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Abstract—Within the framework of the theory of large deformations, we consider deformation of
some material with nonlinear elastic and viscous properties that is located in the gap between
two rigid coaxial cylindrical surfaces when the inner surface moves rectilinearly. We study the
uniformly accelerated motion of the inner cylinder, its subsequent motion with a constant speed, and
further deceleration till the full stop. We calculate stresses, reversible and irreversible deformations,
displacements and study the stress relaxation after the full stop of the cylinder.
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Cold flow under creep conditions is the preferable method for considerably changing the form of some
materials [1]. This caused interest in the formulation of the problems of the theory of large deformations,
when, during the kinematic impact on the deformable materials, the irreversible deformations accumu-
late under conditions of creep at low temperatures. The problem under study is one of these examples.

1. THE BASIC MODEL RELATIONS

Various aspects of the simulation of large deformations of materials were considered in [2–11]. In this
article, for solving the problem we use some mathematical model of large deformations in which the
reversible and irreversible components of total strains are determined by the differential equations of
change [6, 9, 11]. The main advantage of this model is the conformance with the requirements of the
classical theory of elastoplasticity when the plastic deformations change during unloading and in the
areas of elastic deformation in the same way as in the rigid displacement of the medium. This fact,
together with the simplifying hypothesis of the independence of the thermodynamic potential from the
plastic deformations, allows us to obtain solutions of a number of boundary value problems concerning
elastoplastic and elastoviscoplastic [12–16] deformation of materials with large deformations, including
some exact solutions. In the orthogonal system of Euler’s Cartesian spatial coordinates xi, the kinema-
tics of the medium is defined by the relations

dij =
1
2
(ui,j + uj,i − uk,iuk,j) = eij + pij −

1
2
eikekj − eikpkj − pikekj + eikpkmemj ,

Deij

Dt
= εij − γij −

1
2
((εik − γik + zik)ekj + eik(εkj − γkj − zkj)),

Dpij

Dt
= γij − pikγkj − γikpkj,

Dnij

Dt
=

dnij

dt
− riknkj + nikrkj,

(1)
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εij =
1
2
(vi,j + vj,i), vi =

dui

dt
=

∂ui

∂t
+ ui,jvj, ui,j =

∂ui

∂xj
,

rij = wij + zij(εsk, esk), wij =
1
2
(vi,j − vj,i),

zij=A−1[(εikekj − eikεkj)B2 + (εikeksesj − eikeksεsj)B + eikεksestetj − eikeksεstetj ],

A = 8 − 8E1 + 3E2
1 − E2 −

1
3
E3

1 +
1
3
E3, B = 2 − E1,

E1 = ekk, E2 = eijeji, E3 = eijejkeki,

where ui and vi are the components of displacements and velocities of the medium points; dij are the
components of the Almansi strain tensor; eij and pij are their reversible and irreversible components;
D

Dt
is the operator of the objective derivative of the tensors with respect to time which is written

for an arbitrary tensor nij ; and rij are the components of the tensor of rotations. The sources γij

and εe
ij = εij − γij in the equations of change of irreversible and reversible deformations are the rates

of their accumulation. When γij = 0 then the components of the tensor of irreversible deformations
change in the same way as in rotation of the coordinate system or, equivalently, in the deformation-

free motion of the medium; i.e., when
Dpij

Dt
= 0. The tensor of rotations rij used here differs from the

classical vorticity tensor wij by the nonlinear term zij . In addition, the tensor of irreversible deformations
remains unchanged too, but the rotation of the coordinate system for different points of the body occurs
differently (depending on the level of reversible deformations and the velocity of their changes). Note that
at the zero nonlinear component zij of the tensor of rotations rij , the derivative in (1) is transformed into
the Yauman derivative.

Following [6, 9, 11], we assume that the thermodynamic potential (the density distribution ψ of free
energy) is an isotropic function of only reversible deformations. Then, by the law of energy conservation,
the stresses in the medium are completely determined by the reversible deformations and related to them
by a formula analogous to the Murnaghan’s formula in the nonlinear theory of elasticity [17, 18]. Here
we write this relation for the case of an incompressible medium:

σij = −pδij +
∂W

∂eik
(δkj − ekj), (2)

where σij are the components of the Euler–Cauchy stress tensor and p is an unknown function of the
additional hydrostatic pressure. For the elastic potential W = ρ0ψ (ρ0 is the density), we consider its
expansion into the Maclaurin series relative to the free state as follows:

W = −2μI1 − μI2 + bI2
1 + (b − μ)I1I2 − χI3

1 + . . . ,

I1 = ekk − 1
2

eksesk, I2 = eksesk − eksestetk +
1
4

eksestetnenk.
(3)

Here μ is the shear modulus, while b and χ are the constant parameters of the material.
The dissipative mechanism of deformation which determines the accumulation of irreversible defor-

mations is connected with rheological and plastic properties of the material. In what follows, we assume
that the irreversible deformations are accumulated since the beginning of the deformation process and
are connected with the creep of the material.

To define the corresponding dissipative mechanism of deformation, we introduce the thermodynamic
potential V (σij) in the form of the Norton creep power law [19]:

V (σij) = BΣn(σ1, σ2, σ3), Σ = max |σi − σj |, γij = εv
ij =

∂V (Σ)
∂σij

. (4)

Here σ1, σ2, and σ3 are the principal values of the stress tensor, B and n are creep parameters, while
εν
ij are the components of the creep strain rate tensor.

Taking it into account that the plastic flow in the material does not occur, the stress state should not
reach the yield surface. Using the Tresca yield criterion as such a surface, we have max |σi − σj | < 2k
throughout the deformation process, where k is the yield strength of the material.
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2. STATEMENT AND SOLUTION OF THE PROBLEM
Consider the deformation of an incompressible material located in the gap between two coaxial

cylindrical surfaces with rigid walls under rectilinear motion of the inner surface of radius r = r0, while
the outer surface of radius r = R remains fixed. The no-slip conditions are fulfilled on the rigid walls.
Then the boundary conditions in the cylindrical coordinate system r, ϕ, and z are written as

v|r=R = u|r=R = 0, v|r=r0 = v0, u|r=r0 = u0 =

t∫

0

v0 dt, σrr|r=R = a0. (5)

Here v = vz(r, t) and u = uz(r, t) are the only nonzero components of the vectors of velocity and
displacement respectively, while v0 and a0 are given functions. By (1), the kinematics of the medium
in this case is given by the dependences

drr = −1
2

(
∂u

∂r

)2

, drz =
1
2

∂u

∂r
, εrz = −wrz =

1
2

∂v

∂r
, rrz =

2εrz(1 − ezz)
err + ezz − 2

.

Granted that for this class of problems the diagonal components of the strain tensor are small
quantities of a higher order as compared with the off-diagonal components [12–16], we will further
restrict ourselves to the first order terms in the diagonal and the second order terms, off the diagonal.
This restriction is not essential for solving the problem, but can significantly simplify the calculations.
From (2) and (3) we find the stresses in the medium in the case under study:

σrr = −(p + 2μ) + 2(b + μ)err + 2bezz + μe2
rz = −P + 2μerr,

σϕϕ = −(p + 2μ) + 2b(err + ezz) − 2μe2
rz = −P − 3μe2

rz,

σzz = −(p + 2μ) + 2(b + μ)ezz + 2berr + μe2
rz = −P + 2μezz,

σrz = 2μerz,
σrr − σzz

σrz
=

err − ezz

erz
.

(6)

Neglecting the inertia forces, i.e., staying in the framework of quasistatic approximation, we write the
equilibrium equations as

∂σrr

∂r
+

∂σrz

∂z
+

σrr − σϕϕ

r
= 0,

∂σrz

∂r
+

∂σzz

∂z
+

σrz

r
= 0. (7)

Assuming the stresses finite, i.e.
∂P

∂z
= 0, and integrating (7), we find

σrz =
c(t)
r

, erz =
c(t)
2μr

, P = f(r, t). (8)

Taking into account the remark before formula (6), we restrict ourselves to the terms up to the
nth order with respect to stresses in the potential V (σij), which, in the considered case, assumes the
following form in the cylindrical coordinate system:

V (σij) = B
(
4σ2

rz + (σrr − σzz)2
)n/2

.

Then, by (4) and (6), we obtain the relations for the creep deformation rates:

εv
rz = (−1)n2n−1Bnσn−1

rz , εv
rr = −εv

zz =
εv
rz

2
err − ezz

erz
. (9)

Using (8), (9), and εrz = εe
rz + εv

rz together with the nonslip conditions (5) on the wall r = R,
we obtain the following dependences for the velocity and displacement

v =
ċ

μ
ln

r

R
− (−1)n2nBncn−1

2 − n

(
1

Rn−2
− 1

rn−2

)
,

u =
c

μ
ln

r

R
− (−1)n2nBnc1

2 − n

(
1

Rn−2
− 1

rn−2

)
, c1(t) =

t∫

0

cn−1(t) dt.

(10)
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Fig. 1. Dimensionless velocity of the inner cylindrical surface ṽ0 = v0/
√

αr0.

Taking into account the boundary conditions (5) on the inner surface r = r0, we deduce from (10) the
differential equation for the unknown function c1(t):

ċ1 =
(

μ ln−1 r0

R

)n−1(
u0 −

(−1)n2nBnc1

2 − n

(
1

Rn−2
− 1

rn−2
0

))n−1

, c1(0) = 0.

Using the equations of change of the deformation components from (1), we obtain the system of
equations for finding the components of the tensors of elastic deformations err, ezz and creep strain prr,
prz , and pzz which in the considered approximation has the form

∂prz

∂t
= εv

rz,
∂pzz

∂t
= −εv

rz

pzz − e2
rz

erz
+

4εrzprz

2 + e2
rz

(
1 + pzz −

1
2

e2
rz − 2erzprz

)
,

err = pzz −
3
2

e2
rz − 2erzprz, prr + pzz = −2p2

rz, err + ezz = −e2
rz.

(11)

System (11) is integrated numerically with the help of Wolfram Mathematica. The stress compo-
nent σrr is obtained from the first equilibrium equation using the boundary condition from (5). Then, the
hydrostatic pressure P , σzz , and σϕϕ are determined from (6).

We assume that the movement velocity of the inner cylindrical surface first increases (0 ≤ t ≤ t1),
then becomes constant (t1 ≤ t ≤ t2), decreases to zero (t ≥ t3), and next becomes equal to zero (t ≥ t3).
Then the value of v0 is chosen as (Fig. 1)

v0 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αt, 0 ≤ t ≤ t1,

αt1, t1 ≤ t ≤ t2,

αt1 − β(t − t2), t2 ≤ t ≤ t3,

0, t ≥ t3.

(12)

The calculations were carried out with dimensionless variables r̃ = r/R and τ = αt2/r0 for the values
of the constants

k/μ = 0.003, r0/R = 0.2, n = 3, Bμ2
√

r0/α = 3, α/β = 0.5.

In Fig. 2, the displacement ũ = u/R is shown at times τ1 = 0.004, τ2 = 0.007, τ3 = 0.013, and τ4 > τ3.
The change of irreversible deformations at the points of the inner surface r = r0 is shown in Fig. 3. The
relaxation of the stress components σrz and σzz (the largest among the diagonal components) after the
inner surface stops is given in Fig. 4 (τ5 � τ3).

In the article we solve the boundary value problem connected with the study of rectilinear motion of an
elastoviscoplastic material in the gap between the two rigid coaxial cylindrical surfaces under conditions
of the cold creep. The solution is obtained in the framework of the theory of large deformations. We
consider the simplest case when the elastic deformations are assumed so small that, in calculating
the stresses by them, the terms containing the third powers of these quantities can be neglected. The
obtained solution simulates such a technological method as cold forming.
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Fig. 2. Distribution of displacements over the layer at various time.

Fig. 3. Irreversible deformations prz (a) and prr, pzz (b) for r = r0.

Fig. 4. Stress components σrz (a) and σzz (b).
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