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Abstract—This paper deals with the user equilibrium problem (flow assignment with equal journey
time by alternative routes) and system optimum (flow assignment with minimal average journey
time) in a network consisting of parallel routes with a single origin-destination pair. The travel
time is simulated by arbitrary smooth nondecreasing functions. We prove that the equilibrium and
optimal assignment problems for such a network can be reduced to the fixed point problem expressed
explicitly. A simple iterative method of finding equilibrium and optimal flow assignment is developed.
The method is proved to converge geometrically; under some fairly natural conditions the method is
proved to converge quadratically.
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INTRODUCTION

In 1952, Wardrop formulated the two principles of flow assignment in a network in [24]. The first
principle states that the routes in the network are chosen so that the journey times in all routes used are
equal and less than those in the unused routes for every fixed origin-destination pair. In other words, the
Wardrop first principle describes an equilibrium assignment of flows, which is called a user equilibrium.
The second principle states that the routes in the network are chosen so that the average journey times
for all used routes is minimal. In other words, the Wardrop’s second principle describes an optimal
assignment of flows, which is called system optimum.

Today, the problems of finding a user equilibrium and system optimum are extremely relevant research
problems in terms of both theory and practice. The growing scales of networks with high degree of
interconnectedness, such as transportation and telecommunication networks, require the development
of new methodological tools for analysis and design. As a result, many researchers all around the world
are studying the equilibrium and optimal traffic assignment problems [8, 20, 25, 30].

The most frequent application of the models and assessments of flow assignment is to modernize
networks (network design problem) [15]. Modernization is often understood to be the addition of new
links to an existing network or removal of old ones. In the process of solving such a problem, the Braess’
paradox may occur, which is directly connected to main principles of network flow assignment [7].
The development of algorithms of directed transfer of information, as a rule, requires the optimal route
assignment approaches [10]. The signal traffic control problem also can seldom be solved without using
assignment principles [13]. The development of assessment methods of the dynamic flow assignment
has complicated simulation of the network processes [14].

There are some game-theoretic formulation of the flow assignment problem. In [2], we can find the
statement of the flow assignment problem as a two-level problem with two competitive groups of users
at the lower level [29]. Flow assignment in competitive systems with an arbitrary number of user groups
is under study in [3, 5, 9, 10, 26]. An extensive survey of foreign literature on the game theory applications
in modeling the network flow assignment is provided in [18]. The article [27] is devoted to the problem
of flow assignment when there are some dedicated lanes for environment-friendly transport. The more
extensive analysis of this problem can be found in [28].
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In this article, we focus on the flow assignment problem for the network of parallel routes. In the
previous papers dealing with networks of parallel routes, we used the linear BPR functions to simulate
the travel time from origin to destination [4, 6]. It was demonstrated that an equilibrium flow assignment
for those networks can be obtained explicitly. The method of finding nonzero routes in the network
of parallel routes with an arbitrary BPR function was developed in [19]. Now, the journey time from
origin to destination is simulated by an arbitrary smooth nondecreasing function. We show that, in this
case, the flow assignment problem can be reduced to a fixed point problem. Moreover, we prove that
implementation of a simple iteration procedure that arises from the transformation of the initial problem
to the fixed point problem yields geometric convergence. In addition, under some natural conditions, we
achieve quadratic convergence.

Let us note that the problem of the equilibrium flow assignment in a network was formulated in the
form of a fixed point problem in [16, 17]. However, that form is provided in general terms and it is only
mentioned that this form is possible in general and that there is a possibility of using the methods of
finding a fixed point to solve the flow assignment problem. However, no specific methods for solving the
flow assignment problem in the form of a fixed point problem were provided, and this approach has not
been developed [22]. In this article, we are able to reduce the flow assignment problem on the network
of parallel routes to the problem of finding a fixed point of an explicitly expressed mapping without using
the methods for solving the fixed point problem. Moveover, it is shown that the resulting simple iterative
procedures converge quadratically under some natural conditions.

Thus, in this paper we present a new flow assignment algorithm for networks with a single origin-
destination pair and parallel routes that converges quadratically. This algorithm contributes to the
development of parallel decomposition methods (or algorithms) [22]. This class of methods can solve
the flow assignment problem in an arbitrary network with multiple origin-destination pairs (multi-
commodity) by breaking down the network into subnetworks with a single origin-destination pair and
solving the flow assignment problem for each subnetwork in parallel [12, 21, 22].

The paper is organized as follows: Section 1 deals with a user equilibrium in a network with parallel
routes. The optimized user equilibrium problem is reduced to the fixed point problem, the obtained
iterative process is proved to converge to a user equilibrium. In Section 2, we study system optimum
in the network of parallel routes. Section 3 describes an algorithm for solving a nonlinear optimization
problem.

1. A USER EQUILIBRIUM IN THE NETWORK OF PARALLEL ROUTES

Consider a network represented as an oriented graph G that consists of two nodes (origin and
destination) and n nonintersecting links (routes). We call this network the network of parallel routes.
Denote the total flow between the origin and the destination by F , and the assignment F to the links,
by fi ≥ 0, i = 1, n, so that

n∑

i=1

fi = F.

Let us describe the travel time from origin to destination along a link by a smooth nondecreasing function
on the set of real nonnegative numbers: ti ∈ C1(R+), ti(x) − ti(y) ≥ 0 for x − y ≥ 0, x, y ∈ R

+, and
i = 1, n, where R

+ is a set of real nonnegative numbers. Moreover, we suppose that ti(x) ≥ 0, x ≥ 0,
and ∂ti(x)/∂x > 0 for x > 0 and i = 1, n. This function is called the delay or the cost of moving along
the link. Define also f = (f1, . . . , fn), t(f) = (t1(f1), . . . , tn(fn)), and f = fT.

A user equilibrium in the network of parallel routes is a flow assignment F to available links
f∗ = (f∗

1 , . . . , f∗
n) such that the travel times from origin to destination are equal for each used link and

less than those for every unused link [11, 24]:

ti(f∗
i )

{
= t∗ > 0, for f∗

i > 0,
> t∗ for f∗

i = 0,
i = 1, n.
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It is proved that the user equilibrium problem can be formulated as an optimization problem [23]. In case
of a network of parallel routes, the following optimization problem can be used to find an user equilibrium:

min
f

z(f) = min
f

n∑

i=1

fi∫

0

ti(u) du (1)

under the constraints
n∑

i=1

fi = F, (2)

fi ≥ 0. (3)

Let us introduce the additional notations:

ϕi(x) = ti(x) − dti(x)
dx

x, ψi(x) =
(

dti(x)
dx

)−1

, i = 1, n.

Theorem 1. Optimization problem (1)–(3) is equivalent to the fixed point problem

f = Φ(f), (4)

where the components f and t(f) are indexed so that

ϕ1(f1) ≤ · · · ≤ ϕn(fn), (5)

and the components Φ(f) = (Φ1(f), . . . ,Φn(f))T look like

Φi(f) =

⎧
⎨

⎩
ψi(fi)

(
F +

m∑
s=1

ϕs(fs)ψs(fs)
)/(

m∑
s=1

ψs(fs)
)
− ϕi(fi)ψi(fi), for i ≤ m,

0, for i > m,

(6)

where m is defined from the condition
m∑

i=1

ψi(fi)[ϕm(fm) − ϕi(fi)] ≤ F <

m+1∑

i=1

ψi(fi)[ϕm+1(fm+1) − ϕi(fi)]. (7)

Proof. For ease of explanation, we split the proof into the three parts.

(I) Let us approximate the following smooth nondecreasing functions ti(fi) ∈ C1(R+) for fi ≥ 0 by
piecewise linear functions:

ti(fi) ≈ t̂i(fi) =
qi∑

j=1

[
aj

i + bj
ifi

]
δIj

i , i = 1, n,

where

δIj
i =

{
1, for fi ∈ Ij ,

0, otherwise,

and Ii =
(
I1
i , . . . , Iqi

i

)
is the set of intervals corresponding to the linear segments of some piecewise

linear functions t̂i(fi) with precision ε:
∣∣ti(fi) − t̂i(fi)

∣∣ < ε, fi ≥ 0, i = 1, n.

We now formulate the user equilibrium problem for the network of parallel routes (1)–(3) when the
delay functions are piecewise linear functions

min
f

ẑ(f) = min
f

n∑

i=1

fi∫

0

qi∑

j=1

[
aj

i + bj
iu

]
δIj

i du (8)
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under the constraints
n∑

i=1

fi = F, (9)

fi ≥ 0. (10)

Apply the Khun–Tucker conditions to optimization problem (8)–(10) by differentiating the Lagrangian

L =
n∑

i=1

fi∫

0

qi∑

j=1

[
aj

i + bj
iu

]
δIj

i du + ω

(
F −

n∑

i=1

fi

)
+

n∑

i=1

(−ηi)fi

with respect to fi and equating the result to zero:

∂L

∂fi
=

qi∑

j=1

[
aj

i + bj
ifi

]
δIj

i − ω − ηi = 0,

where ω and ηi, i = 1, n, are Lagrange multipliers. Thus, we have

t̂i(fi) =
qi∑

j=1

[
aj

i + bj
ifi

]
δIj

i = ω + ηi, i = 1, n. (11)

The complementary slackness condition requires that the equalities ηifi = 0 for all i = 1, n be true.
In this case, if fi > 0 then ηi = 0 and, by (11), we have

t̂i(fi) =
qi∑

j=1

[
aj

i + bj
ifi

]
δIj

i = ω.

On the other hand, if fi = 0 then ηi ≥ 0 and, by (11),

t̂i(fi) =
qi∑

j=1

[
aj

i + bj
ifi

]
δIj

i ≥ ω.

These correlations can be rewritten as the constraint

t̂i(fi) =
qi∑

j=1

[
aj

i + bj
ifi

]
δIj

i

{
= ω, if fi > 0,
≥ ω, if fi = 0,

i = 1, n. (12)

Express fi in terms of ω using (12):

fi =

⎧
⎪⎪⎨

⎪⎪⎩

qi∑
j=1

[
ω−aj

i

bj
i

]
δIj

i , if
qi∑

j=1
aj

iδI
j
i ≤ ω,

0, if
qi∑

j=1
aj

iδI
j
i > ω,

i = 1, n. (13)

The functions t̂i(fi) for all i = 1, n are convex, and so, the Khun–Tucker conditions are both sufficient
and necessary. Therefore, we can say that the assignment f∗ creates a user equilibrium in the network
of parallel routes if and only if there is ω∗ such that f∗ and ω∗ satisfy (12) and, therefore, (13).

(II) Assume that f∗ and ω∗ are defined. Then each f∗
i , i = 1, n, corresponds to a fixed interval Iji

i

∗

and the coefficients aji
i

∗
and bji

i

∗
correspondingly. Without loss of generality, let us reindex the edges so

that

aj1
1

∗ ≤ · · · ≤ ajn
n

∗
. (14)
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Let m be the index of the edge such that ajm
m

∗ ≤ ω∗ < a
jm+1

m+1

∗
. Then, inserting (13) into (9), we have

n∑

i=1

fi =
m∑

i=1

[
ω∗ − aji

i

∗

bji
i

∗

]
= F. (15)

Therefore, ω∗ can be expressed as

ω∗ =
(

F +
m∑

i=1

aji
i

∗
)/( m∑

i=1

1

bji
i

∗

)
. (16)

Put (16) into (13) to obtain f∗ explicitly:

f∗
i =

⎧
⎨

⎩

1

bj
i

∗

(
F +

m∑
i=1

aji
i

∗
)/(

m∑
i=1

1

b
ji
i

∗

)
− aj

i

∗

bj
i

∗ , if i ≤ m,

0, if i > m,

i = 1, n. (17)

Find the value of m using (15) and the following equation: ajm
m

∗ ≤ ω∗ < a
jm+1

m+1

∗
:

m∑

i=1

[
ajm

m
∗ − aji

i

∗

bji
i

∗

]
≤ F <

m+1∑

i=1

[
a

jm+1

m+1

∗ − aji
i

∗

bji
i

∗

]
. (18)

Therefore, the user equilibrium in the network of parallel routes with piecewise linear delay functions
on the edges can be expressed as (17) under condition that (14) and (18) hold.

(III) The piecewise linear functions t̂i(fi), i = 1, n, are defined so that
∣∣t̂i(fi) − ti(fi)

∣∣ < ε, fi ≥ 0,

therefore,
∣∣aj

i + bj
ifi − ti(fi)

∣∣ < ε for fi ∈ Ij
i , j = 1, qi, and i = 1, n. Moveover, for all i = 1, n and

j = 1, qi at the endpoints of Ij
i =

[
ḟ j

i , f̈ j
i

]
the value of the piecewise linear function t̂i(fi) equals the

value of the function ti(fi) (by the definition of piecewise linear function):
{

aj
i + bj

i ḟ
j
i = ti

(
ḟ j

i

)
,

aj
i + bj

i f̈
j
i = ti

(
f̈ j

i

)
,

j = 1, qi, i = 1, n.

Therefore,

bj
i =

ti
(
f̈ j

i

)
− ti

(
ḟ j

i

)

f̈ j
i − ḟ j

i

, j = 1, qi, i = 1, n, (19)

aj
i = ti

(
f̈ j

i

)
−

ti
(
f̈ j

i

)
− ti

(
ḟ j

i

)

f̈ j
i − ḟ j

i

f̈ j
i , j = 1, qi, i = 1, n. (20)

As ε → 0, the intervals Ij
i for all j = 1, qi and i = 1, n “collapse” to the point f̂ j

i and we have the
following limits for (19) and (20):

lim
ε→0

bj
i =

dti
(
f̂ j

i

)

dfi
, j = 1, qi, i = 1, n, (21)

lim
ε→0

aj
i = ti

(
f̂ j

i

)
−

dti
(
f̂ j

i

)

dfi
f̂ j

i , j = 1, qi, i = 1, n. (22)

In item (II), we proved that a user equilibrium in the network of parallel routes with piecewise linear
delay functions on the edges can be expressed as (17) under condition that (14) and (18) hold. However,
this statement holds for piecewise linear functions that approximate the initial functions to every degree
of accuracy. Therefore, by smoothness of the delay function as ε → 0 and taking into account (21) and
(22), the correlations (17), (14), and (18) will become (6), (5), and (7) correspondingly.

The proof of Theorem 1 is complete.
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Theorem 1 states that the user equilibrium problem formulated as the optimization problem (1)–(3)
is equivalent to fixed point problem (4) for the network of parallel routes. Representation of the user
equilibrium problem as (4) allows us to reformulate the problem of finding the equilibrium assignment
in the network of parallel routes in the form of the simple iterative process

fk+1 = Φ(fk), (23)

where fk and t(f) at the (k + 1)th step are indexed so that ϕ1

(
fk
1

)
≤ · · · ≤ ϕn

(
fk

n

)
, while the compo-

nents Φ(fk) = (Φ1(fk), . . . ,Φn(fk))T are as follows:

Φi(fk) =

⎧
⎪⎨

⎪⎩
ψi

(
fk

i

)(
F +

mk∑
s=1

ϕs(fk
s )ψs(fk

s )
)(

mk∑
s=1

ψs(fk
s )

)
− ϕi

(
fk

i

)
ψi

(
fk

i

)
, for i ≤ mk,

0, for i > mk,

where mk is defined by

mk∑

i=1

ψi

(
fk

i

)[
ϕmk

(
fk

mk

)
− ϕi

(
fk

i

)]
≤ F <

mk+1∑

i=1

ψi

(
fk

i

)[
ϕmk+1

(
fk

mk+1

)
− ϕi

(
fk

i

)]
.

Theorem 2. There is a δ-neighborhood of f∗ such that, for every choice of the initial approxi-
mation f0 from this neighborhood, the series {fk} of (23) remains within the neighborhood and
converges geometrically to f∗.

Proof. For ease of presentation, we will use the following general notation of the derivative: dti(fi)
dfi

=
t′i(fi). In this case, the product of ϕi(fi) and ψi(fi) for all i = 1, n will take the form

ϕi(fi)ψi(fi) =
ti(fi) − t′i(fi)fi

t′i(fi)
=

ti(fi)
t′i(fi)

− fi. (24)

Consider Step (k + 1) of the iterative process (23). In view of (24) and for i ≤ mk, we see that Φi(fk)
at this step is as follows:

Φi(fk) = fk
i −

ti
(
fk

i

)

t′i
(
fk

i

) +
(

F −
mk∑

s=1

[
fk

s − ts(fk
s )

t′s(fk
s )

])/( mk∑

s=1

t′i(f
k
i )

t′s(fk
s )

)
.

Therefore, the iterative process (23) at Step (k + 1) for i ≤ mk can be written as

fk+1
i = fk

i −
ti

(
fk

i

)

t′i
(
fk

i

) +
(

F −
mk∑

s=1

[
fk

s − ts(fk
s )

t′s(fk
s )

])/( mk∑

s=1

t′i(f
k
i )

t′s(fk
s )

)
. (25)

Let f∗ be a user equilibrium assignment of flows in the network. Consider
(
fk+1

i − f∗
i

)
for i ≤ mk.

Let us assume that fk belongs to the δ-neighborhood of f∗ such that mk = m∗, Then,

F =
m∗∑

s=1

f∗
s =

mk∑

s=1

f∗
s , ti

(
f∗

i

)
= t∗ > 0

for all i = 1,mk, and so,

fk+1
i − f∗

i =
(
fk

i − f∗
i

)
−

ti
(
fk

i

)

t′i
(
fk

i

) +
(

F −
mk∑

s=1

[
fk

s − ts(fk
s )

t′s(fk
s )

])/( mk∑

s=1

t′i(f
k
i )

t′s(fk
s )

)

=
(
fk

i − f∗
i

)
−

(
ti

(
fk

i

)
− ti

(
f∗

i

))
+ t∗

t′i
(
fk

i

) −
[ mk∑

s=1

[
(fk

s − f∗
s ) − (ts(fk

s ) − ts(f∗
s )) + t∗

t′s(fk
s )

]]/ mk∑

s=1

t′i(f
k
i )

t′s(fk
s )
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=
(
fk

i − f∗
i

)
−

(
ti

(
fk

i

)
− ti

(
f∗

i

))

t′i
(
fk

i

) − t∗

t′i
(
fk

i

) +
t∗

t′i
(
fk

i

)
( mk∑

s=1

1
t′s(fk

s )

)/( mk∑

s=1

1
t′s(fk

s )

)

−
( mk∑

s=1

[
(fk

s − f∗
s ) − (ts(fk

s ) − ts(f∗
s ))

t′s(fk
s )

])/( mk∑

s=1

t′i(f
k
i )

t′s(fk
s )

)

=
(
fk

i − f∗
i

)
−

(
ti

(
fk

i

)
− ti

(
f∗

i

))

t′i
(
fk

i

) −
( mk∑

s=1

[(
fk

s − f∗
s

)
−

(
ts

(
fk

s

)
− ts

(
f∗

s

))

t′s
(
fk

s

)
])/( mk∑

s=1

t′i(f
k
i )

t′s(fk
s )

)
,

Thus,

fk+1
i − f∗

i =
(
fk

i − f∗
i

)
−

(
ti

(
fk

i

)
− ti

(
f∗

i

))

t′i
(
fk

i

) −

mk∑
s=1

[(
fk

s − f∗
s

)
− (ts(fk

s )−ts(f∗
s ))

t′s(fk
s )

]

mk∑
s=1

t′i(f
k
i )

t′s(fk
s )

. (26)

For ease of explanation, let us introduce the notations

ξi(x) = (x − f∗
i ) −

(
ti(x) − ti

(
f∗

i

))

t′i(x)
, ςi(x) =

mk∑

s=1

t′i(x)
t′s(fk

s )
, i = 1,mk,

in this case, (26) becomes

fk+1
i − f∗

i = ξi

(
fk

i

)
−

mk∑
s=1

ξs(fk
s )

ς
(
fk

i

) . (27)

Note that, by the Lagrange mean value theorem, for all i = 1,mk we have ti
(
fk

i

)
− ti

(
f∗

i

)
=

t′i
(
θk
i

)
(fk

i − f∗
i ), where θk

i belongs to the interval between fk
i and f∗

i so that we have

ξi

(
fk

i

)
=

[
1 − t′i(θ

k
i )

t′i
(
fk

i

)
](

fk
i − f∗

i

)
, i = 1,mk. (28)

Define

Ui

(
fk

i

)
=

[
1 − t′i(θ

k
i )

t′i(f
k
i )

]
, i = 1,mk, U(fk) =

(
U1

(
fk
1

)
, . . . , Umk

(
fk

mk

))

Putting (28) into (27)

fk+1
i − f∗

i = Ui

(
fk

i

)(
fk

i − f∗
i

)
−

( mk∑

s=1

Us

(
fk

s

)(
fk

s − f∗
s

))/
ς
(
fk

i

)
,

we have

∣∣fk+1
i − f∗

i

∣∣ ≤
∣∣Ui

(
fk

i

)∣∣ ·
∣∣fk

i − f∗
i

∣∣ +
1

ς
(
fk

i

) ·
mk∑

s=1

∣∣Us

(
fk

s

)∣∣ ·
∣∣fk

s − f∗
s

∣∣. (29)

Sum up the left parts of (29) over i = 1,mk and note that

mk∑

i=1

1
ς
(
fk

i

) =
mk∑

i=1

1
t′i

(
fk

i

) · 1
/( mk∑

s=1

1
t′s

(
fk

s

)
)

= 1.
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Then
mk∑

i=1

∣∣fk+1
i − f∗

i

∣∣ ≤
mk∑

i=1

∣∣Ui

(
fk

i

)∣∣ ·
∣∣fk

i − f∗
i

∣∣ +
mk∑

s=1

∣∣Us

(
fk

s

)∣∣ ·
∣∣fk

s − f∗
s

∣∣,

and therefore,
mk∑

i=1

∣∣fk+1
i − f∗

i

∣∣ ≤
mk∑

i=1

∣∣2Ui

(
fk

i

)∣∣ ·
∣∣fk

i − f∗
i

∣∣. (30)

We have
∥∥U

(
fk

)∥∥ → 0 as fk → f∗; i.e.,
(
∀ε, 0 < ε < 1

) (
∃ρ

)
‖2U

(
fk

)∥∥ ≤ ε < 1 for fk ∈ Sρ(f∗),

where

Sρ(f∗) = {f : ‖f − f∗‖ ≤ ρ}.

Therefore, since fk ∈ Sρ(f∗) and due to (30), we have

mk∑

i=1

∣∣fk+1
i − f∗

i

∣∣ ≤ ε

mk∑

i=1

∣∣fk
i − f∗

i

∣∣ ≤ ερ < ρ,

and so, fk+1 ∈ Sρ(f∗) Thus, if f0 ∈ Sρ(f∗) then {fk} ∈ Sρ(f∗) and

mk∑

i=1

∣∣fk
i − f∗

i

∣∣ ≤ εk
mk∑

i=1

∣∣f0
i − f∗

i

∣∣,

whence it follows that {fk} converges geometrically.
The proof of Theorem 2 is complete.

Note that Theorem 2 holds for the delay functions that are smooth on the edges of the network of
parallel routes. However, if the delay functions are twice continuously differentiable then we have

Theorem 3. Let in some neighborhood of f∗ the functions ti(·) ∈ C2, i = 1, n be such that
∣∣t′i(x)

∣∣ ≥ αi > 0,
∣∣t′′i (x)

∣∣ ≤ βi < ∞. (31)

Then there is a δ-neighborhood of f∗ such that, for arbitrary choice of the initial approximation
f0 from this neighborhood, the series {fk} of the iterative process (23) remains within the
neighborhood and converges quadratically to f∗.

Proof. If ti(·) ∈ C2(R+) for all i = 1, n then, by the Taylor expansion formula, we have

ti
(
f∗

i

)
= ti

(
fk

i

)
+ t′i

(
fk

i

)(
f∗

i − fk
i

)
+

1
2
t′′i

(
Θk

i

)(
f∗

i − fk
i

)2
, i = 1,mk, (32)

where Θk
i is some point between fk

i and f∗
i . Since ti

(
f∗

i

)
= t∗, i = 1,mk, let us rewrite (32) as

t∗ = ti
(
fk

i

)
+ t′i

(
fk

i

)(
f∗

i − fk
i

)
+

1
2
t′′i

(
Θk

i

)(
f∗

i − fk
i

)2
, i = 1,mk. (33)

Rewrite (25) as follows:

ti
(
fk

i

)
+ t′i

(
fk

i

)(
fk+1

i − fk
i

)
=

(
F −

mk∑

s=1

[
fk

s − ts(fk
s )

t′s(fk
s )

])/( mk∑

s=1

t′i(f
k
i )

t′s(fk
s )

)

and add this expression to (33):

t∗ + t′i
(
fk

i

)(
fk+1

i − f∗
i

)
=

1
2
t′′i

(
Θk

i

)(
f∗

i − fk
i

)2 + Ω, i = 1,mk, (34)
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where

Ω =
(

F −
mk∑

s=1

[
fk

s − ts(fk
s )

t′s(fk
s )

])/( mk∑

s=1

1
t′s(fk

s )

)
.

Since F =
∑mk

i=1 f∗
i , we have

Ω =
( mk∑

s=1

[(
f∗

s − fk
s

)
+

ts(fk
s )

t′s(fk
s )

])/( mk∑

s=1

1
t′s(fk

s )

)
. (35)

Find ti
(
fk

i

)
, i = 1,mk, from (33) and insert it into (35):

Ω =
( mk∑

s=1

[(
f∗

s − fk
s

)
+

t∗

t′s(fk
s )

−
(
f∗

s − fk
s

)
− 1

2
t′′s(Θk

s)
t′s(fk

s )
(
f∗

s − fk
s

)2
])/( mk∑

s=1

1
t′s(fk

s )

)
,

whence it follows that

Ω = t∗ − 1
2

( mk∑

s=1

t′′s(Θk
s)

t′s(fk
s )

(
f∗

s − fk
s

)2
)/( mk∑

s=1

1
t′s(fk

s )

)
. (36)

Inserting (36) into (34), we have for each i = 1,mk

t′i
(
fk

i

)(
fk+1

i − f∗
i

)
=

1
2

t′′i
(
Θk

i

)(
f∗

i − fk
i

)2 − 1
2

( mk∑

s=1

t′′s(Θ
k
s)

t′s
(
fk

s

)
(
f∗

s − fk
s

)2
)/( mk∑

s=1

1
t′s(fk

s )

)
, (37)

then,

fk+1
i − f∗

i =
1
2

t′′i
(
Θk

i

)

t′i
(
fk

i

)
(
f∗

i − fk
i

)2 − 1
2

( mk∑

s=1

t′′s
(
Θk

s

)

t′s
(
fk

s

)
(
f∗

s − fk
s

)2
)/( mk∑

s=1

t′i(f
k
i )

t′s(fk
s )

)
;

and so,

∣∣fk+1
i − f∗

i

∣∣ ≤ 1
2

∣∣∣∣
t′′i

(
Θk

i

)

t′i
(
fk

i

)
∣∣∣∣ ·

∣∣f∗
i − fk

i

∣∣2

+
1
2
· 1∣∣t′i

(
fk

i

)∣∣ ·
( mk∑

s=1

∣∣t
′′
s

(
Θk

s

)

t′s
(
fk

s

)
∣∣ ·

∣∣f∗
s − fk

s

∣∣2
)/( mk∑

s=1

1
|t′s

(
fk

s

)
|

)
,

which, after summation over i = 1,mk, looks like

mk∑

i=1

∣∣fk+1
i − f∗

i

∣∣ ≤
mk∑

i=1

∣∣∣∣
t′′i (Θ

k
i )

t′i
(
fk

i

)
∣∣∣∣ ·

∣∣f∗
i − fk

i

∣∣2.

Since (31) holds in some neighborhood of f∗, we have

mk∑

i=1

∣∣fk+1
i − f∗

i

∣∣ ≤
mk∑

i=1

βi

αi
·
∣∣f∗

i − fk
i

∣∣2. (38)

Therefore, if follows from the definition in [1] and (38) that the series {fk} of the iterative process (23)
quadratically converges for an arbitrary choice of f0 from some δ-neighborhood of f∗.

The proof of Theorem 3 is complete.
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Remark. Expressed explicitly, the iterative process (4) looks like

fk+1
i = fk

i −
ti

(
fk

i

)

t′i
(
fk

i

) +
(

F −
mk∑

s=1

[
fk

s − ts(fk
s )

t′s(fk
s )

])/( mk∑

s=1

t′i(f
k
i )

t′s(fk
s )

)
.

Note that at each new iterative step optimization problem (1)–(3) is solved for the case of linear delay
functions that correspond to the tangents to the initial delay functions at the points obtained at the
previous step at which an optimal assignment of flows is achieved.

Theorems 2 and 3 suggest that the iterative process (23) for f0 from some δ-neighborhood of f∗
converges to a user equilibrium point for the flow assignment F in the network of parallel routes;
moreover, when the delay functions meet some reasonable conditions on the links, we have quadratic
convergence. As may be seen from the proofs of both theorems, one of the key requirements to the
neighborhood is the equality mk = m∗. In other words, as soon as the iterative process (23) finds an
optimal number of routes, the quadratic convergence is achieved. On the other hand, we can to give a hint
to the algorithm about which routes are optimal, for example, by having implemented the optimal route
search procedure described in [19]. Moreover, it should be noted that in a loaded network all possible
routes are used; and so, we can put f0 to be f0 = (F/n, . . . , F/n)n.

2. A SYSTEM OPTIMUM IN THE NETWORK OF PARALLEL ROUTES

A system optimum in the network of parallel routes is a flow assignment F to the available edges
f † = (f †

1 , . . . , f †
n) such that the average travel time of the total flow of F from origin to destination is

minimized [11, 24].
By the definitions of user equilibrium and system optimum, it is clear that these two principles imply

two different flow assignments. However, a user equilibrium is used when we need to simulate the
behavior of independent users in a network who try to minimize their travel time. A system optimum,
in turn, is useful to simulate a situation of some external influence on all users in a network with the
purpose of minimizing the average travel time of the total flow.

It is proved that the system optimum problem can be stated in the form of an optimization problem
[23]. In case of a network of parallel routes, the following optimization problem can be used to find the
system optimum:

min
f

z(f) = min
f

n∑

i=1

ti(fi)fi (39)

under the constraints
n∑

i=1

fi = F, (40)

fi ≥ 0. (41)

In studying the system optimum problem for a network of parallel routes we assume that ti(·) ∈
C2(R+), i = 1, n, and that all other properties of the delay functions defined above remain true. Let us
introduce the additional notations:

ϕi(x) = ti(x) − dti(x)
dx

x − d2ti(x)
dx2

x2, γi(x) =
(

2
dti(x)

dx
+

d2ti(x)
dx2

x

)−1

, i = 1, n.

Theorem 4. Optimization problem (39)–(41) is equivalent to the fixed point problem

f = Ψ(f), (42)

where the components f and t(f) are indexed so that

ϕ1(f1) ≤ · · · ≤ ϕn(fn), (43)
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and the components Ψ(f) = (Ψ1(f), . . . ,Ψn(f))T are of the form

Ψi(f) =

⎧
⎨

⎩
γi(fi)

(
F +

m∑
s=1

ϕs(fs)γs(fs)
)/( m∑

s=1
γs(fs)

)
− ϕi(fi)γi(fi), for i ≤ m,

0, for i > m,

(44)

where m is defined by the condition
m∑

i=1

γi(fi)[ϕm(fm) − ϕi(fi)] ≤ F <
m+1∑

i=1

γi(fi)[ϕm+1(fm+1) − ϕi(fi)]. (45)

Proof. Let gi(x) = d(ti(x)x)
dx for i = 1, n. Then (39)–(41) can be reformulated as

min
f

z(f) = min
f

n∑

i=1

fi∫

0

gi(u) du (46)

under the constraints (40) and (41). By Theorem 1, problem (46) under the constraints (40) and (41) is
equivalent to the fixed point problem (42) under the conditions (43)–(45).

The proof of Theorem 4 is complete.

Theorem 4 allows us to reduce the process of finding the optimal flow assignment in the network of
parallel routes to a simple iterative procedure:

fk+1 = Ψ(fk), (47)

where fk satisfies (43)–(45).

Theorem 5. There is a δ-neighborhood of f∗ such that, for every choice of the initial approxi-
mation f0 from this neighborhood, the series {fk} of the iterative process (42) remains within the
neighborhood and converges geometrically to f∗.

Moreover, if in some neighborhood of f∗ the functions ti(·) ∈ C3, i = 1, n, satisfy
∣∣2t′i(x) + t′′i (x)x

∣∣ ≥ αi > 0,
∣∣3t′′i (x) + t′′′i (x)x

∣∣ ≤ βi < ∞

then there is a δ-neighborhood of f∗ such that for an arbitrary choice of the initial approximation
f0 from this neighborhood the series {fk} of the iterative process (42) remains within the
neighborhood and converges quadratically to f∗.

The proof of Theorem 5 follows from the representation of the optimization problem (39)–(41) in the
form of the problem (46) with the constraints (40) and (41) and Theorems 2 and 3.

Thus, as in the case of solution to a user equilibrium, the system optimum problem in the network of
parallel routes was reduced to the fixed point problem, which allows us to implement a simple iterative
procedure. Moreover, Theorem 5 allows us to state that the iterative process converges to the system
optimum with high enough rate.

3. A PROBLEM OF NONLINEAR PROGRAMMING

The methods used to solve the user equilibrium problem in the network of parallel routes with a single
origin-destination pair (1)–(3) by reducing it to the fixed point problem and using a simple iterative
procedure, can be used to solve a more general optimization problem.

Indeed, consider the following constrained optimization problem:

Z(x∗) = min
x

n∑

i=1

zi(xi) (48)
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under the constraints
n∑

i=1

aixi = A, (49)

xi ≥ 0, (50)

where

x = (x1, . . . , xn), x = xT, ai > 0 for all i = 1, n, A > 0,

and the first derivatives of zi(x) ∈ C2(R+), i = 1, n, are nondecreasing:

dzi

dxi
∈ C1(R+),

dzi(x)
dxi

− dzi(y)
dxi

≥ 0 for x − y ≥ 0, x, y ∈ R
+, i = 1, n,

dzi(x)
dxi

≥ 0, x ≥ 0, i = 1, n.

Introduce the additional notations:

μi(ν) =
1
ai

(
dzi(ν)
dxi

− d2zi(ν)
dx2

i

ν

)
,

�i(ν) = ai

(
d2zi(ν)

dx2
i

)−1

, i = 1, n,

z(x) = (z1(x1), . . . , zn(xn)).

Theorem 6. Optimization problem (48)—(50) is equivalent to the fixed point problem

x = Υ(x), (51)

where the components f and z(x) are indexed in so that

μ1(x1) ≤ · · · ≤ μn(xn), (52)

the components Υ(x) = (Υ1(x), . . . ,Υn(x))T look like

Υi(x) =

⎧
⎨

⎩
�i(xi)

(
A +

m∑
s=1

μs(xs)�s(xs)
)/( m∑

s=1
�s(xs)

)
− μi(xi)�i(xi), for i ≤ m,

0, for i > m,

(53)

and m is defined by the constraint
m∑

i=1

�i(xi)[μm(xm) − μi(xi)] ≤ A <

m+1∑

i=1

�i(xi)[μm+1(xm+1) − μi(xi)]. (54)

The proof of Theorem 6 is similar to that of Theorem 1.

Owing to Theorem 6, the process of seeking a solution of the optimization problem (48)–(50) can be
turned into a simple iterative process:

xk+1 = Υ(xk), (55)

where xk satisfies (52)–(54).

Theorem 7. There is a δ-neighborhood of the point x∗ such that for every choice of the initial
approximation x0 from this neighborhood the series {xk} of the iterative process (55) remains
within the neighborhood and geometrically converges to x∗.

Moreover, if in some neighborhood of x∗ the functions zi(·) ∈ C3, i = 1, n, are such that

|z′′i (ν)| ≥ αi > 0, |z′′′i (ν)| ≤ βi < ∞

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 10 No. 2 2016



NETWORK FLOW ASSIGNMENT 255

then there is a δ-neighborhood of x∗ such that for every choice of the initial approximation
x0 from this neighborhood the series {xk} of the iterative process (55) remains within the
neighborhood and quadratically converges to x∗.

The proof is immediate from Theorems 2 and 3.

Therefore, the nonlinear programming optimization problem (48)–(50) can be solved by the iterative
process (55) which has a high convergence rate under some natural conditions.

CONCLUSION

The key result of this paper is a new method of finding a user equilibrium and a system optimum in
the network of parallel routes with a single origin-destination pair. The method consists in representing
the problems as fixed point problems which, by their nature, allow for an iterative solution. It is proved
that the so-obtained iterative process has high rate of convergence; and, so this approach is very efficient
in practice.
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