The Hopf–Cole Transformation and Multidimensional Representations of Solutions to Evolution Equations

Yu. E. Anikonov^{1*} and N. B. Ayupova^{1,2**}

¹Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090 Russia ²Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090 Russia Received May 6, 2014

Abstract—We consider some new identities and representations of solutions to the second-order partial differential equations connected with the Hopf–Cole transformation.

DOI: 10.1134/S1990478915010020

Keywords: inverse problem, evolution equation, Hopf-Cole transformation

In this paper, we present some new identities and representations for solutions to the second-order differential equations that generalize those available [1-3] and go on with the study of the general problem (formulated in [2]) of the constructive construction of partial differential equations from a given class of functions determining the solutions of these equations (see also [1-7]).

Theorems 1–3 of the article are directly related to the Hopf–Cole transformation which makes it possible to obtain some multidimensional representations of the solutions and coefficients of Burgers-type nonlinear equations. Theorem 4 is a new version of the application of a fundamental system of solutions to a second-order linear ordinary differential equation with variable parameter for obtaining a representation of the solution and the coefficients of a second-order multidimensional equation with considerable arbitrariness.

We first give results for a Burgers-type multidimensional equation with parameter p applying the Hopf–Cole transformation and its generalization. As is known [8, 9], the Hopf–Cole transformation consists in that if a function $F(y, t, p) \neq 0$ is a solution to the parabolic equation with parameter p

$$\frac{\partial F}{\partial t} = p \, \frac{\partial^2 F}{\partial y^2}$$

then the function $w(y,t,p) = -2p \frac{\partial F}{\partial y} \Big/ F$ satisfies the nonlinear Burgers equation

$$\frac{\partial w}{\partial t} = p \frac{\partial^2 w}{\partial y^2} - w \frac{\partial w}{\partial y}$$

with the same parameter p. Note that the variable parameter makes it possible to obtain, as $p \rightarrow 0$, solutions to the classical Hopf equation

$$\frac{\partial w}{\partial t} + w \frac{\partial w}{\partial y} = 0$$

which is important for applications.

Suppose that $a_{ij}(x,t)$, $a_{ij} = a_{ji}$, are continuous functions i, j = 1, 2, ..., n, $x \in D \subset \mathbb{R}^n$, and $t_0 < t < t_1$, where D is a domain in the real Euclidean space \mathbb{R}^n .

A generalization of the Hopf–Cole transformation to the multidimensional case is given by

^{*}E-mail: anikon@math.nsc.ru

^{**}E-mail: ayupova@math.nsc.ru

Theorem 1. Let $F(y,t,p) \neq 0$ be a solution to the parabolic equation with parameter p

$$\frac{\partial F}{\partial t} = p \frac{\partial^2 F}{\partial y^2}, \qquad y \in \mathbb{R}^n, \qquad t_0 < t < t_1,$$

and let v(x,t) be a twice continuously differentiable function such that

$$\sum_{i,j=1}^{n} a_{ij}(x,t) \frac{\partial v}{\partial x_i} \frac{\partial v}{\partial x_j} \neq 0,$$

which is arbitrary in all other respects. Then

$$w(x,t,p) = -2p \left. \frac{\partial F}{\partial y} \right/ F \bigg|_{y=v(x,t)}$$

satisfies the following equation independent of F:

$$\left(\sum_{i,j=1}^{n} a_{ij}(x,t) \frac{\partial v}{\partial x_i} \frac{\partial v}{\partial x_j}\right) \frac{\partial w}{\partial t} = p \sum_{i,j=1}^{n} a_{ij}(x,t) \frac{\partial^2 w}{\partial x_i \partial x_j} - w \sum_{i,j=1}^{n} a_{ij}(x,t) \frac{\partial w}{\partial x_i} \frac{\partial v}{\partial x_j} + \left[\frac{\sum_{i,j=1}^{n} a_{ij}(x,t) \frac{\partial v}{\partial x_i} \frac{\partial v}{\partial x_j} \frac{\partial v}{\partial t} - p \sum_{i,j=1}^{n} a_{ij}(x,t) \frac{\partial^2 v}{\partial x_i \partial x_j}}{\sum_{i,j=1}^{n} a_{ij}(x,t) \frac{\partial v}{\partial x_i} \frac{\partial v}{\partial x_j}}\right] \sum_{k,l=1}^{n} a_{kl}(x,t) \frac{\partial w}{\partial x_k} \frac{\partial v}{\partial x_l}. \quad (1)$$

The proof is immediate from the following relations obtained by the representation

$$w(y,t,p) = -2p \frac{\partial F}{\partial y} \Big/ F \Big|_{y=v(x,t)}$$

with account taken of the equation $\frac{\partial F}{\partial t} = p \frac{\partial^2 F}{\partial y^2}$ and the equalities

$$\frac{\partial w}{\partial t} = -2p \left(\frac{\partial^2 F}{\partial y^2} \frac{\partial v}{\partial t} + \frac{\partial^2 F}{\partial y \partial t} \right) \Big/ F + 2p \left(\frac{\partial F}{\partial y} \frac{\partial v}{\partial t} + \frac{\partial F}{\partial t} \right) \frac{\partial F}{\partial y} \Big/ F^2,$$
$$\frac{\partial w}{\partial x_i} = \left(-2p \frac{\partial^2 F}{\partial y^2} \Big/ F + 2p \left(\frac{\partial F}{\partial y} \right)^2 \Big/ F^2 \right) \frac{\partial v}{\partial x_i},$$
$$w \frac{\partial w}{\partial x_i} = -\frac{2p}{F} \frac{\partial F}{\partial y} \left(-2p \frac{\partial^2 F}{\partial y^2} \Big/ F + 2p \left(\frac{\partial F}{\partial y} \right)^2 \Big/ F^2 \right) \frac{\partial v}{\partial x_i},$$

$$\frac{\partial^2 w}{\partial x_i \partial x_j} = \frac{\partial^2 v}{\partial x_i \partial x_j} \left(-2p \frac{\partial^2 F}{\partial y^2} \Big/ F + 2p \left(\frac{\partial F}{\partial y} \right)^2 \Big/ F^2 \right) \\ + \left(-2p \frac{\partial^3 F}{\partial y^3} \Big/ F + 6p \frac{\partial^2 F}{\partial y^2} \frac{\partial F}{\partial y} \Big/ F^2 - 4p \left(\frac{\partial F}{\partial y} \right)^3 \Big/ F^3 \right) \frac{\partial v}{\partial x_i} \frac{\partial v}{\partial x_j}$$

For $a_{ij} = \delta_{ij}$, n = 1, and v(x, t) = x, from equation (1) we obtain the one-dimensional Burgers equation. Assume in what follows that

$$\sum_{i,j=1}^{n} a_{ij}(x,t) \frac{\partial v}{\partial x_i} \frac{\partial v}{\partial x_j} \neq 0, \qquad x \in D \subset \mathbb{R}^n, \qquad t_1 < t < t_2,$$

without further specification. Of interest are the more general solutions w; namely, if we suppose that w(x, t, p) is the root of the equation

$$g(w(x,t,p),p) = -2p \frac{\partial F}{\partial y} \Big/ F \Big|_{y=v(x,t)}$$

where g(z,p) is a twice continuously differentiable function, $\frac{\partial g}{\partial z}(z,p) \neq 0$, and *F* is three times continuously differentiable then equation (1) has a substantially nonlinear and more general form which is convenient for applications.

We have

Theorem 2. Suppose that g(z,p) and v(x,t) are twice continuously differentiable functions, while $F(y,t,p) \neq 0$ is an arbitrary three times continuously differentiable function,

$$\alpha$$

Then the function w(x,t,p) that is the root of the equation

$$g(w(x,t,p),p) = -2p \frac{\partial F}{\partial y} \Big/ F \Big|_{y=v(x,t)}$$

satisfies the equation

$$\sum_{i,j=1}^{n} a_{ij}(x,t) \frac{\partial v}{\partial x_i} \frac{\partial v}{\partial x_j} \frac{\partial w}{\partial t} = p \frac{g_{zz}''(w,p)}{g_z'(w,p)} \sum_{i,j=1}^{n} a_{ij}(x,t) \frac{\partial w}{\partial x_i} \frac{\partial w}{\partial x_j} + p \sum_{i,j=1}^{n} a_{ij}(x,t) \frac{\partial^2 w}{\partial x_i \partial x_j} - g(w,p) \sum_{i,j=1}^{n} a_{ij}(x,t) \frac{\partial w}{\partial x_i} \frac{\partial v}{\partial x_j} + \left[\frac{\sum_{i,j=1}^{n} a_{ij}(x,t) \frac{\partial v}{\partial x_i} \frac{\partial v}{\partial x_j} \frac{\partial v}{\partial t} - p \sum_{i,j=1}^{n} a_{ij}(x,t) \frac{\partial^2 v}{\partial x_i \partial x_j}}{\sum_{i,j=1}^{n} a_{ij}(x,t) \frac{\partial v}{\partial x_i} \frac{\partial v}{\partial x_j}} \right] \sum_{k,l=1}^{n} a_{kl}(x,t) \frac{\partial w}{\partial x_k} \frac{\partial v}{\partial x_l} - \frac{2p}{g_z'(w,p)} \left[\frac{\partial}{\partial y} \left(\frac{\partial F}{\partial t} - p \frac{\partial^2 F}{\partial y^2} \right) \Big/ F - \frac{\partial F}{\partial y} \left(\frac{\partial F}{\partial t} - p \frac{\partial^2 F}{\partial y^2} \right) \Big/ F^2 \right] \Big|_{y=v(x,t)} \sum_{i,j=1}^{n} a_{ij}(x,t) \frac{\partial v}{\partial x_i} \frac{\partial v}{\partial x_j}.$$
(2)

Proof. Differentiating
$$g(w(x,t,p),p) = -2p\frac{\partial F}{\partial y}\Big/F\Big|_{y=v(x,t)}$$
, we infer
 $g'_{z}\frac{\partial w}{\partial t} = -2p\left(\frac{\partial^{2}F}{\partial y^{2}}\Big/F - \left(\frac{\partial F}{\partial y}\right)^{2}\Big/F^{2}\right)\frac{\partial v}{\partial t} - 2p\left(\frac{\partial^{2}F}{\partial y\partial t}\Big/F - \frac{\partial F}{\partial y}\frac{\partial F}{\partial t}\Big/F^{2}\right),$ (3)

$$g'_{z}\frac{\partial w}{\partial x_{i}} = -2p\left(\frac{\partial^{2}F}{\partial y^{2}} \middle/ F - \left(\frac{\partial F}{\partial y}\right)^{2} \middle/ F^{2}\right)\frac{\partial v}{\partial x_{i}},\tag{4}$$

$$g_{z}^{\prime}\frac{\partial^{2}w}{\partial x_{i}\partial x_{j}} + g_{z}^{\prime\prime}\frac{\partial w}{\partial x_{i}}\frac{\partial w}{\partial x_{j}} = -2p\left(\frac{\partial^{3}F}{\partial y^{3}}\Big/F - 3\frac{\partial^{2}F}{\partial y^{2}}\frac{\partial F}{\partial y}\Big/F^{2} + 2\left(\frac{\partial F}{\partial y}\right)^{3}\Big/F^{3}\right)\frac{\partial v}{\partial x_{i}}\frac{\partial v}{\partial x_{j}} - 2p\left(\frac{\partial^{2}F}{\partial y^{2}}\Big/F - \left(\frac{\partial F}{\partial y}\right)^{2}\Big/F^{2}\right)\frac{\partial^{2}v}{\partial x_{i}\partial x_{j}}.$$
 (5)

Inserting (3)–(5) into (2), we prove Theorem 2.

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 9 No. 1 2015

Theorem 2 obviously implies

Theorem 3. Suppose that g(z,p) and v(x,t) are twice continuously differentiable functions, $g'_z(z,p) \neq 0$, and $F(y,t,p) \neq 0$ is a solution to the parabolic equation $\frac{\partial F}{\partial t} = p \frac{\partial^2 F}{\partial y^2}$. Then the function w(x,t,p) that is the root of the equation

$$g(w(x,t,p),p) = -2p \frac{\partial F}{\partial y} \Big/ F \Big|_{y=v(x,t)},$$

satisfies the following equation with the coefficients independent of F:

$$\sum_{i,j=1}^{n} a_{ij}(x,t) \frac{\partial v}{\partial x_i} \frac{\partial v}{\partial x_j} \frac{\partial w}{\partial t} = p \frac{g_{zz}''(w,p)}{g_z'(w,p)} \sum_{i,j=1}^{n} a_{ij}(x,t) \frac{\partial w}{\partial x_i} \frac{\partial w}{\partial x_j}$$

$$+ p \sum_{i,j=1}^{n} a_{ij}(x,t) \frac{\partial^2 w}{\partial x_i \partial x_j} - g(w,p) \sum_{i,j=1}^{n} a_{ij}(x,t) \frac{\partial w}{\partial x_i} \frac{\partial v}{\partial x_j}$$

$$+ \left[\frac{\sum_{i,j=1}^{n} a_{ij}(x,t) \frac{\partial v}{\partial x_i} \frac{\partial v}{\partial x_j} \frac{\partial v}{\partial t} - p \sum_{i,j=1}^{n} a_{ij}(x,t) \frac{\partial^2 v}{\partial x_i \partial x_j}}{\sum_{i,j=1}^{n} a_{ij}(x,t) \frac{\partial v}{\partial x_i} \frac{\partial v}{\partial x_j}} \right] \sum_{k,l=1}^{n} a_{kl}(x,t) \frac{\partial w}{\partial x_k} \frac{\partial v}{\partial x_l}.$$

Now, consider the questions of using the fundamental systems of solutions for representing the solutions and coefficients of the second-order multidimensional evolution equations. To this end, consider the second-order linear ordinary differential equation with meromorphic coefficients and variable parameter $p \ge 0$:

$$F''(z) + b(z)F' + (pa(z) + c(z))F(z) = 0.$$
(6)

Let $Z_1(z, p)$, $Z_2(z, p)$ be a fundamental system of solutions to (6). Give an example of constructing $Z_1(z, p)$ and $Z_2(z, p)$. Consider the hypergeometric equation

$$z(1-z)F'' + (\gamma - (\alpha + \beta + 1)z)F' - \alpha\beta F(z) = 0, \qquad \gamma > 0,$$
(7)

with the fundamental system of solutions Z_1 and Z_2 [10]:

$$Z_1(\alpha,\beta,\gamma,z) = \frac{\Gamma(\gamma)}{\Gamma(\alpha)\Gamma(\beta)} \sum_{k=0}^{\infty} \frac{\Gamma(\alpha+k)\Gamma(\beta+k)}{\Gamma(\gamma+k)} \frac{z^k}{k!}, \qquad |z| < 1,$$
$$Z_2(\alpha,\beta,\gamma,z) = z^{1-\gamma} Z_1(\alpha-\gamma+1,\beta-\gamma+1,2-\gamma,z), \qquad |z| < 1.$$

If in equation (7) we assume the parameters $\gamma = a_0 > 0$ and $-(\alpha + \beta + 1) = b_0$ to be fixed and the values $-\alpha\beta = p \ge 0$ to be variable then, for $z \ne 0$ and |z| < 1, equation (7) can be rewritten as

$$F'' + \frac{a_0 + b_0 z}{z(1-z)}F' + \frac{p}{z(1-z)}F(z) = 0$$

for

$$b(z) = \frac{a_0 + b_0 z}{z(1-z)}, \qquad a(z) = \frac{1}{z(1-z)}, \qquad c(z) = 0$$

with the explicitly computed $Z_1(z, p)$ and $Z_2(z, p)$.

As above, denote by $a_{ij}(x,t)$, v(x,t), $a_{ij} = a_{ji}$, $x \in D \subset \mathbb{R}^n$, and $t_1 < t < t_2$ respectively the continuously differentiable functions with the condition

$$\sum_{i,j=1}^{n} a_{ij}(x,t) \frac{\partial v}{\partial x_i} \frac{\partial v}{\partial x_j} \neq 0,$$

and designate as Q(p) and R(p) with $p \ge 0$ the integrable functions decreasing at infinity rapidly enough. We have

Theorem 4. Suppose that the function

$$w(x,t) = \int_{0}^{\infty} [Q(p)Z_1(v(x,t),p) + R(p)Z_2(v(x,t),p)]e^{-pt} dp, \qquad x \in D \subset \mathbb{R}^n, \qquad t_1 < t < t_2,$$

twice differentiable under integral is well defined. Then it satisfies the equation

$$a(v)\sum_{i,j=1}^{n}a_{ij}(x,t)\frac{\partial v}{\partial x_{i}}\frac{\partial v}{\partial x_{j}}\frac{\partial w}{\partial t} = \sum_{i,j=1}^{n}a_{ij}(x,t)\frac{\partial^{2}w}{\partial x_{i}\partial x_{j}} + c(v)\sum_{i,j=1}^{n}a_{ij}(x,t)\frac{\partial v}{\partial x_{i}}\frac{\partial v}{\partial x_{j}}w + \left[\frac{a(v)\sum_{i,j=1}^{n}a_{ij}(x,t)\frac{\partial v}{\partial x_{i}}\frac{\partial v}{\partial x_{j}}-\sum_{i,j=1}^{n}a_{ij}(x,t)\frac{\partial^{2}v}{\partial x_{i}\partial x_{j}}}{\sum_{i,j=1}^{n}a_{ij}(x,t)\frac{\partial v}{\partial x_{i}}\frac{\partial v}{\partial x_{j}}} + b(v)\right]\sum_{i,j=1}^{n}a_{ij}(x,t)\frac{\partial w}{\partial x_{i}}\frac{\partial v}{\partial x_{j}}.$$
(8)

Proof. Let F(z, p) be an arbitrary solution to (6) with parameter $p, 0 \le p < \infty$, and let $\alpha(p)$ be a suitable function. Consider the function

$$u(x,t) = \int_{0}^{\infty} \alpha(p) F(v(x,t),p) e^{-pt} dp$$

and show that it satisfies (8). We have

$$\frac{\partial u}{\partial t} = \int_{0}^{\infty} \alpha \left[F' \frac{\partial v}{\partial t} - Fp \right] e^{-pt} dp, \qquad \frac{\partial u}{\partial x_i} = \int_{0}^{\infty} \alpha F' \frac{\partial v}{\partial x_i} e^{-pt} dp,$$
$$\frac{\partial^2 u}{\partial x_i \partial x_j} = \int_{0}^{\infty} \alpha \left[F'' \frac{\partial v}{\partial x_i} \frac{\partial v}{\partial x_j} + F' \frac{\partial^2 v}{\partial x_i \partial x_j} \right] e^{-pt} dp.$$

Hence,

$$\begin{split} a(v)\sum_{i,j=1}^{n}a_{ij}(x,t)\frac{\partial v}{\partial x_{i}}\frac{\partial v}{\partial t}\int_{0}^{\infty}\alpha F'\frac{\partial v}{\partial t}e^{-pt}\,dp - a(v)\sum_{i,j=1}^{n}a_{ij}(x,t)\frac{\partial v}{\partial x_{i}}\frac{\partial v}{\partial x_{j}}\int_{0}^{\infty}\alpha Fpe^{-pt}\,dp \\ -\left\{\sum_{i,j=1}^{n}a_{ij}(x,t)\frac{\partial v}{\partial x_{i}}\frac{\partial v}{\partial x_{j}}\int_{0}^{\infty}\alpha F''e^{-pt}\,dp + \sum_{i,j=1}^{n}a_{ij}(x,t)\frac{\partial^{2}v}{\partial x_{i}\partial x_{j}}\int_{0}^{\infty}\alpha e^{-pt}\,dp \\ + c(v)\sum_{i,j=1}^{n}a_{ij}(x,t)\frac{\partial v}{\partial x_{i}}\frac{\partial v}{\partial x_{j}}\int_{0}^{\infty}\alpha F(v(x,t),p)e^{-pt}\,dp \end{split}$$

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 9 No. 1 2015

$$+ \left[\frac{a(v)\sum_{i,j=1}^{n} a_{ij}(x,t) \frac{\partial v}{\partial x_i} \frac{\partial v}{\partial x_j} \frac{\partial v}{\partial t} - \sum_{i,j=1}^{n} a_{ij}(x,t) \frac{\partial^2 v}{\partial x_i \partial x_j}}{\sum_{i,j=1}^{n} a_{ij}(x,t) \frac{\partial v}{\partial x_i} \frac{\partial v}{\partial x_j}} + b(v) \right] \\ \times \sum_{i,j=1}^{n} a_{ij}(x,t) \frac{\partial v}{\partial x_i} \frac{\partial v}{\partial x_j} \int_{0}^{\infty} \alpha F' e^{-pt} dp \right\}$$
$$= \sum_{i,j=1}^{n} a_{ij}(x,t) \frac{\partial v}{\partial x_i} \frac{\partial v}{\partial x_j} \int_{0}^{\infty} \alpha(p) \left[F''(z,p) + b(z)F'(z,p) + (pa(z) + c(z))F(z,p) \right] \Big|_{z=v(x,t)} e^{-pt} dp.$$

Choosing Q(p) and R(p) as $\alpha(p)$ and Z_1 and Z_2 as F, we completely prove Theorem 4.

In view of the representation of a solution w(x, t) to (6) by the formula of Theorem 4

$$w = \int_{0}^{\infty} [Q(p)Z_1(v(x,t),p) + R(p)Z_2(v(x,t),p)]e^{-pt} dp,$$

a possibility opens for applying the theory of second-order linear differential equations with some constant parameters. We confine ourselves to just one example.

Suppose that b(z) = 0, a(z) = 1, and c(z) = 0 in (6); i.e., F'' + pF = 0. We have $Z_1(z, p) = \sin \sqrt{p} z$, $Z_2(z, p) = \cos \sqrt{p} z$.

Assume that

$$R(p) = \sum_{k=0}^{\infty} R_k \delta(p-k), \qquad Q(p) = \sum_{k=0}^{\infty} Q_k \delta(p-k),$$

 R_k and Q_k are constant, $|R_k| \leq 1/k^{\alpha}$, and $|Q_k| \leq 1/k^{\alpha}$ with $\alpha > 1$. Then

$$w(x,t) = \sum_{k=0}^{\infty} [R_k \sin \sqrt{k} v(x,t) + Q_k \cos \sqrt{k} v(x,t)] e^{-kt},$$
(10)

series (10) converges for $t \ge 0$, and equation (8) has the form

$$\sum_{i,j=1}^{n} a_{ij}(x,t) \frac{\partial v}{\partial x_i} \frac{\partial v}{\partial x_j} \frac{\partial w}{\partial t} = \sum_{i,j=1}^{n} a_{ij}(x,t) \frac{\partial^2 w}{\partial x_i \partial x_j} + \left[\frac{\sum_{i,j=1}^{n} a_{ij}(x,t) \frac{\partial v}{\partial x_i} \frac{\partial v}{\partial x_j} \frac{\partial v}{\partial t} - \sum_{i,j=1}^{n} a_{ij}(x,t) \frac{\partial^2 v}{\partial x_i \partial x_j}}{\sum_{i,j=1}^{n} a_{ij}(x,t) \frac{\partial v}{\partial x_i} \frac{\partial v}{\partial x_j}} \right] \sum_{i,j=1}^{n} a_{ij}(x,t) \frac{\partial w}{\partial x_i} \frac{\partial v}{\partial x_j}.$$

As was observed many times [4-7], the representations of solutions and coefficients found here can be used in the direct and inverse problems of mathematical physics.

ACKNOWLEDGMENTS

The authors were supported by the Mathematical Division of the Russian Academy of Sciences (project no. 1.3.1–2012) and the Russian Foundation for Basic Research (project no. 12–01–0074).

REFERENCES

- 1. Yu. E. Anikonov, "Constructive Methods of Studying the Inverse Problems of Evolution Equations," Sibirsk. Zh. Industr. Mat. **11** (2), 3–20 (2008) [J. Appl. Indust. Math. **3** (3), 301–317 (2009)].
- 2. Yu. E. Anikonov, "Inverse Problems and Classes of Solutions of Evolution Equations," J. Inverse Ill-Posed Problems **11** (1), 1–26 (2003).
- 3. Yu. E. Anikonov and M. V. Neshchadim, "Analytical Methods of the Theory of Inverse Problems for Parabolic Equations," Vestnik Novosib. Gos. Univ. **11** (3), 20–35 (2011) [J. Math. Sci. (New York) **195** (6), 754–770 (2013)].
- Yu. E. Anikonov, N. B. Ayupova, V. G. Bardakov, V. P. Golubyatnikov, and M. V. Neshchadim, "Inversion of Mappings and Inverse Problems," Siberian Electron. Math. Rep. 9, 382–432 (2012) [see URL: http://semr.math.nsc.ru/v9/p382-432.pdf].
 Yu. E. Anikonov and M. V. Neshchadim, "Representations for the Solutions and Coefficients of Second-
- Yu. E. Anikonov and M. V. Neshchadim, "Representations for the Solutions and Coefficients of Second-Order Differential Equations," Sibirsk. Zh. Industr. Mat. 15 (4), 17–23 (2012) [J. Appl. Indust. Math. 7 (1), 15–21 (2013)].
- 6. Yu. E. Anikonov and M. V. Neshchadim, "Representations for the Solutions and Coefficients of Evolution Equations," Sibirsk. Zh. Industr. Mat. **16** (2), 40–49 (2013) [J. Appl. Indust. Math. **7** (3), 326–334 (2013)].
- Yu. E. Anikonov and M. V. Neshchadim, "On Analytical Methods in the Theory of Inverse Problems for Hyperbolic Equations. I," Sibirsk. Zh. Industr. Mat. 14 (1), 27–39 (2011) [J. Appl. Indust. Math. 5 (4), 506–518 (2011)].
- 8. E. Hopf, "The Partial Differential Equation $u_t + uu_x = \mu u_{xx}$," Comm. Pure Appl. Math. 3, 201–230 (1950).
- 9. J. D. Cole, "On a Quasi-Linear Parabolic Equation Occurring in Aerodynamics," Quart. Appl. Math. 9 (3), 225–236 (1951).
- 10. H. Bateman and A. Erdelyi, *Higher Transcendential Functions* (McGraW-Hill Book Comp., New York, 1953; Nauka, Moscow, 1973).