by using the analysis of the results of the next subsection.

2.3. Comparison Between the Statistical and Two-Sided Methods in Calculation
of the Nonlinear Transient Process Taking into Account the Inherent Error

Consider an electrical circuit whose diagram is depicted in Fig. 1.
According to the Kirchhoff laws, the system of equations of the circuit state can be written as

dΨ
dt

+ i0r0 + i1r1 = E(t),
CduC

dt
= i0 − i1, i1r1 − uC = 0,
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Fig. 1. Diagram of an electrical circuit.

where Ψ = Ψ(i0) is the flux linkage of the coil with the steel magnetic core, C is the capacity, r0

and r1 are the resistances, i0 and i1 are the currents in the corresponding branches, uC is the voltage
across the capacitor, and E(t) is a nonsinusoidal periodic EMF. The nonlinear dependence of the flux

linkage on the current is expressed by the formula Ψ(i) = k1k
−1/2
2 arctan

(
ik

−1/2
2

)
[4, 5]. Consequently,

the incremental inductance equals L0(i) = k1/(1 + k2i
2) [4, 5]. The EMF E(t) acting in the circuit is

represented by the sum of the two harmonic components

E(t) = E1m sin(ω1t + φ1) + E4m sin(ω4t + φ4),

where E1m and E4m are the amplitudes, ω1 is the fundamental frequency, ω4 = 4ω1, while ϕ1 and ϕ4 are
the initial phases.

The parameters and characteristics of the equivalent electrical circuit are given with some relative
errors:

r0 = M(r0)(1 + ε(r0)), r1 = M(r1)(1 + ε(r1)), C = M(C)(1 + ε(C)),
E1m = M(E1m)(1 + ε(E1m)), E4m = M(E4m)(1 + ε(E4m)),

k1 = M(k1)(1 + ε(k1)), k2 = M(k2)(1 + ε(k2)),

where Mξ is the given average value of the parameter ξ,

ε(r0) ≤ ε0(r0), ε(r1) ≤ ε0(r1), ε(C) ≤ ε0(C), ε(E1m) ≤ ε0(E1m),
|ε(r0)| ≤ ε0(r0), |ε(r1)| ≤ ε0(r1), |ε(C)| ≤ ε0(C),

|ε(E1m)| ≤ ε0(E1m), |ε(E4m)| ≤ ε0(E4m), |ε(k1)| ≤ ε0(k1), |ε(k2)| ≤ ε0(k2),

ε0(ξ) is the given value of the relative error of the parameter ξ. When such a circuit is closed,
a phenomenon is observed called a surge of current, whose magnitude may be of practical interest. It is
required to calculate the transient process in the circuit under consideration after the key is closed, taking
into account the error of the initial data of the problem.

The system of equations of state of the circuit in the normal form is as follows:

dxi

dt
= fi(x, t), i = 1, 2, t ∈ (0, tF ), x1(0) = x2(0) = 0,

where x1 = i0, x2 = i1, f1 = (E(t) − x1r0 − x2r1)/L0(x1), and f2 = (x1 − x2)/L(Cr1).

2.3.1. Solution by the Two-Sided Method [5]. Suppose that we need to compute an estimate from above
for the value x1(tF ) on the set of all possible values of the parameters of the circuit. The calculation of
the transient process was carried out by a numerical two-sided method [5] with the following initial data:

M(E1m) = 75, ε0(E1m) = 0.01 ÷ 0.1, M(E4m) = 5, ε0(E4m) = 0.01 ÷ 0.1,
ω = 100π, φ1 = 0, φ4 = 0, M(r0) = 1, ε0(r0) = 0.01, M(r1) = 1,

ε0(r1) = 0.01 ÷ 0.1, M(k1) = 0.1, ε0(k1) = 0.01 ÷ 0.1, M(k2) = 0.25,

ε0(k2) = 0.01 ÷ 0.1, M(C) = 10−4, ε0(C) = 0.01 ÷ 0.1, tF = 0.04, h ≤ 10−4,
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Fig. 2. Two-sided estimates of the magnitude of current i0(t).

where h is the step of numerical integration of the equations of the problem.
The graphs of two-sided estimates of the magnitude of the current i0(t) for the case of the relative

error of the initial data being 1 % are presented in Fig. 2, which shows the graphs of envelopes near
the first maximum of the current, where the sensitivity of the solution of the problem to perturbations
in the initial data is the highest, which is confirmed by the graphs of the width of two-sided solution
i+0 (t) − i−0 (t). The graphs of the curves are normalized by max i+0 (t) = 36.8.

The graphs of w1 and w2 illustrate the dependence of the width of approximate interval estimates
of functions x1(t) = i0 and x2(t) = i1 on the values of 1/h. A specific feature of this problem is high
sensitivity of the maximum value of the current to the change in the input parameters, which, in the
example, vary by only one percent, while the current values vary by up to 30 %. Another important
advantage of the two-sided method [5] is manifested, when the circuit equations contain a large number
of approximately given parameters. In the methods of sensitivity theory [2], it is required to integrate
an ODE system with the dimension corresponding to the product of the dimension of the original
problem and the number of approximately given parameters. Thus, in the example under consideration,
in addition to the two components of the zero-approximation vector x0

i , i = 1, 2, it would be necessary

to calculate the values of the 14 sensitivity functions
∂xi

∂αj
, i = 1, 2, j = 1, . . . , 7, where αj is the vector

of parameters of the problem {r0, r1, C,E1m, E4m, k1, k2}.
In this way, the dimension of the Cauchy problem will be 16, while in the two-sided method under

consideration, it is required to integrate the main and conjugate ODE systems, each of which has the
dimension of only 2. In the problems typical for modern electronics, where the number of elements in
the circuit may be hundreds or more, this advantage is very significant. The advantage of the method [5]
is also that, for a broad class of problems and at moderate cost, it allows to find the boundaries of the
solution absolutely reliably and with high accuracy. For this reason, this approach can be used to control
the results obtained by statistical and other methods. In principle, this two-sided method can also be
applied in the method of stratified sampling to obtain the solution boundaries in the layers.

2.3.2. Solution of the Problem by the Monte Carlo Method and the Method of Correlated Processes.
The approximating operator of the problem is obtained from the statement of the original problem by
linearization. To this end, we put L0(i) = k1. The exact solution of the linearized problem is found
analytically and has the form

y1(t) = y2(t) + Cr1
dy2

dt
, y2(t) =

E1mJ(t, ω1) + E4mJ(t, ω4)
L0Cr1

,

J(t, ω) =
(a − ω0) sin(ωt) − ω cos(ωt) + ω exp(−(a − ω0)t)

2ω0[(a − ω0)2 + ω2]

− (a + ω0) sin(ωt) − ω cos(ωt) + ω exp(−(a + ω0)t)
2ω0[(a + ω0)2 + ω2]

,
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ω2
0 =

(1/(Cr1) + r0/L0)2

4
− r0/r1 + 1

L0C
.

The parameters of the problem {r0, r1, C,E1m, E4m, k1, k2} are assumed to be random and uniformly
distributed in the corresponding intervals:

M(ξ)(1 − ε0(ξ)) ≤ ξ ≤ M(ξ)(1 + ε0(ξ)),

where ξ is a parameter of the problem.
The original problem was solved numerically by the method of finite differences. Using the method

of correlated processes, we calculated the estimates for the mathematical expectation, the second initial
moment, and the variance of the solution of the original problem:

M [x(tF )] ≈ m[x(tF )] = M∗[x(tF )] − M∗[y(tF )] − M [y(tF )]) cov∗(x(tF ), y(tF ))
D∗(y(tF )

,

M [x2(tF )] ≈ m[x2(tF )] = M∗[x2(tF )] − M∗[y2(tF )] − M [y2(tF )]) cov∗(x2(tF ), y2(tF )
D∗[y2(tF )]

,

while the variance was estimated in two ways using the following relations:

D[x(tF )] ≈ D∗[x(tF )] − D∗[y(tF )] − D[y(tF )]) cov∗((x(tF ) − x∗(tF ))2, (y(tF ) − M [y(tF )])2

D∗[(y(tF ) − M [y(tF )])2]
,

D[x(tF )] ≈ m[x2(tF )] − m2[x(tF )].

In the above formulas, an asterisk marks the statistical estimates of the corresponding characteristics
(averages, variances, and covariances) of random variables calculated approximately by selective data of
simulation modelling. The last formula for estimating the solution variance is widely used in practice,
but when solving the problem under consideration it turned out to be unreliable because of significant
error in the method of correlated processes. Having significantly smaller computational costs for the
given problem, the Monte Carlo method turned out to be comparable in accuracy with the method of
correlated estimates, which has not demonstrated convincing advantages for this problem.

The values of the boundaries of the solution i0(t), obtained by statistical methods (for N = 1000)
and the two-sided method [5], are almost the same. For the error in the initial data of 10 % we have in
the region of maximum (tF = 7 ms): 10 ≤ i0 ≤ 40 for the Monte Carlo method and 10.7 ≤ i0 ≤ 39.5 for
the two-sided method. In the region of current growth (tF = 1 ms), we have 0.1 ≤ i0 ≤ 0.14 for both
methods. For M(k2) = 0.25 the linearization error is large and the method of correlated processes is
ineffective.

The typical results of statistical simulation for tF = 7 ms (near the moment of maximum current),
the error of the initial data of 10 % and the nonlinearity coefficient M(k2) = 0.05 have the following
form: the mean value of the solution of the linear problem M [y(tF )] ≈ 3.67, the second initial moment
M [y2(tF )] ≈ 13.6; the variance D[y(tF )] ≈ 0.08; the standard deviation D1/2[y(tF )] ≈ 0.29; and the
coefficient of variation is about eight percent.

In the first experiment, ten statistical tests were performed (N = 10). The error of the sample mean
for solving the linear problem was M∗[y(tF )] − M [y(tF )] ≈ 0.18. The estimate of the mathematical
expectation of the solution by the method of correlated processes was equal to m[x(tF )] ≈ 4.69 and 5.1,
for the Monte Carlo method. The value of the ratio cov∗(x(tF ), y(tF ))/D∗[y(tF )] ≈ 2.1. The absolute
error in estimating the value of M [x(tF )] by the method of correlated processes was approximately equal
to 0.02 and, when using the Monte Carlo method, it was about 0.4. The estimate of the variance of the
solution by the first method for the method of correlated processes was about 0.39 and 0.74 for the Monte
Carlo method (the estimates of the standard deviation being 0.62 and 0.86, respectively); the variation
coefficient was of the order of 10%. The values of the estimates of the root-mean-square deviation,
obtained by the second method, equaled 0.55 and 0.77, respectively.

In the second experiment, 100 statistical tests were performed (N = 100). The estimate of the
mathematical expectation of the solution by the method of correlated processes was m[x(tF )] ≈ 4.68
and 4.8, for the Monte Carlo method. The value of the ratio equals

cov∗(x(tF ), y(tF ))/D∗[y(tF )] ≈ 2.1.
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The absolute error in estimating the value of M [x(tF )] by the method of correlated processes was
approximately 0.01 and about 0.1 for the Monte Carlo method. The estimate of the variance of the
solution by the first method for the method of correlated processes was about 0.39 and 0.44 for the Monte
Carlo method (the estimates of the root-mean-square deviation being 0.62 and 0.66, respectively), the
variation coefficient was of the order of 10 %. The values of the root-mean-square deviation estimates
obtained by the second method were, respectively, 0.64 and 0.65.

CONCLUSION

In the statistical experiments under consideration, the method of correlated processes allowed us to
achieve a gain in accuracy on the average by 10–20 times. However, because of the random factor,
such a gain is not guaranteed; approximately in every tenth statistical experiment there was a loss
in accuracy. For large values of the nonlinearity coefficient of the problem, due to the error of linearization,
the method of correlated processes practically does not give any gain in accuracy. All considered methods
are applicable for solving a wide class of stochastic problems with not only lumped, but also distributed
parameters.
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