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Abstract—Under study is some boundary value problem for stationary equations of magneto-
hydrodynamics of a viscous heat-conducting liquid considered together with the Dirichlet condition
for the velocity and mixed boundary conditions for the electromagnetic field and temperature. Some
sufficient conditions are established on the initial data providing the global solvability of this problem
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1. STATEMENT OF A MIXED BOUNDARY VALUE PROBLEM

Simulation of the flows of an electrically conducting liquid in real technical devices leads often to the
necessity of studying the magnetohydrodynamic processes in the domains with the boundaries whose
different parts have different electrophysical properties. A typical situation is the case when one part of
the boundary of some technical device is perfectly conducting, whereas the other is a dielectric. Studying
the flows of a conductive liquid in the domains with boundaries of this type leads to the necessity of
investigating the boundary value problems for the equations of magnetohydrodynamics (MHD) under
mixed boundary conditions for the electromagnetic field. This type of a mixed boundary value problem
for a stationary model of MHD of a viscous heat-conducting liquid is considered in this paper.

Let Ω be a bounded domain in R
3 with the boundary Σ = ∂Ω consisting of two parts Σν and Στ

or ΣD and ΣN . In Ω, we consider a boundary value problem for stationary equations of magnetic
hydrodynamics [1]

νΔu + (u · ∇)u + ∇p − κ rotH × H = f − βTG, divu = 0 in Ω, (1)

ν1rotH − E + κ H × u = ν1j, divH = 0, rotE = 0 in Ω, (2)

−λΔT + u · ∇T = f in Ω, (3)

which describe the motion of an incompressible viscous heat-conducting and electrically conducting
liquid in Ω under the following boundary conditions:

u|∂Ω = g, H · n|Στ = 0, H × n|Σν = 0, E × n|Στ = 0, (4)

T |ΣD
= 0, λ

(
∂T

∂n
+ αT

)∣∣∣∣
ΣN

= χ. (5)

Here u is the velocity vector; H is the magnetic field vector; E = E′/ρ0 and p = P/ρ0, where E′ is
the electric field vector; P is the pressure; ρ0 = const is the density of the liquid; T is the temperature,
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κ = μ/ρ0; ν1 = 1/ρ0σ = κνm, σ, μ, ν, νm, and λ are the constant coefficients of electrical conductivity,
magnetic permeability, kinematic and magnetic viscosities, and heat conductivity, respectively; n is the
unit outer normal of ∂Ω; f is the volume density of external forces; j is the density of external currents;
f is the density of heat sources; G is the acceleration of gravity; β is the variable coefficient of thermal
expansion; g is a function on the boundary of Σ; while χ and α are functions on ΣN .

Below we will refer to the problem (1)–(5) for given functions f , j, f , g, α, and χ as Problem I. Note
that all quantities in (1)–(5) are dimensional, and their physical dimensions are written in the units of
the International System of Units. Physically, the boundary conditions for the electromagnetic field in (4)
correspond to a situation where a part Στ of the boundary ∂Ω is a perfect conductor, whereas another
part Σν ⊂ ∂Ω is a perfect dielectric. The model (1)–(3) is fundamental in solving a number of applied
problems and, in particular, the problems of cooling the nuclear reactor by liquid metals in the nuclear
industry [2, 3].

In the particular case when f = 0, χ = 0, and T = 0, the problem (1)–(5) is transformed into the
boundary value problem (1), (2), and (4) (for T = 0) for stationary equations of magnetic hydrodynamics
of a viscous non-heat-conducting liquid, considered under mixed boundary conditions for the electro-
magnetic field. This problem was studied in [4] as well as in [5] under inhomogeneous mixed boundary
conditions for the electromagnetic field, where its global solvability is proved under certain restrictions on
the region Ω and the subdivision ∂Ω into parts Στ and Σν . In another special case corresponding to the
situation when Σν = ∅ (i.e., the entire boundary Σ = Στ of the flow domain Ω is perfectly conducting),
solvability of the problem (1)–(5) was studied in [6, 7]. For other boundary conditions on E and H
simulating the matching conditions on the surface between two media, the model (1)–(3) was studied
in [8] where the local solvability of the corresponding boundary value problem was proved (for small data).
Let us note also the articles [9, 10] where the solvability is studied of the boundary value problems and the
optimization problems for the generalized model of the type (1)–(3) in which the main parameters of the
medium depend on temperature and spatial variables. In the case when T = 0 and, moreover, Σ = Στ ,
the boundary value problem (1), (2), and (4) (for T = 0) for the MHD model of a viscous incompressible
liquid has been studied since the pioneering work by V. A. Solonnikov [11] and in a number of other
studies (for instance, see [12–16]).

The aim of the article is to analyze the solvability of the mixed boundary value problem (1)–(5). Within
this goal, we establish some sufficient conditions on the data which provide global solvability and local
uniqueness of the solution. In analyzing the solvability of the problem (1)–(5) we substantially use the
results on the solvability of mixed boundary value problems for the static Maxwell equations and div-rot
systems, established in [17–19].

2. FUNCTION SPACES. PRELIMINARY RESULTS

We will use the Sobolev spaces Hs(D), s ∈ R, H0(D) ≡ L2(D), where D denotes the domain Ω,
the boundary ∂Ω of Ω, or certain part Σ0 of Ω. The corresponding spaces of vector functions will be
denoted by Hs(D)3 and L2(D)3. Norms and scalar products in L2(Ω) and L2(Ω)3 will be denoted by
‖ · ‖Ω and (·, ·). Let ‖ · ‖1,Ω and | · |1,Ω denote the norm and seminorm on H1(Ω) or H1(Ω)3. Given an
arbitrary Hilbert space H , let H∗ stand for the dual space of H .

We assume that the domain Ω and the partitions of its boundary Σ = ∂Ω into the parts Στ and Σν or
ΣD and ΣN satisfy the following conditions:

(i) Ω is a bounded domain in R
3, whereas its boundary ∂Ω consists of finitely many disjoint closed

C2-surfaces each of which has finite area.
(ii) Στ is a nonempty open subset of ∂Ω consisting of M + 1 disjoint nonempty open components

{σ0, σ1, . . . , σM}, M ≥ 1, and there exists a positive number d0 such that the distance

dist(σi, σj) ≥ d0 > 0, i �= j, i, j = 0, 1, . . . ,M.

The boundary of each component σi is either the empty set or some C1,1-curve. Put

Σν = ∂Ω \ Στ .

(iii) The open parts ΣD and ΣN of the boundary ∂Ω satisfy

ΣD ∈ C0,1, ΣD �= ∅, ΣN ∈ C0,1, ΣD ∩ ΣN = ∅, ∂Ω = ΣD ∪ ΣN .
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Let D(Ω) be the space of infinitely differentiable compactly supported in Ω functions and let H1
0 (Ω)

be the closure of D(Ω) in H1(Ω). Let

V =
{
v ∈ H1

0 (Ω)3 : divv = 0
}
, H−1(Ω)3 =

(
H1

0 (Ω)3
)∗

, L2
0(Ω) = {p ∈ L2(Ω) : (p, 1) = 0},

H(rot,Ω) = {v ∈ L2(Ω)3 : rotv ∈ L2(Ω)3}, H0(rot,Ω) = {h ∈ H(rot,Ω) : roth = 0},

H1(Ω,Στ ) = {ϕ ∈ H1(Ω) : ϕ|Στ = 0}, T = H1(Ω,ΣD) = {ϕ ∈ H1(Ω) : ϕ|ΣD
= 0},

CΣτ0(Ω)3 := {v ∈ C0(Ω)3 : v · n|Στ = 0, v × n|Σν = 0}, L2
+(ΣN ) = {α ∈ L2(ΣN ) : α ≥ 0}.

In addition to the above-introduced spaces, we use the space

HDC(Ω) = {h ∈ H(rot,Ω) : divh ∈ L2(Ω)}
endowed with the Hilbert norm

‖h‖2
DC := ‖h‖2

Ω + ‖roth‖2
Ω + ‖div h‖2

Ω. (6)

Every vector v defined on the boundary ∂Ω (or on its part Σ ⊂ ∂Ω) can be represented as the sum of
its normal and tangential components vn and vT :

v = vn + vT .

These components are defined by the formulas

vn = (v · n)n ≡ vnn, vT = v − vn ≡ (n × v) × n.

Here the scalar vn = v · n is the normal component of the vector field v; and v × n is the tangent vector
which is orthogonal to both the normal n and the vector vT . Obviously, vT = 0 on Σ if and only if

v × n|Σ = 0. As usual, the subscript T in the designation of one of the spaces H1
T (Ω)3 or H

1/2
T (Σ0)3

means that the corresponding space consists of the vector functions tangential on Σ.

In what follows we use the following Green’s formulas [20, 21]:∫
Ω

Δuv dx = −
∫
Ω

∇u · ∇v dσ +
∫
∂Ω

∂u

∂n
v dσ for all u ∈ H2(Ω), v ∈ H1(Ω), (7)

∫
Ω

v· grad ϕdx +
∫
Ω

divvϕdx =
∫
∂Ω

v · nϕdσ for all v ∈ H1(Ω)3, ϕ ∈ H1(Ω), (8)

∫
Ω

(v · rotw − w · rotv) dx =
∫
∂Ω

(v × n) ·wT dσ for all v,w ∈ H1(Ω)3. (9)

In the case when ϕ ∈ H1(Ω,Στ ) or w ∈ CΣτ0(Ω)3 ∩ H1(Ω)3, the right-hand sides of (8) or (9) take
the form

∫
Σν

v · nϕdσ or
∫
Στ

(v × n) ·wT dσ. Based on this fact and (8), we will say, following [18], that
the function v ∈ HDC(Ω) satisfies the condition v · n = 0 weakly on Σν if∫

Ω

(v · grad ϕ + divvϕ) dx = 0 for all ϕ ∈ H1(Ω,Στ ).

In the same fashion, based on (9), we will say that the function v ∈ H(rot,Ω) satisfies the condition
v × n = 0 weakly on Στ if∫

Ω

(v · rotw − w · rotv) dx = 0 for all w ∈ CΣτ0(Ω)3 ∩ H1(Ω)3.
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Let HDCΣτ (Ω) denote the closure of CΣτ0(Ω)3 ∩ H1(Ω)3 with respect to the norm ‖ · ‖DC defined
in (6). We introduce the spaces

HΣτ (Ω) =
{
h ∈ L2(Ω)3 : divh = 0, roth = 0 in Ω, h · n|Στ = 0, h × n|Σν = 0

}
,

HΣν (Ω) =
{
h ∈ L2(Ω)3 : divh = 0, roth = 0 in Ω, h · n|Σν = 0, h × n|Στ = 0

}
, (10)

VΣτ (Ω) =
{
v ∈ HDCΣτ (Ω) : divv = 0 in Ω

}
∩HΣτ (Ω)⊥.

In [18], many important properties of the above-introduced spaces were proved. It is convenient for us
to formulate these properties as

Theorem 1. Let conditions (i) and (ii) hold. Then
(1) the spaces HΣτ (Ω) and HΣν (Ω) are finite-dimensional;
(2) the continuous embedding HDCΣτ (Ω) ⊂ H1(Ω)3 holds, whereas the norm ‖ · ‖DC is equiv-

alent on HDCΣτ (Ω) to the norm ‖ · ‖1,Ω;
(3) there exists a constant δ1 depending on Ω and Στ such that the coercivity inequality holds:

‖roth‖2 ≥ δ1‖h‖2
1,Ω for all h ∈ VΣτ (Ω); (11)

(4) we have the orthogonal decomposition

L2(Ω)3 = ∇H1(Ω,Στ ) ⊕ rotHDCΣτ (Ω) ⊕HΣν (Ω). (12)

The relation (12) means that every vector h ∈ L2(Ω)3 can be represented in the form

h = ∇ϕ + rotv + e.

Here ϕ ∈ H1(Ω,Στ ), v ∈ HDCΣτ (Ω), and e ∈ HΣν (Ω) are some functions uniquely defined by the
vector h.

In [19], it is also proved that ∇ϕ × n = 0 weakly on Στ for every function ϕ ∈ H1(Ω,Στ )) and the
relation holds

rot HDCΣτ (Ω) ≡ rotVΣτ (Ω). (13)

Along with Theorem 1, we also use some properties of bilinear and trilinear forms associated with
linear and nonlinear terms in the equations (6)–(8). We formulate them as Lemma 1 whose proof follows
from the results in [18–21]:

Lemma 1. Under conditions (i) and (ii), there exist some positive constants δ0 = δ0(Ω), δ2 =
δ2(Ω), C1 = C1(Ω), γi = γi(Ω), i = 0, 1, 2, 3, β = β(Ω), and β1 = β1(Ω) such that

(∇v,∇v) ≥ δ0‖v‖2
1,Ω for all v ∈ H1

0 (Ω)3, (14)

|((u · ∇)v,w)| ≤ γ′
0‖u‖1,Ω‖v‖1,Ω‖w‖L4(Ω)3 ≤ γ0‖u‖1,Ω‖v‖1,Ω‖w‖1,Ω

for all u,v,w ∈ H1(Ω)3, (15)

‖rotH‖Ω ≤ C1‖H‖1,Ω for all H ∈ H1(Ω)3, (16)

|(rotu × v,w)| ≤ γ′
1‖u‖1,Ω‖v‖1,Ω‖w‖L4(Ω)3 ≤ γ1‖u‖1,Ω‖v‖1,Ω‖w‖1,Ω

for all u,v,w ∈ VΣτ (Ω), (17)

(∇T,∇T ) ≥ δ2‖T‖2
1,Ω for all T ∈ T , (18)

|(u · ∇S, T )| ≤ γ2‖u‖1,Ω‖S‖1,Ω‖T‖1,Ω for all u ∈ H1(Ω)3, S ∈ T , T ∈ T , (19)

|(bT,v)| ≤ ‖b‖Ω‖v‖L4(Ω)3‖T‖L4(Ω) ≤ β1‖T‖1,Ω‖v‖1,Ω for all T ∈ H1(Ω), v ∈ H1(Ω), (20)
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|(αT, S)ΣN
| ≤ γ3‖α‖ΣN

‖T‖1,Ω||S||1,Ω, |(χ, T )ΣN
| ≤ γ3‖χ‖ΣN

‖T‖1,Ω,

S ∈ T , T ∈ T ,
(21)

sup
v∈H1

0 (Ω)3,v �=0

−(div v, p)
‖v‖1,Ω

≥ β‖p‖Ω for all p ∈ L2
0(Ω). (22)

Moreover, the following are true:

((u · ∇)v,w) = −((u · ∇)w,v)

for all u ∈ H1(Ω)3, v ∈ H1
0 (Ω)3, w ∈ H1(Ω)3, divu = 0, (23)

(H × u, rotΨ) = (rotΨ× H,u) = −(rotΨ × u,H) for all Ψ,H,u ∈ H1(Ω)3, (24)

(u · ∇T, T ) = 0 for all u ∈ H1
T (Ω)3, T ∈ T . (25)

In studying Problem I, an important role will be played by the product of the spaces

X = H1
0 (Ω)3 × VΣτ (Ω), Z = V × VΣτ (Ω),

as well as the dual spaces

X∗ = H−1(Ω)3 × VΣτ (Ω)∗, Z∗ = V ∗ × VΣτ (Ω)∗;

here X and Z are some Hilbert spaces endowed with the usual graph norm

‖(u,H)‖X =
(
‖u‖2

1,Ω + κ‖H‖2
1,Ω

)1/2
.

Recall that κ = μρ−1
0 ≡ ν1/νm is a dimensional parameter in the first equation in (2). The parameter κ

is introduced into the norm ‖(u,H)‖X in order to equalize the dimensions of both summands involved.
The elements of the space X∗ (or Z∗) have the form F = (f ,q), where f ∈ H−1(Ω)3 and q ∈ VΣτ (Ω)∗

(or f ∈ V ∗ and q ∈ VΣτ (Ω)∗), and, by definition,

〈(f ,q), (v,Ψ)〉X∗×X = 〈f ,v〉H−1(Ω)3×H1
0 (Ω)3 + 〈q,Ψ〉VΣτ (Ω)∗×VΣτ (Ω).

It is easy to verify (for instance, see [21, p. 283]) that

‖F‖X∗ := ‖(f ,q)‖X∗ ≤ ‖f‖−1,Ω + κ
−1/2‖q‖VΣτ (Ω)∗ . (26)

Moreover, the inequality ‖F‖Z∗ ≤ ‖F‖X∗ holds for all F ∈ X∗.
Let us define the following two bilinear forms:

ã(T, S) = λ(∇T,∇S) + λ(αT, S)ΣN
for α ∈ L2

+(ΣN ), (27)

a((u,H), (v,Ψ)) = ν(∇u,∇v) + ν1(rotH, rotΨ) ≡ ν(∇u,∇v) + νmκ(rotH, rot Ψ). (28)

By (18), (11), and (14), the bilinear form ã is continuous on H1(Ω) and coercive on T , whereas the form
a is continuous on H1(Ω)3 × H1(Ω)3 and coercive on X. Moreover, the following estimates are true:

|ã(T, S)| ≤ (1 + γ3‖α‖L2(ΣN ))‖T‖1,Ω‖S‖1,Ω, ã(S, S) ≥ δ2‖S‖2
1,Ω for all S ∈ T , T ∈ T , (29)

a((v,Ψ), (v,Ψ)) ≥ ν∗
(
‖v‖2

1,Ω + κ‖Ψ‖2
1,Ω

)
for all (v,Ψ) ∈ X, ν∗ = min(δ0ν, δ1νm). (30)

The next result proved in [4] will be used in Section 3 in the derivation of the weak formulation of
Problem I not containing the electric field E:

Lemma 2. Suppose that under the conditions (i) and (ii) E ∈ H(rot,Ω) and E × n|Στ = 0. Then

(E, rotΨ) = (rotE,Ψ) for all Ψ ∈ HDCΣτ (Ω). (31)

Let us emphasize that if in addition to the conditions of Lemma 2 we have rotE = 0 then (31)
assumes the form

(E, rotΨ) = 0 for all Ψ ∈ HDCΣτ (Ω). (32)
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3. SOLVABILITY OF PROBLEM I

Suppose that in addition to (i)–(iii) the following hold:

(iv) f ∈ H−1(Ω)3, j ∈ L2(Ω)3, f ∈ T ∗, b ≡ βG ∈ L2(Ω)3, g ∈ H
1/2
T (Σ), χ ∈ L2(ΣN ), and

α ∈ L2
+(ΣN ).

Let us define the functionals F : X → R and l : T → R by formulas

〈F, (v,Ψ)〉 = 〈f ,v〉 + ν1(j, rotΨ), 〈l, S〉 = (f, S) + (χ, S)ΣN
. (33)

It follows from conditions (iv) together with (16), (21), and (26) that F ∈ X∗ and l ∈ T ∗, whereas

‖F‖X∗ ≤ M := ‖f‖−1,Ω + C1ν1κ
−1/2‖j‖Ω, ‖l‖T ∗ ≤ ‖f‖T ∗ + γ3‖χ‖ΣN

. (34)

Suppose that the quintuple

(u,H, p, T,E) ∈ (C2(Ω)3 × (C1(Ω)3 ∩HΣτ (Ω)⊥) × C1(Ω) × C1(Ω) × C1(Ω)3

is a classical solution of Problem I. Multiply the first equation in (1) by the function v ∈ H1
0 (Ω)3, the first

equation in (2), by rotΨ, where Ψ ∈ VΣτ (Ω), integrate the obtained result over Ω, and use the Green’s
formulas (7)–(9) together with (24) and (32). In result, we infer

ν(∇u,∇v) + ((u · ∇)u,v) − κ(rotH ×H,v) − (divv, p) = 〈f ,v〉 − (bT,v)

for all v ∈ H1
0 (Ω)3, (35)

ν1(rotH, rotΨ) + κ(rotΨ× H,u) = ν1(j, rot Ψ) for all Ψ ∈ VΣτ (Ω). (36)

Likewise, we multiply (35) by S ∈ T , integrate over Ω, and apply the Green’s formulas (7) and (8).
We obtain

λ(∇T,∇S) + λ(αT, S)ΣN
+ (u · ∇T, S) = 〈l, S〉 for all S ∈ T , (37)

where the functional l is defined in (33). Adding (35) and (36), we arrive at a weak formulation of
Problem I. It consists in determining the quadruple

(u,H, p, T ) ∈ H1(Ω)3 × VΣτ (Ω) × L2
0(Ω) × T

satisfying (37) and the following relations:

ν(∇u,∇v) + ν1(rotH, rotΨ) + ((u · ∇)u,v) − (div v, p)

+ κ(rotΨ ×H,u) − κ(rotH × H,v) + (bT,v) = 〈F, (v,Ψ)〉

for all (v,Ψ) ∈ X ≡ H1
0 (Ω)3 × VΣτ (Ω), (38)

divu = 0 in Ω, u = g on Γ. (39)

In (37) and (38) F and l are the functionals in (33). The quadruple (u,H, p, T ) will be called the weak
solution of Problem I. Considering the restriction of (38) to the space Z ⊂ X, we note that the triple
(u,H, T ) satisfies the identity

ν(∇u,∇v) + ν1(rotH, rotΨ) + ((u · ∇)u,v) + κ [(rotΨ× H,u) − (rotH × H,v)]
+ (bT,v) = 〈F, (v,Ψ)〉 for all (v,Ψ) ∈ Z. (40)

Formula (40) does not contain a pair (p,E). However, (p,E) can be reconstructed uniquely by the triple
(u,H, T ) ∈ Z × T satisfying (40) so that (38) and all relationships in (2) together with (4) hold. Indeed,
we have the following

Lemma 3. Suppose that, under fulfillment of conditions (i)–(iii),

(u,H, T ) ∈ H1(Ω)3 × VΣτ (Ω) × T
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is a solution of problem (37), (39), and (40). Then there exist p ∈ L2
0(Ω) and E ∈ H(rot,Ω) such

that the quadruple (u,H, p, T ) is a weak solution of Problem I, while the quintuple (u,H, p, T,E)
satisfies the boundary conditions in (4) in the sense of traces and the equations in (2) almost
everywhere in Ω. Moreover, the first equation in (1), the equation (3), and the second boundary
condition in (5) are true in the following sense:

−νΔu + (u · ∇)u + ∇p − κrotH × H = f − bT in D′(Ω)3, (41)

−λΔT + u · ∇T = f in D′(Ω), (42)

λ

(
∂T

∂n
+ αT

)∣∣∣∣
ΣN

= χ in H−1/2(ΣN ). (43)

Proof. Suppose that a triple (u,H, T ) ∈ H1(Ω)3 × VΣτ (Ω)×T is a solution of (37), (39), and (40). The
recovering of pressure p ∈ L2

0(Ω) so that (35) holds is carried out, as usual, via the de Rham theorem and
the inf-sup condition (22) (see the details in [20, 21]). Setting v = 0 in (40), we obtain (36). Adding (35)
and (36), we arrive at (38). Choosing v ∈ D(Ω)3 in (35) and S ∈ D(Ω) in (37), we arrive at (41) and (42),
while the fact that (43) holds is proved as in [21, p. 50].

It remains to prove the existence of E ∈ H(rot,Ω) such that, together with the pair (u,H), satisfies
all relations in (2) and the boundary condition E × n|Στ = 0. To this end, we consider (36) which, by (13)
and (24), can be rewritten as

(ν1rotH + κH× u− ν1j, rotΨ) = 0 for all Ψ ∈ HDCΣτ (Ω). (44)

The condition (44) means that the vector

A ≡ ν1rotH + κH × u − ν1j

is orthogonal to rotΨ, where Ψ ∈ HDCΣτ is an arbitrary function. By (12), this can be true if and only if

ν1rotH + κH× u− ν1j = ∇ϕ + e.

Here ϕ ∈ H1(Ω,Στ ) is the scalar potential, e ∈ HΣν (Ω) is a vector (harmonic vector potential), whereas
the pair (ϕ, e) is uniquely determined by the vector A. Putting E = ∇ϕ + e, we note that E together with
the pair (u,H) satisfy

ν1rotH − E + κH× u = ν1j almost everywhere in Ω.

Moreover, since e ∈ HΣν (Ω) and ϕ ∈ H1(Ω,Στ ); therefore, we have

rot e = 0, e × n|Στ = 0, ∇ϕ × n|Στ = 0.

This means that rotE = 0 almost everywhere in Ω and E × n|Στ = 0.
The proof of Lemma 3 is complete.

Lemma 3 implies that the proof of the existence of a weak solution (u,H, p, T ) of Problem I is reduced
to proving the existence of a solution

(u,H, T ) ∈ H1(Ω)3 × VΣτ (Ω) × T
of the problem (37), (39), and (40). To prove the existence of a solution of the latter problem, we need the
following lemma from [14] on the existence of a lifting (a proper extension inside the domain Ω) of the

boundary function g ∈ H
1/2
T (Σ)3:

Lemma 4. If condition (i) is fulfilled then, for every function g ∈ H
1/2
T (Σ)3 and every number

ε > 0, there exists a vector-function uε ∈ H1
T (Ω)3 such that divuε = 0 in Ω, uε = g on Σ, and

following estimates hold:

‖uε‖1,Ω ≤ Cε‖g‖1/2,Σ, ‖uε‖L4(Ω)3 ≤ ε‖g‖1/2,Σ. (45)

Here the constant Cε depends on ε and Ω.
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By Lemma 4, we choose ε to be sufficiently small; namely, assuming that ‖g‖1/2,Σ > 0, we put ε = ε0,
where

ε0 = ν∗ min
(
1/γ′

0, 1/γ′
1

)/
2‖g‖1/2,Σ, ν∗ = min(δ0ν, δ1νm). (46)

Here γ′
0 and γ′

1 are the constants introduced in (15) and (17). We have the following

Theorem 2. When the conditions (i)–(iv) are fulfilled, there exists a weak solution

(u,H, p, T ) ∈ H1(Ω)3 × VΣτ (Ω) × L2
0(Ω) × T

of Problem I, and the following are fulfilled:

‖u‖1,Ω ≤ Mu, ‖H‖1,Ω ≤ MH, ‖T‖1,Ω ≤ MT , ‖p‖Ω ≤ Mp. (47)

Here Mu, MH, MT , and Mp are defined as

Mu = M∗ + Cε0‖g‖1/2,Σ, M∗ =
2
ν∗

(M + Mg + β1MT ),

MH = κ
−1/2M∗ =

1
ν∗
√

κ
(M + Mg + β1MT ), MT =

1
δ2λ

(
‖f‖T ∗ + γ3‖χ‖ΣN

)
, (48)

Mp = β−1
[
(ν + γ0Mu)Mu + γ1κM2

H + β1MT + ‖f‖−1,Ω

]
,

where M and β, β1, δ2, γ3 are introduced in (34) and Lemma 1, respectively; Cε0 is the constant
introduced in Lemma 4 and corresponds to ε0 in (46), whereas Mg is defined as

Mg = Cε0‖g‖1/2,Σ + γ′
0ε0Cε0‖g‖2

1/2,Σ. (49)

If, additionally, the functions f , j, f , g, and χ are small in the sense that

γ0Mu + γ1

(√
κ

2

)
MH +

β1γ2

δ2λ
MT < δ0ν, γ1Mu + γ1

(√
κ

2

)
MH < δ1νm, (50)

then the weak solution is unique. In (50), δ0, δ1, γ0, and γ1 are the constants introduced in Lemma 1
and (11), while ν and νm are the coefficients of kinematic and magnetic viscosities.

Proof. To prove the existence of a weak solution of Problem I, by Lemma 3, it suffices to prove the
existence of a solution (u,H, T ) ∈ Z × T of the problem (37), (39), and (40). On the basis of the
boundary condition in (39) for the velocity u, we will try to find the component u of the solution (u,H, T )
of the problem (37), (39), and (40) in the form

u = u0 + ũ. (51)

Here u0 ≡ uε0 is the lifting from Lemma 4 of the boundary function g, whereas ũ ∈ V is a new unknown
function. Substituting (51) in (37) and (40), we arrive at the identities

λ(∇T,∇S) + λ(αT, S)ΣN
+

(
(u0 + ũ) · ∇T, S

)
= 〈l, S〉 for all S ∈ T , (52)

a((ũ,H), (v,Ψ)) + ((ũ · ∇)u0,v) + ((u0 · ∇)ũ,v) + ((ũ · ∇)ũ,v)

+ κ[(rotΨ× H, ũ) + κ(rotΨ × H,u0) − (rotH × H,v)] + (bT,v)

= 〈F1, (v,Ψ)〉 for all (v,Ψ) ∈ Z. (53)

Here F1 : X → R is a linear functional defined by the formula

〈F1, (v,Ψ)〉 = 〈F, (v,Ψ)〉 − ν(∇u0,∇v) − ((u0 · ∇)u0,v) for all (v,Ψ) ∈ Z. (54)

To prove the existence of a solution (ũ,H, T ) ∈ V × VΣτ (Ω) × T of the problem (52), (53) we apply
the Schauder fixed point theorem. For this purpose, we define a mapping G : Z → Z acting according
to the formula G(w, h) = (ũ,H), where the pair (ũ,H) ∈ Z is a solution of the linear problem

a((ũ,H), (v,Ψ)) + aw,h

(
(ũ,H), (v,Ψ)

)
= 〈F1, (v,Ψ)〉 − (bT,v) for all (v,Ψ) ∈ Z (55)
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obtained by linearization of (52) and (53). Here the bilinear forms a and aw,h : X × X → R are defined,
respectively, by the relation (28) and

aw,h

(
(ũ,H), (v,Ψ)

)
=

(
(ũ · ∇)u0,v

)
+

(
(u0 · ∇)ũ,v

)
+

(
(w · ∇)ũ,v

)
+ κ

[(
rotΨ × h, ũ

)
+ κ

(
rotΨ × H,u0

)
−

(
rotH × h,v

)]
, (56)

whereas T ≡ Tw in (55) is a solution of the linear problem

ã(T, S) ≡ λ(∇T,∇S) + λ(αT, S)ΣN
+ ((u0 + w) · ∇T, S) = 〈l, S〉 for all S ∈ T . (57)

It is easy to see that the mapping G is correctly defined. Indeed, let us first consider problem (57).
A simple analysis using (25) and (29) shows that the form ã(·, ·) on the left-hand side of (57) is
continuous and coercive on T with the constant δ2λ, whereas the functional l on the right-hand side
of (57) defined in (33) belongs to T ∗ and satisfies the second estimate in (34). Then it follows from the
Lax–Milgram theorem (for instance, see [21, p. 33]) that, for every vector w ∈ V , a solution T = Tw of
problem (57) exists, is unique, and satisfies the following estimate:

‖Tw‖1,Ω ≤ MT ≡ 1
δ2λ

(
‖f‖T ∗ + γ3‖χ‖ΣN

)
. (58)

Now consider problem (55), where we put T = Tw. It follows from the results of Section 2 that the
form a(·, ·) is continuous and coercive on Z, whereas the bilinear form aw,h defined in (56) is continuous
on X and ν∗/2 is “small” on Z since, by (23), (15), (17), and (46), we have

|aw,h((v,Ψ), (v,Ψ))| =
∣∣((v · ∇)v,u0

)
+ κ

(
rotΨ × Ψ,u0

)∣∣
≤ γ′

0‖v‖2
1,Ω‖u0‖L4(Ω)3 + γ′

1κ‖Ψ‖2
1,Ω‖u0‖L4(Ω)3

≤ γ′
0ε0‖g‖1/2,Σ‖v‖2

1,Ω + γ′
1ε0‖g‖1/2,Σκ‖Ψ‖2

1,Ω

≤ ν∗
2

(
‖v‖2

1,Ω + κ‖Ψ‖2
1,Ω

)
for all (v,Ψ) ∈ Z.

It follows that the bilinear form a(·, ·) + aw,h(·, ·) on the left-hand side of (55) is continuous and coercive
on Z with the constant ν∗/2. Moreover, the right-hand side of (55) for the specified Tw ∈ T is the value
of the continuous functional at the element (v,Ψ) ∈ Z since, by (54), (34), (15), (20), (45), and (58), we
have

|〈F1, (v,Ψ)〉 − (bTw,v)|

≤ M‖(v,Ψ)‖X + (Cε0ν‖g‖1/2,Σ + γ′
0ε0Cε0‖g‖2

1/2,Σ + β1MT )‖v‖1,Ω

≤ (M + Mg + β1MT )||(v,Ψ)‖X for all (v,Ψ) ∈ Z. (59)

Here M and Mg are the constants defined in (34) and (49), respectively. Then it follows from the Lax–
Milgram theorem and (59) that, for every pair (w,h) ∈ Z, the solution (u,H) ∈ Z of (55) exists, is
unique, and satisfies the following estimate independently of (w,h):

‖(ũ,H)‖X ≡
(
‖ũ‖2

1,Ω + κ‖H‖2
1,Ω

)1/2 ≤ M∗ ≡
2
ν∗

(M + Mg + β1MT ). (60)

Put r = M∗ and introduce the ball Br = {(v,Ψ) ∈ Z : ‖(v,Ψ)‖X ≤ r} in the space Z. It follows
from (60) that the introduced operator G maps Br into itself. Arguing as in [7], we can show that the
operator G is compact and continuous on Br. Then the Schauder Theorem implies that G has a fixed
point (ũ,H) = G(ũ,H) ∈ Br. The specified fixed point (ũ,H) ∈ Z together with the solution Tũ ∈ T of
the problem (57) for w = ũ constitute the desired solution of the problem (52), (53), while the estimates
(60) and (58) hold for it. Then the triple (u,H, T ), where u = u0 + ũ, is the desired solution of the
problem (37), (39), and (40), whereas the first three estimates in (47) are obvious consequences of the
estimates (60), (58), and (45).

Let us prove the estimate in (47) for the pressure p, which together with the sought triple (u,H, T )
satisfies the identity (38) due to Lemma 3. To do this, we use the inf-sup condition (22), because of
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which, for the indicated function p ∈ L2
0(Ω) and arbitrary δ > 0, there exists a function v0 ∈ H1

0(Ω),
v0 �= 0, such that the following inequality with the constant β0 = β − δ > 0 is true:

−(divv0, p) ≥ β0‖v0‖1,Ω‖p‖Ω.

Put v = v0 and Ψ = 0 in (38). We have

ν(∇u,∇v0) + ((u · ∇)u,v0) − (div v0, p) − κ(rotH × H,v0) + (bT,v0) = 〈f ,v0〉. (61)

Using the previous estimate for −(divv0, p) together with (15), (17), and (20), we derive from (61)
that

β0‖v0‖1,Ω‖p‖Ω ≤ −(divv0, p) ≤ ν‖v0‖1,Ω‖u‖1,Ω + γ0‖v0‖1,Ω‖u‖2
1,Ω

+ γ1κ‖H‖2
1,Ω‖v0‖1,Ω + β1‖T‖1,Ω‖v0‖1,Ω + ‖f‖−1,Ω‖v0‖1,Ω. (62)

Cancelling out ‖v0‖1,Ω �= 0 and using the already proved estimates in (47) and (60), we derive from (62)
the following:

‖p‖Ω ≤ β−1
0

(
ν‖u‖1,Ω + γ0‖u‖2

1,Ω + γ1κ‖H‖2
1,Ω + β1‖T‖1,Ω + ‖f‖−1,Ω

)
≤ β−1

0

[
(ν + γ0Mu)Mu + γ1κM2

H + β1MT + ‖f‖−1,Ω

]
. (63)

The last estimate in (47) follows from (63) due to arbitrariness of δ > 0.
Finally, note that the uniqueness of a weak solution of Problem I is proved according to the standard

scheme (for example, see [21, Chap. 7]) provided the conditions (40) are fulfilled.
The proof of Theorem 2 is complete.

Remark. We proved the solvability of the boundary value problem (1)–(5) for stationary equations of
magnetic hydrodynamics of a viscous heat-conducting liquid, considered under the homogeneous mixed
boundary conditions for the electromagnetic field and the homogeneous Dirichlet condition on a portion
ΣD of the boundary Σ for the temperature.

In the case when the homogeneous condition T |ΣD
= 0 in (5) is replaced by its inhomogeneous

analogue T |ΣD
= ψ ∈ H1/2(ΓD), the solvability of the corresponding inhomogeneous boundary value

problem can be proved in a similar way using the theorem on the existence of proper lifting for the
temperature [21, Theorem 9.3, p. 403].

At the same time, the case when the mixed boundary conditions used in (4) for the electromagnetic
field are inhomogeneous is more complicated and requires a special consideration.
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