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Abstract—Under consideration is the multiobjective version of the maximum cut problem. The
formulas together with the lower and upper exact bounds of stability radii are obtained for solutions
of this problem as well as for the various types of stability of the problem under assumption that the
Hölder metrics are given on the spaces of a disturbing parameter. It is proved that the problem of
finding the radii of every type of stability is intractable unless P=NP.
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INTRODUCTION

Study of stability in multiobjective discrete optimization problems is carried out mainly in the two
directions [10]: qualitative and quantitative.

The qualitative direction focuses on generating the conditions under which the set of the effective
solutions to the problem has some inherent predetermined property that characterizes the problem
stability to small perturbations of the initial data. Several results in this direction correspond to finding
the necessary and sufficient conditions that guarantee various types of stability of the multiobjective
Boolean and integer problems with various optimality principles (for example, see [6]).

The quantitative direction is connected with obtaining some bounds of the acceptable changes in
the input data that preserve certain predetermined properties of optimal solutions (see [4, 9]), and the
development of the algorithms for calculating these bounds (see [8, 12, 13]). The key concept here is the
definition of stability radius which implies the radius of the largest neighborhood of the initial data in the
parameter space of the problem for which every perturbed problem with the set of parameters from this
neighborhood is in some sense “close” to the original problem.

This article belongs to the field of quantitative research. We deal with finding a general approach
to study various types of stability of multiobjective combinatorial problems. This approach allows
us to describe various types of stability and quantitative relationships between them. In this paper,
we introduce some characteristics of the multiple-criteria maximum cut problem which show how two
feasible solutions can be “close” to each other in the sense of stability. Basing on these characteristics,
we formulate statements on stability radii. Also, we established the fact of intractability of the problem
of finding the radii of every type of stability in the case of P�=NP. Note that in [2] and [3] the problem was
under study of stability of solutions of the multiobjective version of the maximum cut problem in the case
of an unlimited region of admissible perturbations.

*E-mail: kuzminkg@mail.ru

527



528 KUZ’MIN

1. STATEMENT OF THE PROBLEM AND MAIN DEFINITIONS

Consider a simple connected marked (n,m)-graph G = (V,E) with the sets of vertices V =
{v1, v2, . . . , vn}, n ≥ 3, and edges E = {e1, e2, . . ., em}, m ≥ 2. Let a partition of V be given into two
nonempty subsets S and S. Then the subset of the edges of G whose endvertices lie in different subsets
is called a cut of the graph and is denoted by (S, S).

If to each edge {vi, vj} ∈ E there is assigned a negative number w{i,j}, called the weight of {vi, vj},
then the single-criterion maximum cut problem of an undirected graph G consists of finding some cut
(S, S) such that the sum of all edge weights is maximized. This problem is easily reduced to a problem
of Boolean quadratic programming. Namely,to each cut (S, S) of G we associate the Boolean vector
x = (x1, x2, . . . , xn)� ∈ E

n = {0, 1}n with the entries

xi =

{
1, if vi ∈ S,

0, if vi ∈ S.

It is clear that, for every vector x ∈ X = En \ {0,1}, there is a cut (S, S) with subsets S = {vi ∈ V |
xi = 1} and S = {vi ∈ V | xi = 0}. In particular, (S, S) corresponds to x = 1− x ∈ X. Thus, each
vector x ∈ X can be naturally considered as a cut of the graph (or a feasible solution to the problem).
In what follows, we will call x ∈ X a cut or a solution using these words as synonyms.

To obtain a multiobjective version of the problem, to each edge {vi, vj} ∈ E we assign the vector(
w1
{i,j}, w

2
{i,j}, . . . , w

s
{i,j}

)�
,

where wk
{i,j} ∈ R+ = [0,+∞) is the weight of {vi, vj} corresponding to the criteria k ∈ Ns. According

to the enumeration of edges of G, from the m columns we form the matrix W =
[
wk
{i,j}

]
∈ R

s×m
+ with

rows Wk ∈ R
m
+ , k ∈ Ns = {1, 2, . . . , s}. It is easy that the quadratic function

fk(x,Wk) =
∑

{vi,vj}∈E

wk
{i,j}(xi − xj)2

on the set of cuts X is the total weight of the cut x by the criterion k. In result, we have the s-criteria
version of the maximum cut problem

Zs(W ) : f(x,W ) =
(
f1(x,W1), f2(x,W2), . . . , fs(x,Ws)

)
→ max

x∈X

consisting in the finding the Pareto set; i.e., the set of effective solutions (the effective cuts) P s(W ) =
{x ∈ X | Dom(x,W ) = ∅}, where

Dom(x,W ) =
{
x′ ∈ X | f(x,W ) ≤ f(x′,W ) & f(x,W ) �= f(x′,W )

}
.

Since f(x,W ) = f(x,W ), we have x ∈ P s(W ) if and only if x ∈ P s(W ); so |P s(W )| is even. Consider-
ing the enumeration of edges of G, we continue to use a simpler method of indexing the elements of W ;
namely, we assume that W = [wkl] ∈ R

s×m
+ . Then Wk = (wk1, wk2, . . . , wkm), k ∈ Ns.

2. VARIOUS TYPES OF STABILITY OF THE PROBLEM AND OF SOLUTIONS

We will study the various types of stability of Problem Zs(W ) and its solutions to perturbations of
parameters (the elements of W ) and the vector function f(x,W ). For this purpose, on the spaces of
criteria R

s and solutions R
m we define, in general, different Hölder norms ‖ · ‖p and ‖ · ‖r respectively,

where p, r ∈ [1,∞]. Let us remind that the Hölder norm ‖ · ‖p of a vector z = (z1, z2, . . . , zd) of
dimension d ∈ N is

‖z‖p =

⎧⎪⎨
⎪⎩

p

√ ∑
i∈Nd

|zi|p, if 1 ≤ p < ∞,

max
i∈Nd

|zi|, if p = ∞.
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On the space of solutions R
m, together with the norm ‖ · ‖r we consider the dual norm ‖ · ‖r′ , where

r and r′ are related by 1/r + 1/r′ = 1. By the norm of a matrix W , we understand the norm of the
vector composed of the norms of rows of W ; i.e., ‖W‖ = ‖(‖W1‖r, ‖W2‖r, . . . , ‖Ws‖r)‖p. We will model
a perturbation of the entries of W by adding to W some perturbing matrix

U ∈ Ω(ε) = {U ∈ R
s×m | W + U ∈ R

s×m
+ & ‖U‖ < ε}, ε > 0.

In addition, we consider the five traditional types of stability of the problem [4, 6]:

Problem Zs(W ) is called T1-stable (strongly stable in terminology of [4]) if

Ξ1 = {ε > 0 | ∀U ∈ Ω(ε) (P s(W ) ∩ P s(W + U) �= ∅)} �= ∅,

T2-stable (strongly quasi-stable) if

Ξ2 = {ε > 0 | ∃x∗ ∈ X ∀U ∈ Ω(ε) (x∗ ∈ P s(W + U))} �= ∅,

T3-stable (stable) if

Ξ3 = {ε > 0 | ∀U ∈ Ω(ε) (P s(W + U) ⊆ P s(W ))} �= ∅,

T4-stable (quasi-stable) if

Ξ4 = {ε > 0 | ∀U ∈ Ω(ε) (P s(W ) ⊆ P s(W + U))} �= ∅,

and T5-stable (stable) if

Ξ5 = {ε > 0 | ∀U ∈ Ω(ε) (P s(W ) = P s(W + U))} �= ∅.

In what follows, we will denote the set of solutions to Problem Zs(W ) which are not efficient (i.e.,
ineffective solutions) by P

s(W ) = X \ P s(W ). Together with stability of the problem, the stability of
solutions is also under study (for instance, see [2, 6, 9]).

An effective solution x0 ∈ P s(W ) is called stable if

ΘP = {ε > 0 | ∀U ∈ Ω(ε) (x0 ∈ P s(W + U))} �= ∅.

An ineffective solution x0 ∈ P
s(W ) is called stable if

ΘP = {ε > 0 | ∀U ∈ Ω(ε) (x0 ∈ P
s(W + U))} �= ∅.

Note that the relationships between the stability of the solutions of a problem of integer linear program-
ming (ILP) and its T2–T5-stability was established in [6]. In this article, we obtain similar relationships
between the radii of stability of Problem Zs(W ).

Assume that sup ∅ = 0. The Ti-stability radius ρi(W ) of Problem Zs(W ) with i ∈ N5, we call
ρi(W ) = supΞi. Let Π be one of the sets P s(W ) or P

s(W ). We call ρ(x0,W ) = supΘΠ the stability
radius of the solution x0 ∈ Π of Problem Zs(W ). By these definitions, the radius of Ti-stability of
a problem is positive if and only if the problem is Ti-stable; and the radius of stability of a solution
is positive if and only if the solution is stable. Note that if P s(W ) = X then the sets Ξ1 and Ξ3 are
unbounded; therefore, ρ1(W ) = ρ3(W ) = +∞. Owing to the definitions of stability radii of solutions
and problems, it is not difficult to understand that the following are true:

ρ1(W ) ≥ max{ρ2(W ), ρ3(W )}, ρ2(W ) = max
x∈P s(W )

ρ(x,W ), (1)

ρ3(W ) = min
x∈P

s
(W )

ρ(x,W ), ρ4(W ) = min
x∈P s(W )

ρ(x,W ), (2)

ρ5(W ) = min
x∈X

ρ(x,W ) = min{ρ3(W ), ρ4(W )}. (3)

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 9 No. 4 2015



530 KUZ’MIN

3. STABILITY RADII OF SOLUTIONS

Let us introduce the characteristics that indicate how “far” the two admitted solutions of Problem
Zs(W ) are separated in the sense of a stability radius. Put

δ�(x, x′,W ) =
(
δ�
1(x, x′,W1), δ�

2(x, x′,W2), . . . , δ�
s(x, x′,Ws)

)
,

where � is either ≥ or >,

δ�
k(x, x′,Wk) = sup{ε > 0 | ∀u ∈ Ωk(ε) (fk(x,Wk + u) � fk(x′,Wk + u))},

Ωk(ε) =
{
u ∈ R

m | Wk + u ∈ R
m
+ & ‖u‖r < ε

}
, k ∈ Ns.

It is obvious that, for every k ∈ Ns,

δ≥k (x, x′,Wk) ≥ δ>
k (x, x′,Wk) ≥ 0. (4)

In Theorem 1 we reveal the specific content of δ�
k(x, x′,Wk), k ∈ Ns, for Problem Zs(W ). The general

idea of this theorem is that the greatest perturbation of the inequality fk(x,Wk) � fk(x′,Wk) occurs when
the absolute values of certain entries of the vector u are as close to each other as possible.

In order to formulate Theorem 1 we introduce some notations: With every solution x ∈ X and every
edge el = {vi, vj} ∈ E we associate the number γl(x) = |xi − xj|. It is easy that γl(x) = γl(x). Given x
and x′, put

σ(x, x′) = (σ1(x, x′), σ2(x, x′), . . . , σm(x, x′))�,

where σl(x, x′) = γl(x) − γl(x′), l ∈ Nm. Given x ∈ X, put N(x) = {l ∈ Nm | γl(x) = 1}. Let

μ(x, x′, αk) = (μ1(x, x′, αk), μ2(x, x′, αk), . . . , μm(x, x′, αk))�,

where αk ≥ 0 and

μl(x, x′, αk) =

{
0, if l ∈ N(x) \ N(x′) and wkl < αk,

σl(x, x′), otherwise.
, l ∈ Nm.

If fk∗(x,Wk∗) > fk∗(x′,Wk∗) for some k∗ ∈ Ns then N(x) �⊆ N(x′). Then the set N(x) \ N(x′)
contains t ≥ 1 elements. For each k ∈ Ns, arrange wkl, l ∈ N(x) \ N(x′), in nondecreasing order:
0 ≤ wkl1 ≤ wkl2 ≤ · · · ≤ wklt . We assume also that wkl0 = 0. Note that if fk(x,Wk) > fk(x′,Wk) then
for all i ∈ Nt we have

wkl0 <
Wkμ(x, x′, wkli)
‖μ(x, x′, wkli)‖1

≤

t∑
j=i

wklj

‖μ(x, x′, wkli)‖1
≤ (t − i + 1)wklt

‖μ(x, x′, wkli)‖1
≤ wklt.

Therefore, we have

Proposition 1. If fk(x,Wk) > fk(x′,Wk) then there exists a unique index q ∈ Nt such that

wklq−1 <
Wkμ(x, x′, wklq)
‖μ(x, x′, wklq)‖1

≤ wklq .

In what follows, we assume that q = q(k) is the index defined by Proposition 1. Note that q can also
be found from the equation

q = arg max
{ ∑t

j=i wklj

‖μ(x, x′, wkli)‖1

∣∣ i ∈ Nt

}
.

Put

gk(x, x′, i) =
Wkμ(x, x′, wklq)
‖μ(x, x′, wklq)‖i
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and let W̃k be the vector with entries w̃kl, l ∈ Nm, where

w̃kl =

{
wkl, if l ∈ N(x) \ N(x′) and wkl < gk(x, x′, 1),
0, otherwise.

Theorem 1. Given x, x′ ∈ X, k ∈ Ns, and r ∈ [1,∞], we have

δ>
k (x, x′,Wk) =

⎧⎨
⎩
‖(gk(x, x′, r′), ‖W̃k‖r)‖r, if fk(x,Wk) > fk(x′,Wk),

0, if fk(x,Wk) ≤ fk(x′,Wk),

δ≥k (x, x′,Wk) =

⎧⎨
⎩

δ>
k (x, x′,Wk), if N(x) �⊇ N(x′),

+∞, if N(x) ⊇ N(x′).

Proof. For brevity, denote ‖(gk(x, x′, r′), ‖W̃k‖r)‖r by ϕ. Let us consider the three possible cases:

Case 1: N(x) ⊇ N(x′). Since fk(x,Wk) ≥ fk(x′,Wk) for every vector Wk ∈ R
m
+ ; therefore,

δ≥k (x, x′,Wk) = +∞.

Moreover, if fk(x,Wk) = fk(x′,Wk) then, obviously, δ>
k (x, x′,Wk) = 0. Thereby, it remains to prove

that δ>
k (x, x′,Wk) = ϕ for fk(x,Wk) > fk(x′,Wk). Note that in this event ϕ is the norm ‖ · ‖r of the

vector composed from the elements wlk, l ∈ N(x) \ N(x′). On the other hand, the vector u∗ ∈ R
m with

the entries

u∗
l =

{
−wlk, if l ∈ N(x) \ N(x′),
0, otherwise

has minimal norm among all vectors u that generate the equality fk(x,Wk + u) = fk(x′,Wk + u), and
this norm is equal to ϕ. Consequently, δ>

k (x, x′,Wk) = ϕ if fk(x,Wk) > fk(x′,Wk).

Case 2: N(x) �⊇ N(x′) and fk(x,Wk) ≤ fk(x′,Wk). Then, obviously, δ>
k (x, x′,Wk) = 0; and if

fk(x,Wk) < fk(x′,Wk) then δ≥k (x, x′,Wk) = 0. So, we need to show that for fk(x,Wk) = fk(x′,Wk)
we have δ≥k (x, x′,Wk) = 0.

Let 0 < λ < ε and l0 ∈ N(x′) \ N(x). Define the entries u∗
l , l ∈ Nm, of u∗ as

u∗
l =

{
λ, if l = l0,

0, otherwise.

Then ‖u∗‖r = λ, u∗ ∈ Ωk(ε), and

fk(x,Wk + u∗) = fk(x,Wk) = fk(x′,Wk) < fk(x′,Wk) + λ = fk(x′,Wk + u∗).

Hence, for all ε > 0, there is a perturbing vector u∗ ∈ Ωk(ε) such that fk(x,Wk + u∗) < fk(x′,Wk + u∗);
i.e., δ≥k (x, x′,Wk) = 0.

Case 3: N(x) �⊇ N(x′) and fk(x,Wk) > fk(x′,Wk). Note that in this case the sets N(x) \N(x′) and
N(x′) \ N(x) are nonempty. Using this, prove that δ>

k (x, x′,Wk) = δ≥k (x, x′,Wk) = ϕ.
Consider the perturbing vector u∗ = u∗(λ) ∈ R

m with entries u∗
l (λ), l ∈ Nm, such that

u∗
l (λ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−wkl, if l ∈ N(x) \ N(x′) and wkl < gk(x, x′, 1),
−gk(x, x′, 1), if l ∈ N(x) \ N(x′) and wkl ≥ gk(x, x′, 1),
gk(x, x′, 1) + λ, if l ∈ N(x′) \ N(x),
0, otherwise.
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532 KUZ’MIN

Then, given λ ≥ 0, we obtain

Wk + u∗(λ) ∈ R
m
+ , (5)

fk(x,Wk + u∗) − fk(x′,Wk + u∗) = fk(x,Wk) − fk(x′,Wk)

−
q−1∑
i=0

wkli − gk(x, x′, 1)‖μ(x, x′, wklq)‖1 − λ|N(x′) \ N(x)|

= Wkμ(x, x′, wklq) − gk(x, x′, 1)‖μ(x, x′, wklq)‖1 − λ|N(x′) \ N(x)|.
Therefore, if λ = 0 then fk(x,Wk + u∗) = fk(x′,Wk + u∗); and, by N(x′) \ N(x) �= ∅, for all λ > 0, we
have

fk(x,Wk + u∗) < fk(x′,Wk + u∗). (6)

On the other hand, since gk(x, x′, 1)‖μ(x, x′, wklq)‖r = gk(x, x′, r′), we find

‖u∗(0)‖r =
∥∥(

gk(x, x′, 1)‖μ(x, x′, wklq)‖r, ‖W̃k‖r

)∥∥
r

= ϕ.

Moreover, it is clear that, for all ε > ϕ, there is λ∗ > 0 such that u∗(λ∗) ∈ Ωk(ε).
Hence, taking into account (5) and (6), we conclude that for every ε > ϕ there exists u∗ ∈ Ωk(ε)

generating the inequality fk(x,Wk + u∗) < fk(x′,Wk + u∗).

Consequently, δ≥k (x, x′,Wk) ≤ ϕ, which, by (4), implies

δ>
k (x, x′,Wk) ≤ δ≥k (x, x′,Wk) ≤ ϕ.

It remains to show that δ≥k (x, x′,Wk) ≥ δ>
k (x, x′,Wk) ≥ ϕ. For this purpose, owing to (4), it suffices

to prove that δ>
k (x, x′,Wk) ≥ ϕ. Since for r = 1 (i.e., in the case of metrics ‖ · ‖1 on R

m) we have

ϕ = ‖(Wkμ(x, x′, wklq), ‖W̃k‖1)‖1 = fk(x,Wk) − fk(x′,Wk);

therefore, for every u ∈ Ωk(ϕ) we infer that

fk(x,Wk + u) − fk(x′,Wk + u) = fk(x,Wk) − fk(x′,Wk) + fk(x, u) − fk(x′, u)

≥ fk(x,Wk) − fk(x′,Wk) − ‖u‖1 > fk(x,Wk) − fk(x′,Wk) − ϕ = 0.

Consequently, δ>
k (x, x′,Wk) ≥ ϕ for r = 1.

We now prove the inequality δ>
k (x, x′,Wk) ≥ ϕ for r ∈ (1,∞]. Suppose the contrary. Among all

u′ ∈ Ωk(ϕ) satisfying fk(x,Wk + u′) ≤ fk(x′,Wk + u′), we choose u0 having the minimal norm.
Moreover, without loss of generality, we assume that u0

l ≤ 0 for l ∈ N(x) \ N(x′), while u0
l ≥ 0 for

l ∈ N(x′) \N(x); since, otherwise, it can be replaced by the elements of opposite signs, preserving both
the vector norm and the inequality fk(x,Wk + u0) ≤ fk(x′,Wk + u0).

Let ũ0 be the vector with entries u0
li

, i ∈ {0, 1, . . . , q − 1}, where u0
l0

equals zero. Let û0 be ob-
tained of the vector u0 whose all entries u0

li
with i ∈ Nq−1 are replaced with zeros. Then ‖u0‖r =

‖(‖û0‖r, ‖ũ0‖r)‖r , and therefore, since ‖u0‖r < ϕ, at least one of the inequalities ‖û0‖r < gk(x, x′, r′)
or ‖ũ0‖r < ‖W̃k‖r has to be true. However, the first one is not available. Moreover, we have

‖û0‖r > gk(x, x′, r′) (7)

because otherwise, by the Hölder inequality, we deduce

fk(x,Wk + u0) − fk(x′,Wk + u0) =
q−1∑
i=0

(
wkli + u0

li

)
+ (Wk + û0)μ(x, x′, wklq)

≥
q−1∑
i=0

(
wkli + u0

li

)
+ Wkμ(x, x′, wklq) − ‖û0‖r‖μ(x, x′, wklq)‖r′ > 0.
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Inequality (7) indicates that there is some h ∈ Nq−1 �= ∅ such that u0
lh

> −wklh ; and, among the entries
of û0, there is at least one with the absolute value greater than gk(x, x′, 1). Let M be the set of the entries
of û0 with the maximum absolute value. To each of these elements, we add or subtract some α > 0
so that their absolute values decrease; however, they still belong to M . Then u0

lh
reduces by β, where

0 < β ≤ wklh + u0
lh

. Hence, we can construct the vector u∗ = u∗(α, β). Since wklh < gk(x, x′, 1), we
can choose α and β so that

‖u0‖r > ‖u∗‖r, fk(x, u0) − fk(x′, u0) ≥ fk(x, u∗) − fk(x′, u∗).

This means that u∗ satisfies fk(x,Wk + u∗) ≤ fk(x′,Wk + u∗) and has a norm less than that of u0. This
contradiction has convinced us of the validity of inequality δ>

k (x, x′,Wk) ≥ ϕ for r ∈ (1,∞].
The proof of Theorem 1 is complete.

Given some real y ∈ R, put [y]+ = max{0, y}.
Note that in some cases, the formula of δ>

k (x, x′,Wk) is essentially simplified. In particular, the two
corollaries are valid:

Corollary 1. If each row Wk, k ∈ Ns, of the matrix W consists of equal numbers then

δ>
k (x, x′,Wk) =

[Wkσ(x, x′)]+

‖σ(x, x′)‖r′
.

Corollary 2. If R
m is endowed with the norm ‖ · ‖1 then, for every k ∈ Ns, we have

δ>
k (x, x′,Wk) = [Wkσ(x, x′)]+.

The connection between the values δ�
k(x, x0,Wk), k ∈ Ns, and the stability radii of the solutions of

Problem Zs(W ) is described by the following easy verifiable statements:

Proposition 2. Let x0 ∈ P s(W ). Then

ρ(x0,W ) = min
x∈X\{x0,x0}

‖δ≥(x0, x,W )‖p.

Proposition 3. Let x0 ∈ P
s(W ). Then

ρ(x0,W ) ≥ max
x∈Dom(x0,W )

min
{

min
k∈Ns

δ≥k (x, x0,Wk), ‖δ>(x, x0,W )‖p

}
.

We have to note that, from a theoretical point of view, the determination of the stability radius of an
effective solution is simpler than in the case of an ineffective solution. This is caused by the fact that for
loss of optimality of an effective solution of the original problem Zs(W ) it suffices to have one dominant
solution of the perturbed problem Zs(W + U). But an ineffective solution of Zs(W ) becomes effective
only if all its dominating solutions ceased to dominate in the perturbed problem Zs(W + U).

Of course, this remark is true not only for the problem under study, but also for every general
multiobjective optimization problem with a Pareto optimality principle. That is why most results on
determination of the stability radius of the effective solutions (as well as the T2- and T4-stability of
a problem) are exact formulas (for instance, see [2] and [9]), while the results on the T3-stability of the
problem have only achievable estimates (for example, see [3] and [4]).

It is obvious that the effective solution x0 has the infinite radius of stability if and only if N(x0) ⊇ N(x)
for all x ∈ X; i.e., the cut x0 contains all edges of the graph. It means that the infinite radius of stability
can only be in one pair of effective solutions: x0 and x0, and this is possible only in a bipartite graph. The
ineffective solutions always have finite radius of stability. Moreover, we have

Theorem 2. Let x0 ∈ P s(W ) and let at least one solution x∗ ∈ X be such that N(x0) �⊇ N(x∗).
Then ρ(x0,W ) ≤ ‖W‖.
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Let x0 ∈ P
s(W ). Then ρ(x0,W ) ≤ ‖W‖. Moreover, if for every solution x ∈ Dom(x0,W ) we

have N(x0) �⊇ N(x) then

ρ(x0,W ) ≤ min
k∈Ns

‖Wk‖r.

Proof. Consider x0 ∈ P s(W ). Since N(x0) �⊇ N(x∗), there exists some l∗ ∈ N(x∗) \N(x0). Therefore,
it is possible to construct the perturbing matrix U0 = U0(λ) with the entries

u0
kl =

{
λ − wkl, if l = l∗, k ∈ Ns,

−wkl, if l ∈ Nm \ {l∗}, k ∈ Ns.

Then, for every λ > 0, we have

fk

(
x0,Wk + U0

k

)
= 0 < λ = fk

(
x∗,Wk + U0

k

)
for each index k ∈ Ns. These show that x0 �∈ P s(W + U0). It is also easy that, for every ε > ‖W‖, we can
find a positive λ∗ such that U∗(λ∗) ∈ Ω(ε). Thus, ρ(x0,W ) ≤ ‖W‖.

Let x0 ∈ P
s(W ). The inequality ρ(x0,W ) ≤ ‖W‖ is easy to check if we take −W as the disturbing

matrix U . It remains to consider the case when, given an arbitrary solution x ∈ Dom(x0,W ), we show
that N(x0) �⊇ N(x).

Let k∗ ∈ Ns be the index at which the minimum of ‖Wk‖r is attained. Let us construct the perturbing
matrix U∗ = U∗(λ) with entries

u∗
kl =

⎧⎪⎨
⎪⎩
−wkl + λ, if l ∈ N(x0), k = k∗,

−wkl, if l ∈ Nm \ N(x0), k = k∗,

0, otherwise.

Then x0 ∈ P s(W + U∗(λ)) for every λ > 0. Moreover, it is obvious that, for every

ε > min
k∈Ns

‖Wk‖r,

there is some positive λ∗ such that U∗(λ∗) ∈ Ω(ε). Consequently,

ρ(x0,W ) ≤ min
k∈Ns

‖Wk‖r.

The proof of Theorem 2 is complete.

4. STABILITY RADII OF THE PROBLEM

Using Theorems 1 and 2, Propositions 2 and 3, together with (1) and (2), it is easy to obtain the
following formula and estimates for the radii of T1–T5-stability of Problem Zs(W ):

Theorem 3. Let P s(W ) �= X. Then

ρ1(W ) ≥ max
x∈P s(W )

min
x′∈P

s
(W )

‖δ≥(x, x′,W )‖p,

ρ1(W ) ≥ min
x∈P

s
(W )

max
x′∈Dom(x,W )

min
k∈Ns

δ≥k (x′, x,Wk).

Wherein ρ1(W ) = +∞ if and only if for every x ∈ P
s(W ) there exists x∗ ∈ P s(W ) such that

N(x∗) ⊃ N(x). Otherwise, ρ1(W ) ≤ ‖W‖.

Theorem 4. We have

ρ2(W ) = max
x∈P s(W )

min
x′∈X\{x,x}

‖δ≥(x, x′,W )‖p.

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 9 No. 4 2015



A GENERAL APPROACH TO THE CALCULATION OF STABILITY RADII 535

Moreover, ρ2(W ) = +∞ if and only if there exists x0 ∈ P s(W ) such that N(x0) ⊇ N(x) for all
x ∈ X. Otherwise, ρ2(W ) ≤ ‖W‖.

Theorem 5. Let P s(W ) �= X. Then ρ3(W ) ≤ ‖W‖ and

ρ3(W ) ≥ min
x∈P

s
(W )

max
x′∈Dom(x,W )

min
{

min
k∈Ns

δ≥k (x′, x,Wk), ‖δ>(x′, x,W )‖p

}
.

Moreover,

ρ3(W ) ≤ min
k∈Ns

‖Wk‖r

if and only if there is a solution x∗ ∈ P
s(W ) such that N(x) �⊇ N(x∗) for all x ∈ Dom(x∗,W ).

Theorem 6. We have

ρ4(W ) = min
x∈P s(W )

min
x′∈X\{x,x}

‖δ≥(x, x′,W )‖p.

Moreover, ρ4(W ) = +∞ if and only if P s(W ) = {x0, x0} and N(x0) ⊇ N(x) for all x ∈ X. Other-
wise, ρ4(W ) ≤ ‖W‖.

Note that, by (3) and Theorems 5 and 6, it is also easy to obtain some estimates for the radius of
T5-stability of Problem Zs(W ).

Note also that, in Theorems 3 and 5, instead of Dom(x,W ) we can use Dom(x,W ) ∩ P s(W ), which
does not change the values of the lower bounds for the corresponding radii of stability, but may decrease
combinatorial exhaustion in their calculation.

If P s(W ) = {x0, x0} then we can specify the exact formulas for all types of stability of Prob-
lem Zs(W ). Since in this case the radii of T1-, T2-, and T4-stability are equal; therefore, by Theorem 6,
we have

Corollary 3. If P s(W ) = {x0, x0} then

ρ1(W ) = ρ2(W ) = ρ4(W ) = ρ(x0,W ) = min
x∈X\{x0,x0}

‖δ≥(x0, x,W )‖p.

Corollary 4. If P s(W ) = {x0, x0} then

ρ3(W ) = ρ5(W ) = min
x∈X\{x0,x0}

min
{

min
k∈Ns

δ≥k (x0, x,Wk), ‖δ>(x0, x,W )‖p

}
.

Proof. For brevity, denote the right-hand side of the formula of Corollary 4 by ψ. By the definitions of
δ>(x0, x,W ) and δ≥k (x0, x,Wk), we have f(x,W + U) �= f(x0,W + U) for every x ∈ X \ {x0, x0} and
every perturbing matrix U ∈ Ω(ψ); and the inequality fk(x,Wk + Uk) > fk(x0,Wk + Uk) is false for any
k ∈ Ns. Therefore, ρ3(W ) ≤ ψ, which, by Theorem 5, gives ρ3(W ) = ψ.

On the other hand, owing to Corollary 3, it is easy that ρ4(W ) ≥ ψ. Thereby, it follows from (3) that
ρ3(W ) = ρ5(W ). This completes the proof.

In the single-criterion case, Theorems 4–6 turn out into the following propositions:

Corollary 5. Let s = 1. If there exists the solution x0 ∈ P 1(W ) such that for every x ∈ P 1(W )
the inclusion N(x0) ⊇ N(x) is true then

0 < ρ2(W ) = ρ(x0,W ) = min
x∈P 1(W )

δ≥1 (x0, x,W1).

Otherwise, ρ2(W ) = 0.

Corollary 6. Let s = 1 and P 1(W ) �= X. Then

0 < min
x∈P 1(W )

max
x′∈P 1(W )

δ>
1 (x′, x,W1) ≤ ρ3(W ) ≤ ‖W1‖r.
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Corollary 7. Let s = 1. If P 1(W ) = {x0, x0} then

0 < ρ4(W ) = ρ(x0,W ) = min
x∈X\{x0,x0}

δ≥1 (x0, x,W1).

Otherwise, ρ4(W ) = 0.

By Corollaries 6 and 7, we conclude that ρ3(W ) ≤ ρ4(W ) for P 1(W ) = {x0, x0}. Therefore, we have

Corollary 8. Let s = 1. If P 1(W ) = {x0, x0} then

0 < ρ5(W ) = min
x∈X\{x0,x0}

δ>
1 (x0, x,W1) ≤ ‖W1‖r.

Otherwise, ρ5(W ) = 0.

Let us note that all results of Sections 3 and 4 are valid also for Problem Zs
mod(W ), where W ∈ R

s×m,
with the set of perturbation matrices

Ω(ε) =
{
U ∈ R

s×m | ‖U‖ < ε
}

and the particular criteria of the form MAXSUM MODUL:

fk(x,Wk) =
∑

l∈Nm

|wkl|xl → max
x∈X

, k ∈ Ns.

5. COMPLEXITY OF CALCULATION OF STABILITY RADII

Following [1], we call a problem intractable if there is no polynomial algorithm of solution. In [13], the
single-criterion problem was considered of finding some acceptable changes of the edge weights under
which the optimal solution selected in advance remains optimal. It was proved that, for a wide class
of combinatorial problems assuming P �=NP, it is impossible to construct a polynomial-time algorithm
for finding these acceptable changes. We show that, despite the fact that the stability radii give less
information about the tolerance of the edges, the problem of their finding is intractable for P�=NP either.

Let Z1(1) be some single-criterion problem of searching the maximum cut in the graph G whose
each edge has unit weight. It is well known that Problem Z1(1) is NP-hard. Moreover, in [11], the NP-
completeness is found of Problem Z1

in(x,1) inverse to Z1(1) and consisting in verification whether this
cut x be maximal.

The following algorithm shows how we can find a solution of Z1(1) by calculating the stability radii of
optimal solutions for the sequence that consists of at most m2 Problems Z1(W ). During the execution
of the algorithm, the edge weights will be modified until each of them becomes equal 1. Let us denote
this variable vector of weights by w.

Algorithm 1. The reduction of Problem Z1(1) to the problem of finding the stability radius of the
optimal solution.

Step 0. Choose a cut x0 such that

∀x ∈ X (N(x) �⊃ N(x0)). (8)

If N(x0) = Nm then Problem Z1(1) is solved and x0 is its maximum cut.

Step 1. Put the weights of the edges of the cut x0 equal to 1, and the weight of the other edges, 0 (in
this case, ρ(x0, w) will be positive).

Step 2. If ρ(x0, w) > 0 and there is at least one edge of zero weight in Problem Z1(w) then pass to
Step 3; otherwise, to Step 4.

Step 3. Choose arbitrarily an edge with zero weight and give it the weight equal to 1. Pass to Step 2.

Step 4. If there is no edges with zero weight in Problem Z1(w) then Z1(1) is solved and x0 is
a maximum cut.
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Step 5. Choose arbitrarily an edge e with zero weight. Verify whether increasing the weight of e to 1
implies the optimality loss of the cut x0 or not. If yes, then pass to Step 6. If not, then put the weight of e
equal to 1 and go to Step 4.

Step 6. Assuming that the edge e has weight 1, we find a new maximum cut x∗. Then the weight of
all edges of this cut (including the edge e) put equal to 1. Renaming x∗ by x0, pass to Step 2.

The estimates for the stability radii in Propositions 2 and 3 allow us to conclude that if the edges of the
graph have weights 0 or 1 then any positive stability radius is at least 1/m for any norm ‖ · ‖r , r ∈ [1,∞].
This we will use in the proof of Theorems 7 and 8 without further notice.

Theorem 7. For every norm ‖ · ‖r on R
m, Algorithm 1 solves Problem Z1(1) with O(m2ζ)

operations, where O(ζ) is the complexity of calculating the stability radii of an optimal solution.

Proof. First of all, we verify that Step 0 can be performed in every Problem Z1(1); in other words, it is
always possible to choose some cut x0 satisfying (8). To this end, select in G a spanning tree T and paint
all its tops with white and black colors. Let each vertex obtaining odd label by searching in the width be
painted white, and each vertex with even label, with black. Such a partition of the graph vertices defines
the cut x0 that contains all edges of T (among them). Moreover, each cut x ∈ X \ {x0, x0} defines
repainting of the tops such that at least one edge e of the tree T is incident to the two vertices of the
same color. This means that e is not included into the cut x. Thus, the cut x0 is not included in any other
cut as proper subset; i.e., x0 meets (8). At that, Step 0 can be done in O(m) operations.

Implementation of Steps 1–4 does not cause difficulties. Let us show now how we can perform
Step 5. Let w0 denote the vector of weights of the edges which are formed by time of Step 5 execution;
and let w1 be the vector w0 in which we assume the weight of the edge e to be 1. At the same time
ρ(x0, w0) = 0. We have to check whether the cut x0 ∈ P 1(w0) is maximal in Problem Z1(w1). Since
Step 3 was still performed at least once, there is m′ ≥ 1 edges with weight 1 not belonging to x0. We
decrease the weights of all such edges by 1/2m. Then, since x0 satisfies (8); by Proposition 2 the stability
radius ρ(x0, w) is positive. Calculate ρ(x0, w). Then we will increase the weight of e by 1/2m step by step
until the stability radius be reduced or the weight of e be greater than m′/2m.

Consider the two possible cases: Note that, since ρ(x0, w0) = 0, by Proposition 2, the set of
equivalent solutions Q(x0, w0) = {x ∈ X | f(x0, w0) = f(x,w0)} includes some cut different from x0

and x0.

Case 1: The weight of e became equal to m′/2m, and the stability radius did not change. Then the
edge e does not belong to any cut of Q(x0, w0). Therefore, the increase of the weight of e to 1 will preserve
the inequality f(x0, w) ≥ f(x,w) for all x ∈ X. Thus, the cut x0 is still maximal in Problem Z1(w1). Put
w equal to w1 and go to Step 4.

Case 2: The weight of e became equal to m∗/2m ≤ m′/2m, and the stability radius decreased.
Then e belongs to at least one cut of Q(x0, w0) \ {x0, x0}. Hence, every increase of the weight of e
in Problem Z1(w0) results in the optimality loss of x0. Go to Step 6 without any modification of w.

It is easy that Step 5 can be done in O(mζ) operations.

Finally, let us discuss the execution of Step 6. If we came to this step then the cut x0 is not maximal
in Problem Z1(w1) anymore. Show how we can find a new maximal cut x∗ in this event. Even so, we
will keep the optimality of x0.

Attach the weight (m∗ − 1)/2m to e and keep the weights of all other edges the same as after
execution of Step 5. Since e belongs to every maximal cut in Problem Z1(w1), we include e in x∗.
Thereafter, we will check each of the edges e′ ∈ E \ {e} whether it belongs to x∗. To this end, we will use
the next property of Problem Z1(w): Let the edge e′ belong to maximal cut in Problem Z1(w1). Then
a sufficiently small increase of its weight implies some decrease of the stability radius ρ(x0, w) if e′ did
not belong to x0. Otherwise, the stability radius ρ(x0, w) remains the same.
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First, we check the edges that do not belong to x0. If the stability radius decreases under increasing an
edge weight by 1/2m2 then we include this edge into x∗ and keep its weight increased; and if the stability
radius does not change then we return the initial weight to the edge and do not include it into x∗.

Next, we check the edges of the cut x0. If the stability radius does not change under increasing an
edge weight by 1/2m2 then we include this edge into x∗ and keep its weight increased; and if the stability
radius increases then we return the initial weight to the edge and do not include it into x∗.

It is easy to understand that the cut x∗, obtained in result of checking all edges from E \ {e}, is
maximal in Problem Z1(w1) and it is not included in any other cut as a proper subset. Therefore, we can
use x∗ further as the cut x0 in Algorithm 1. Obviously, Step 6 can be done in O(mζ) operations.

When all edges gain weight 1, we will find a maximal cut in Problem Z1(1). Since at least one of
the edges gains weight 1 under transition from the step with a higher number to the step with a lower
number, such a transition will be done at most m times in the process of Algorithm 1 execution. It is easy
to see that the most time-consuming stages of Algorithm 1 are Steps 5 and 6 of complexity O(mζ).
Thus, Algorithm 1 has complexity O(m2ζ).

The proof of Theorem 7 is complete.

Corollary 9. If P �=NP then the problems of finding the radii of T2-, T4-, and T5-stability of the
single-criterion Problem Z1(W ) are intractable.

Indeed, by Theorem 7, to prove Corollary 9 we have only to ascertain that in Algorithm 1 we can use
ρ2(w), ρ4(w), and ρ5(w) instead of ρ(x0, w). Obviously, the cut x0 meets the condition (8) and none of
the maximal cuts x ∈ P 1(w) \ {x0, x0} is included into x0. Therefore, owing to Corollaries 5, 7, and 8,
we conclude that

ρ(x0, w) = ρ2(w) = ρ4(w) = ρ5(w).

The next algorithm shows how we can solve Problem Z1
in(x,1) by finding the stability radii of the

nonoptimal solutions for a series of at most m Problems Z1(W ). Over the execution of the algorithm,
the weights of the edges will be modified until each of them becomes equal to 1. As before, we will denote
this varying vector of weights by w.

Algorithm 2. Reduction of Problem Z1
in(x,1) to the problem of finding a stability radius of a nonop-

timal solution.
Step 0. If cut x0 includes all edges of the graph then x0 is maximal. Stop.

Step 1. To each edge of x0 we attach the zero weight, while to each of the other edges, the weight 1.

Step 2. If there is at least one edge with zero weight in Problem Z1
in(x,w) then go to Step 3.

Otherwise, x0 is nonoptimal.

Step 3. Choose an edge e of zero weight and attach the weight 1 − 1/2m to e. If ρ(x0, w) ≤ 1/2m
then x0 is the optimal cut. If ρ(x0, w) > 1/2m then go to Step 4.

Step 4. Attach the weight 1 to e and go to Step 2.

Theorem 8. Given an arbitrary norm ‖ · ‖r on R
m, Algorithm 2 solves Problem Z1

in(x,1) in
O(mη) operations, where O(mη) is the complexity of finding the stability radius of a nonoptimal
solution.

Proof. Skip the trivial case when x0 includes all edges of the graph and assume that, running
Algorithm 2, we come to Step 3. Let w∗ denote the vector of the edge weights obtained if the weight
of the edge e is 1 − 1/2m and let w1 be the vector w∗ in which the weight of e is 1.

It is easy that x0 cannot be maximal in Problem Z1
in(x,w∗). However, if x0 becomes maximal

in Z1
in(x,w1) then its stability radius is at most 1/2m since, otherwise, the increase of the weight of e to 1

would keep the cut x0 nonoptimal. Thus, x0 ∈ P 1(w1) if and only if ρ(x0, w∗) ≤ 1/2m holds at Step 3.
Moreover, obviously, further change of the zero weights to the unit values does not lead to the optimality
loss of the cut x0. Hence, if ρ(x0, w∗) ≤ 1/2m then x0 is the maximal cut in Problem Z1

in(x,1).
It is clear that Step 3 can be done in O(η) operations, and Algorithm 2 itself, in O(mη) operations.
The proof of Theorem 8 is complete.
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Note that, by analogy with Algorithm 2, it is rather easy to construct an algorithm for reducing
Problem Z1

in(x,1) to the problem of finding the radius of T1- or T3-stability.
Summing up all the above, we conclude that, under assumption of P�=NP, the problem of finding

some of the stability radii of Problem Z1(W ) on maximal cut of a graph is intractable. The same can be
proposed for the s-criteria Problem Zs(W ) (s ≥ 2) since finding the stability radii of Zs(W ) is not easier
than in the case of the single-criterion Z1(W ). In particular, given an arbitrary stability radius, it is easy
to provide a bijective correspondence between the single-criterion and multi-criteria problems such that
the information on the stability radius of the multi-objective problem guarantees the information on the
stability radius of the single-criterion problem as well. For instance, given a single-criterion problem,
if we add to it arbitrary many criteria with all edges of zero weights then the sets of optimal solutions
and the radii ρ1(W ), ρ2(W ), ρ4(W ), and the stability radius ρ(x0,W ) of the optimal solution x0 for the
single-criterion and multiple-criteria problems coincide.

Thus, for the single-criterion and multiple-criteria problems of a maximal cut of a graph, it is highly
improbable that any polynomial algorithm exists for computing an arbitrary stability radius. Therefore,
the prospective directions for constructing some efficient algorithms computing the stability radius of
Problem Zs(W ), s ≥ 1, could be approximate probabilistic and genetic algorithms. Some progress is
also possible by reduction of the definition of stability radius by analogy to [5, 7], for example.
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