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Abstract—Under study are the polytopes of (0, 1)-normalized convex and 1-convex (dual simplex)
n-person TU-games and monotonic big boss games. We solve the characterization problems of the
extreme points of the polytopes of 1-convex games, symmetric convex games, and big boss games
symmetric with respect to the coalition of powerless agents. For the remaining polytopes, some
subsets of extreme points are described.

DOI: 10.1134/S1990478916010166

Keywords: TU-game, balancedness, 1-convexity, convexity, big boss game

INTRODUCTION

The study of the structure of the polyhedral games consisting of imputations satisfying some “fair-
ness” principles and the investigation of the auxiliary polyhedra is an actual direction of the development
of the theory of cooperative games. For example, the extreme points were obtained of the core of convex
games (see [11]) and some other special classes. The barycenters of the cores of these games coincide
with the available singleton solutions—the Shapley values in a convex game [11], the nucleolus in a
1-convex game [7], the τ-value in a big boss game [8], etc. The description of the extreme points of the
Weber polytope (see [2]) made it possible to deduce some additional properties of the core, the Weber
set, and the Shapley value and obtain easy proofs of the already known results.

A game with transferable utility (a TU-game) (N, ν), where N = {1, . . . , n}, ν : 2N → R, and
ν(∅) = 0, can be identified with a vector in the space R

2n−1 whose components are equal to ν(S),
S ∈ 2N \ {∅}. A parametric description of subsets of games forming cones or polytopes in this space
is useful for studying the behavior of their solutions. Moreover, knowing the extreme elements of
a polyhedral set, we can obtain any number of nonrepeating games of the class under consideration.
The game generators are necessary for checking hypotheses, estimating the efficiency of algorithms in
the mean, testing programs, and in developing learning tasks.

A game (N, ν) is called balanced if it has nonempty core. There is an alternative definition that uses
the Bondareva–Shapley condition [1, 10]. In this article, we consider the polytopes of (0, 1)-normalized
TU-games satisfying some simpler conditions for the nonemptiness of the core than the Bondareva–
Shapley condition and study the relationship between these sets. We solve the characterization problem
of the extreme points of the polytopes of 1-convex games and symmetric convex n-person games and
also big boss games symmetric with respect to the coalition of powerless agents. For the remaining
polytopes, we describe subsets of extreme points.
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146 ZINCHENKO

1. THE MAIN NOTIONS

A TU-game (N, ν) is called nonnegative if ν(S) ≥ 0, S ∈ 2N ; N-essential if ν(N) >
∑

i∈N ν(i);
symmetric if S, T ∈ 2N and |S| = |T | imply ν(S) = ν(T ); (0, 1)-normalized if

ν(N) = 1, ν(i) = 0, i ∈ N, (1)

simple if ν(N) = 1 and ν(S) ∈ {0, 1}, S ∈ 2N ; convex if

ν(S) + ν(T ) ≤ ν(S ∩ T ) + ν(S ∪ T ), S, T ∈ 2N ;

and the unanimity game uT of a coalition T if T �= ∅, uT (S) = 1 for S ⊇ T , and uT (S) = 0 otherwise.
Let us identify a game (N, ν) with its characteristic function ν, assume that n ≥ 3, and use the

abbreviations: ν(i) instead of ν({i}), K ∪ i instead of K ∪ {i}, etc. For a coalition S ∈ 2N \ {∅} and
a vector x ∈ R

n, we have

x(S) =
∑

i∈S

xi, x(∅) = 0.

Agents i, j ∈ N are symmetric in a game ν if ν(S ∪ i) = ν(S ∪ j) for all S ⊆ N \ {i, j}. An agent
i ∈ N is called a veto-player if ν(S) = 0 for S �� i, Veto(ν) is the set of the veto-players of a game ν,
mν =

(
mν

i

)
i∈N

is the vector of the contributions mν
i = ν(N) − ν(N \ i) of the players to the grand

coalition. Put

Ω = 2N \ {N, ∅}, Ω[i,j] = {S ∈ 2N | i ≤ |S| ≤ j}, i, j ∈ N, i ≤ j,

X(ν) = {x ∈ R
n | x(N) = ν(N)}.

The sets of imputations and dual imputations and also the core of a game ν are defined as follows:

I(ν) = {x ∈ X(ν) | xi ≥ ν(i), i ∈ N}, I∗(ν) = {x ∈ X(ν) | xi ≤ mν
i , i ∈ N},

C(ν) = {x ∈ X(ν) | x(S) ≥ ν(S), |S| ∈ Ω}.
A balanced game ν is called exact if, for each coalition S ∈ Ω, there exists an imputation x ∈ C(ν) such
that x(S) = ν(S).

The main solutions of a game ν are invariant under strategic equivalence, and every N-essential
game has a unique (0, 1)-form; therefore, we consider the normalized TU-games.

2. CONVEX GAMES

Denote the polytope of (0, 1)-normalized convex n-person games by COn. Every game ν ∈ COn is
nonnegative. The properties of solutions of convex games are well studied. Various characterizations of
a convex game are proposed. All extreme rays of the cone of convex 4-person games are listed in [11,
p. 14]. They correspond to 36 extreme points of the polytope CO4. It is observed in [11] that the extreme
elements of the cones of games of five or more persons are unknown. Show that the set of integer extreme
points ExICOn of the polytope COn consists of 2n − n − 1 unanimity games.

Theorem 1. ExICOn = {uT }T∈Ω[2,n]
.

Proof. Given ν ∈ COn, we have 0 ≤ ν(S) ≤ 1, S ∈ 2N ; i.e., COn is contained in the unit hypercube.
Hence, only simple games can be integer extreme points. All unanimity games are simple and convex.
If |T | ≥ 2 then uT ∈ COn. Consequently,

{uT }T∈Ω[2,n]
⊆ ExICOn.

Take ν ∈ ExICOn. In the expansion

ν =
∑

T∈2N\{∅}
δT uT
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POLYTOPES OF SPECIAL CLASSES 147

of a convex game in a basis of unanimity games, the coefficients δT are nonnegative [12]. From ν(i) = 0,
i ∈ N , and ν(N) = uT (N) = 1, T ∈ 2N \ {∅}, it follows that

∑

T∈Ω[2,n]

δT = 1;

i.e., ν ∈ conv{uT }T∈Ω[2,n]
.

Assuming that ν ∈ ExICOn, we infer that ν coincides with one of the games uT . We thus proved that
{uT }T∈Ω[2,n]

⊇ ExICOn. Theorem 1 is proved.

The extreme points of the polytope SCOn ⊂ COn of symmetric, convex, and (0, 1)-normalized games
are characterized by

Theorem 2. ExSCOn = {νm}n−1
m=1, where

νm(S) =

⎧
⎪⎨

⎪⎩

fm
|S|, S ∈ Ω[2,n−1],

1, |S| = n,

0, |S| = 1,

fm
|S| =

{
0, S ∈ Ω[2,m],
|S|−m
n−m , S ∈ Ω[m+1,n−1].

Proof. For ν ∈ SCOn and S ∈ Ω[2,n−1], put f|S| = ν(S). Consider the polytope Fn, n ≥ 4, defined by
the system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2f2 − f3 ≤ 0,

−f|S| + 2f|S|+1 − f|S|+2 ≤ 0, S ∈ Ω[2,n−3],

−fn−2 + 2fn−1 ≤ 1,

f ∈ R
n−2
+ ,

(2)

which is obtained from the convexity condition (see [12])

ν(S ∪ i) + ν(S ∪ j) ≤ ν(S ∪ {i, j}) + ν(S),

where S ⊆ N \ {i, j}, i, j ∈ N , i �= j. The normalization condition (1) takes into account the assump-
tion of the game symmetry. The matrix A ∈ R

(n−2)×(n−2) of (2) and the inverse matrix are defined by the
formulas

[A]i,j =

⎧
⎪⎨

⎪⎩

2, i = j,

−1, (i = j + 1) ∨ (i = j − 1),
0, otherwise,

[A]−1
i,j =

{
j(n−1−i)

n−1 , i > j,
i(n−1−j)

n−1 , otherwise,

which imply that the system obtained from (2) by replacing the main constraints by equalities has the
unique solution coinciding with f1.

Define the matrices P,R ∈ R
(n−2)×(n−2), where

[P ]i,j =

{
n−1−j
n−1−i , i ≤ j,

0, otherwise,
[R]i,j =

{
j
i , i ≥ j,

0, otherwise.

Transform (2) by using left multiplication by P . We obtain
⎧
⎪⎨

⎪⎩

f2 ≤ 1
n−1 ,

−f|S|−1 + n−|S|+1
n−|S| f|S| ≤ 1

n−|S| , S ∈ Ω[3,n−1],

f ∈ R
n−2
+ .

(3)
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148 ZINCHENKO

Hence, for each m = 2, n − 1, the vector fm is a solution to the system of n − 2 linearly independent
equations

⎧
⎨

⎩

f|S| = 0, S ∈ Ω[2,m],

−f|S|−1 + n−|S|+1
n−|S| f|S| = 1

n−|S| , S ∈ Ω[m+1,n−1],

and satisfies (3). Thus, {fm}n−1
m=1 ⊆ ExFn.

Take f∗ ∈ ExFn and suppose that f∗ �= fm for all m = 1, n − 1. Using the left multiplication by R,
represent (2) as

|S|
|S| − 1

f|S| − f|S|+1 ≤ 0, |S| ∈ Ω[2,n−2], fn−1 ≤ n − 2
n − 1

, f ∈ R
n−2
+ .

If f∗
|S| = 0 for all S ∈ Ω[2,n−1] then f∗ = fn−1; a contradiction. Otherwise (as is seen from the last

system), there exists a coalition K ∈ Ω[2,n−1] such that f∗
|S| = 0 for S ∈ Ω[2,|K|−1] and f∗

|S| > 0 for
S ∈ Ω[|K|,n−1]. If f∗ satisfies the constraints of (3) corresponding to the coalitions S ∈ Ω[|K|,n−1] as

equalities then f∗ = f |K|−1; a contradiction. Hence, f∗ satisfies at least one of these inequalities as
a strict one; i.e.,

−f∗
|T |−1 +

n − |T | + 1
n − |T | f∗

|T | <
1

n − |T |
for some coalition T ∈ Ω[|K|,n−1]. Put

θ =

{
n−|T |

n−|T |+1

(
1

n−|T | + f∗
|T |−1 −

n−|T |+1
n−|T | f∗

|T |
)
, T ∈ Ω[3,n−1],

1
n−1 − f∗

2 , |T | = 2,

β = min
{

θ, min
0≤k≤n−|T |−1

n − |T |
n − |T | − k

f∗
|T |+k

}

and consider ḟ , f̈ ∈ R
n−2
+ , where

ḟ|S| = f̈|S| = f∗
|S|, S ∈ Ω[2,|T |−1],

ḟ|T |+r = f∗
|T |+r +

n − |T | − r

n − |T | β, f̈|T |+r = f∗
|T |+r −

n − |T | − r

n − |T | β,

r = 0, n − |T | − 1. The definition of β implies that ḟ and f̈ are nonnegative and satisfy the inequalities
of (3) corresponding to S ∈ Ω[2,|T |]. For all S ∈ Ω[|T |+r,n−1] and r = 1, n − |T | − 1, we have

−
(

f∗
|T |+r−1 ±

n − |T | − r + 1
n − |T | β

)

+
n − |T | − r + 1

n − |T | − r

(

f∗
|T |+r ±

n − |T | − r

n − |T | β

)

= −f∗
|T |+r−1 +

n − |T | − r + 1
n − |T | − r

f∗
|T |+r.

Consequently, ḟ and f̈ satisfy the remaining inequalities of (3). We have ḟ , f̈ ∈ Fn and f∗ = (ḟ + f̈)/2,
which contradicts the relation f∗ ∈ ExFn. So, ExFn ⊆ {fm}n−1

m=1. Finally, ExFn = {fm}n−1
m=1 for n ≥ 4.

For the polytope F 3 defined by the condition 2f2 ≤ 1, f2 ∈ R+, the equality ExF 3 = {fm}2
m=1 is

obvious. The operator Ψ : R
n−2 → R

2n−1 assigning to each vector f ∈ Fn, n ≥ 3, the game ν, where

ν(S) = Ψ|S|(f) =

⎧
⎪⎨

⎪⎩

f|S|, S ∈ Ω[2,n−1],

1, |S| = n,

0, in the other cases,
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POLYTOPES OF SPECIAL CLASSES 149

Table 1. Extreme points of the polytopes Fn, n ∈ {3, 4, 5}

fm =
(
fm
2 , fm

3 , . . . , fm
n−1

)

n = 3 f2 = (0), f1 = (1/2),

n = 4 f3 = (0, 0), f2 = (0, 1/2), f1 = (1/3, 2/3),

n = 5 f4 = (0, 0, 0), f3 = (0, 0, 1/2), f2 = (0, 1/3, 2/3), f1 = (1/4, 2/4, 3/4)

maps Fn onto SCOn preserving the adjacency of faces. Consequently,

ExSCOn = {Ψ(fm)}n−1
m=1 = {νm}n−1

m=1.

Theorem 2 is proved.

Note that the game ν1 of Theorem 2 satisfies the sufficient condition for coincidence of the core with
the set of dual imputations obtained in [13], and the game νn−1 satisfies the sufficient condition for
coincidence of the core with the set of imputations.

Table 1 contains the vectors that are the preimages of the extreme points of the polytopes of
symmetric, convex, and (0, 1)-normalized three-, four-, and five-person games.

3. BIG BOSS GAMES

In some socioeconomic situations modelled by cooperative games, one of the participants (the
powerful agent) has more opportunities than the others (powerless agents). For example, a market
with one seller and several buyers, a parliament with one big party and several small parties, similar
situations of bankruptcy and investment, and a holding. A coalition of powerless agents is called a union.
The corresponding cooperative games are often big boss games. Several types of those games are
known: nonmonotonic, monotonic, total, generalized, and strong boss games. They all are balanced.
In big boss games, many concepts of solution (the bargaining set, the τ-value, the nucleolus, and the
Shapley value) have special properties [8], and the core is a supercore. A monotonic big boss game
(see [8]) with player k as the boss is defined by the following conditions:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ν(S) ≤ ν(T ), S ⊂ T ⊆ N (monotonicity),

ν(S) = 0, k /∈ S ⊂ N (the boss property),

ν(N) − ν(S) ≥
∑

i∈N\S
mν

i , k ∈ S ⊂ N (the union property).

If we replace monotonicity by nonnegativity of the game ν and the vector mν then we obtain a nonmono-
tonic big boss game that is a particular case of a clan game (see [9]).

The extreme rays of the cones of clan games and nonmonotonic big boss games are simple games [9].
If monotonicity is added then this property no longer holds. Denote the polytope of (0,1)-normalized big
boss games with player k as the boss by MBn

k . The monotonicity implies the nonnegativity of the game
ν ∈ MBn

k . A nonredundant system for MBn
k was obtained in [14]. It was proved that MB3

k and MB4
k are

integer polytopes, and the binary relation ν ≡ ω ↔ C(ν) = C(ω) on MBn
k partitions all integer extreme

points of this polytope into n equivalence classes. In [14], we described some types of integer extreme
points, their Shapley values, and consensus values. We also considered the polytope SMBn

k ⊂ MBn
k of

the games symmetric with respect to the coalition N \ k. It was showed that its integer extreme points
ν ∈ ExNISMBn

k satisfy

ν(S) =
n − 2
n − 1

, S � k, |S| = n − 1,

and there exists a bijection between ExNISMBn
k , n ≥ 4, and the set

Y =
{
y ∈ R

n−3 : yi ∈ {0, 1}, i = 2, n − 2
}
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150 ZINCHENKO

Table 2. Binary codes and the vectors gy

(y2, y3, y4) (0, 0, 0) (0, 1, 0) (1 ,0, 1) (1, 1, 1)
(
gy
2 , gy

3 , gy
4 , gy

5

)
(0, 0, 0, 4/5) (0, 2/5, 2/5, 4/5) (1/5, 1/5, 3/5, 4/5) (1/5, 2/5, 3/5, 4/5)

of binary codes of length n − 3. In [14], we proved the following characterization

Theorem 3. We have:

ExSMBn
k =

( n−1⋃

l=2

νl
)
∪

( ⋃

y∈Y

νy
)
,

where

νl(S) =

{
1, (|S| ≥ l) ∧ (S � k),
0, otherwise,

νy(S) =

⎧
⎪⎨

⎪⎩

1, |S| = n,

0, (S �� k) ∨ (|S| = 1),
gy
|S|, otherwise,

gy
|S|

⎧
⎪⎪⎨

⎪⎪⎩

0, (y2 = 0) ∧ (|S| = 2),

(|S| − 1)/(n − 1), (y|S| = 1) ∨ (|S| = n − 1),

gy
|S|−1

, (y|S| = 0) ∧ (S ∈ Ω[3,n−2]).
∣
∣ExSMBn

k

∣
∣ = 2n−3 + n − 2.

Table 2 contains some of the binary codes and the corresponding vectors gy defining the extreme
points of the polytope SMB6

1.

4. DUAL SIMPLEX (1-CONVEX) GAMES

The dual simplex (1-convex) games (see [7]) appear, for example, in collective insurance [6]. Let
1COn denote the polytope of 1-convex, nonnegative, and (0, 1)-normalized n-person games. It is defined
by (1) and the following conditions: ν ∈ R

2n−1
+ ,

∑

i∈N

ν(N \ i) ≤ n − 1, (4)

∑

i∈N\j
ν(N \ i) ≥ n − 2, j ∈ N, (5)

−ν(S) +
∑

i∈N\S
ν(N \ i) ≥ n − |S| − 1, S ∈ Ω[2,n−2]. (6)

The core of a 1-convex game coincides with the nonempty dual imputations set, i.e., it is a simplex. The
extreme points of the core are easily calculated. Some simple method (see [7]) is known for finding the
τ-value, which is additive in the class of 1-convex games and also coincides with the nucleolus and the
barycenter of the core. In [15], we described the Neumann–Morgenstern solutions to some 1-convex
games. Each of them consists of the core and an complementary polyhedral set.

The polytope 1COn has dimension 2n − 2− n since the values ν(S) for the empty, maximal, and one-
element coalitions are fixed, and the symmetric game ν̂ whose nonfixed components are defined by the
formula

ν̂(S) =

{
(n2 − n − 1)/(n2 − 1), |S| = n − 1,
1/(n + 1), S ∈ Ω[2,n−2],
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belongs to 1COn and satisfies all inequalities in (4)–(6) as strict ones. As far as the author knows, the
structure of 1COn has not been studied.

The following two theorems contain description of the sets of the integer extreme points ExI1COn

and the noninteger extreme points ExNI1COn of this polytope:

Theorem 4. ExI1COn =
⋃

k∈N Ek, where Ek is the set of the games defined by the formula

ν(S) =

⎧
⎪⎨

⎪⎩

0, (S ⊆ N \ k) ∨ (S = {k}),
1, (|S| = n − 1) ∧ (S � k) ∨ (S = N),
0 or 1, otherwise.

(7)

|ExI1COn| = n · 2(2n−1−n−1).

Proof. It follows from (4) and (5) that ν(N \ i) ≤ 1 for all i ∈ N . Reckoning with (6), we have ν(S) ≤ 1,
S ∈ Ω[2,n−2]; i.e., ExI1COn consists of simple games ν ∈ 1COn. The games defined by (7) are simple
and belong to 1COn; hence,

⋃

k∈N

Ek ⊆ ExI1COn.

Let ν ∈ ExI1COn. Then ν is a simple game. If ν(N \ i) = 1 for all i ∈ N then ν does not satisfy (4);
a contradiction. Hence, there exists p ∈ N such that ν(N \ p) = 0. Inequalities (5) corresponding
to j ∈ N \ p imply ν(N \ i) = 1 for all i ∈ N \ p. If S ∈ Ω[2,n−2] and S �� p then the corresponding
inequality in (6) (after inserting the values ν(N \ i), i ∈ N \ S, therein) takes the form ν(S) ≤ 0. For
such S, we have ν(S) = 0. If S ∈ Ω[2,n−2] and S � p then the corresponding inequality in (6) takes the
form ν(S) ≤ 1. For such S, ν(S) can be equal to 0 or 1. So we have ν ∈ Ep; i.e., the inclusion

ExI1COn ⊆
⋃

k∈N

Ek

is proved.

Every game ν ∈ Ek, k ∈ N , has 2n−1 + n + 1 fixed components (for the empty, maximal, one-
element, (n − 1)-element coalitions and coalitions S ∈ Ω[2,n−2] not containing player k). Consequently,
the number of nonfixed components is equal to 2n−1 − n− 1. Nonfixed components can take two values,
and the number of the sets Ek equals n. The second assertion of the theorem is proved.

Theorem 4 is proved.

Corollary 1. ExI1COn consists of nonconvex big boss games. All games ν ∈ Ek have singleton
core

C(ν) = {ek}, ek ∈ R
n, ek

i =

{
1, i = k,

0, i �= k.

Proof. Every game ν ∈ Ek and the corresponding vector mν are nonnegative. The boss property (for
agent k) and the union property are fulfilled. Hence, the integer extreme points of 1COn are big boss
games among which there are monotonic and nonmonotonic games. Take i, j ∈ N , i �= j �= k. By (7),

ν(N \ i) = ν(N \ j) = 1, ν(i, j) = 0.

The inequality

ν(N \ i) + ν(N \ j) ≤ ν(N) + ν(i, j)

fails; i.e., the game ν is nonconvex; C(ν) = conv{ej}j∈Veto(ν) since ν is a simple game. The relation
Veto(ν) = {k} implies C(ν) = {ek}.

Corollary 1 is proved.
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Remark 1. In accordance with the unique core imputation of each game ν belonging to the convex
hull of Ek, all profit of the cooperation goes to agent k (the boss) despite his zero own opportuni-
ties. In a big boss game this imputation, called tyrannic, coincides with the bargaining set, kernel,
τ-value, AL-value, any selector of the core. In this case, the consensus value of the game or the coalition
consensus value look “fairer” (see [5]).

Remark 2. The sets of the integer extreme points of the polytopes of convex and 1-convex games
contain the big boss games. However, by Corollary 1, ExICOn ∩ ExI1COn = ∅.

Theorem 5. ExNI1COn consists of the games ν, where

ν(S) =

{
(|S| − 1)/(n − 1), |S| ∈ {1, n − 1, n},
0 or (|S| − 1)/(n − 1), otherwise.

(8)

|ExNI1COn| = 4(2n−1−n−1).

Proof. Each of the games defined in (8) belongs to 1COn and satisfies the system of 2n − 2− n linearly
independent equations

∑

i∈N\j
ν(N \ i) = n − 2, j ∈ N, ν(S) = 0, S ∈ Ω0 ⊆ Ω[2,n−2],

−ν(S) +
∑

i∈N\S
ν(N \ i) = n − |S| − 1, S ∈ Ω[2,n−2] \ Ω0.

Consequently, all these games are contained in ExNI1COn. Take a game ν ∈ ExNI1COn and suppose
that it coincides with no game defined in (8). If there exists a coalition T ∈ Ω[2,n−2] such that ν(T ) > 0
and ν satisfies inequality (6) corresponding to T as a strict one then the games ν̇ and ν̈, where

ν̇(T ) = ν(T ) + β, ν̇(T ) = ν(T ) − β,

ν̇(S) = ν̈(S) = ν(S), S ⊆ N \ T,

β = min
{

ν(T ),
∑

i∈N\T
ν(N \ i) − ν(T ) − n + |T | + 1

}
,

belong to 1COn and ν = (ν̇ + ν̈)/2; a contradiction. Hence,

ν(S)
(
− ν(S) +

∑

i∈N\S
ν(N \ i) − n + |S| + 1

)
= 0, S ∈ Ω[2,n−2]. (9)

Consider the possible cases:

Case 1 : ν(N \ p) = 0 for some p ∈ N . Then, by (4) and (5), ν(N \ i) = 1 for all i ∈ N \ p. From (9)
we deduce that ν is an integer game; a contradiction.

Case 2 : ν(N \ i) > 0 for all i ∈ N .

Case 2.1 : ν satisfies all inequalities in (5) as equalities. Then ν coincides with one of the games
defined by (8); a contradiction.

Case 2.2 : There exists r ∈ N such that
∑

i∈N\r
ν(N \ i) > n − 2.

System (4)–(6) contains 2n − n − 1 inequalities and 2n − n − 2 variables. Therefore,
∑

i∈N

ν(N \ i) = n − 1,
∑

i∈N\j
ν(N \ i) = n − 2, j ∈ N \ r,

yielding ν(N \ r) = 0. This contradicts the assumption ν(N \ i) > 0, i ∈ N .
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We have proved that ν coincides with one of the games defined by (8). Each of these games has 2 + 2n
fixed components. The number of nonfixed components is equal to 2(2n−1 − n − 1), and each of them
can take two values. The proof of the second claim of the theorem is complete.

Theorem 5 is proved.

Corollary 2. Let ν ∈ ExNI1COn. Then

C(ν) = conv{gr}r∈N , gr
i =

{
1/(n − 1), i �= r,

0, i = r.

Proof. To the games defined by (8), there correspond the identical vectors mν , where mν
i = 1/(n− 1) for

i ∈ N . Inserting them in the known formulas for the extreme points of the dual imputations set I∗(ν) and
reckoning with the equality C(ν) = I∗(ν), we obtain the desired representation of the core. Corollary 2
is proved.

Corollary 3. ExNI1COn contains the symmetric convex game ν1 of Theorem 2. The game ν1 is
an exactification of each ν ∈ ExNI1COn.

Proof. To every balanced game ν, there corresponds a unique exact game νE with the same core as the
initial one,

νE(N) = ν(N), νE(S) = min{x(S) : x ∈ C(ν)}, S ∈ Ω.

For the game ν ∈ ExNI1COn, we have

min
x∈C(ν)

x(S) =
|S| − 1
n − 1

, S ∈ Ω;

i.e., νE = ν1.

Remark 3. The nonconvex balanced TU-games to which there corresponds a convex exact game
have special properties. It follows from Corollary 3 that the lexicore of noninteger extremal games of
the polytope 1COn coincides with their core and the dual imputations set. The AL-values AL(ν) of all
games ν ∈ ExNI1COn are equal to AL(ν1) and also to the Shapley value of the convex game ν1, i.e.,
belong to the core C(ν) = C(ν1). Moreover, all ν ∈ ExNI1COn have identical solutions invariant under
game exactification.

Remark 4. Corollaries 1 and 2 imply that the binary relation ν ≡ ω ↔ C(ν) = C(ω) partitions
Ex1COn into n + 1 cosets; moreover, all noninteger extreme points belong to the same coset.

5. RELATIONS BETWEEN POLYTOPES
The systems defining the polytopes 1COn and MBn

k , k ∈ N , contain inequalities opposite to the
convexity conditions. However, they intersect the polytope of convex games. It is proved in [4] that

COn ∩ 1COn = {ν1},
where ν1 is the symmetric game of Theorem 2. Thus, the only (0, 1)-normalized game can be simulta-
neously 1-convex and convex. By Theorem 4 and Corollary 1, the polytope of 1-convex games intersects
all polytopes of monotonic big boss games:

1COn ∩ MBn
k �= ∅, k ∈ N.

Each unanimity game uT of a two-element coalition T = {i, j} is a clan game with clan T . It is not
hard to check that uT belongs to MBn

i and MBn
j ; i.e., a big boss game can have two bosses. This property

implying that all polytopes of monotonic big boss games intersect pairwise:

MBn
i ∩ MBn

j �= ∅, i, j ∈ N, i �= j,

is not reflected in the literature. The description for the integer points of the polytope MBn
k in [3]

implies that a game ν ∈ MBn
k can have at most two bosses. The convexity of the unanimity games uT ,

T = {i, j}, i �= j, and their membership in the class of big boss games confirms the well-known fact that

COn ∩ MBn
k �= ∅, k ∈ N.
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