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In this paper, we present some new identities and representations for solutions to the second-order
differential equations that generalize those available [1-3] and go on with the study of the general problem
(formulated in [2]) of the constructive construction of partial differential equations from a given class of
functions determining the solutions of these equations (see also [1–7]).

Theorems 1–3 of the article are directly related to the Hopf–Cole transformation which makes it
possible to obtain some multidimensional representations of the solutions and coefficients of Burgers-
type nonlinear equations. Theorem 4 is a new version of the application of a fundamental system of
solutions to a second-order linear ordinary differential equation with variable parameter for obtaining
a representation of the solution and the coefficients of a second-order multidimensional equation with
considerable arbitrariness.

We first give results for a Burgers-type multidimensional equation with parameter p applying the
Hopf–Cole transformation and its generalization. As is known [8, 9], the Hopf–Cole transformation
consists in that if a function F (y, t, p) �= 0 is a solution to the parabolic equation with parameter p

∂F

∂t
= p

∂2F

∂y2

then the function w(y, t, p) = −2p
∂F

∂y

/
F satisfies the nonlinear Burgers equation

∂w

∂t
= p

∂2w

∂y2
− w

∂w

∂y

with the same parameter p. Note that the variable parameter makes it possible to obtain, as p → 0,
solutions to the classical Hopf equation

∂w

∂t
+ w

∂w

∂y
= 0,

which is important for applications.
Suppose that aij(x, t), aij = aji, are continuous functions i, j = 1, 2, . . . , n, x ∈ D ⊂ R

n, and
t0 < t < t1, where D is a domain in the real Euclidean space R

n.
A generalization of the Hopf–Cole transformation to the multidimensional case is given by
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12 ANIKONOV, AYUPOVA

Theorem 1. Let F (y, t, p) �= 0 be a solution to the parabolic equation with parameter p

∂F

∂t
= p

∂2F

∂y2
, y ∈ R

n, t0 < t < t1,

and let v(x, t) be a twice continuously differentiable function such that

n∑
i,j=1

aij(x, t)
∂v

∂xi

∂v

∂xj
�= 0,

which is arbitrary in all other respects. Then

w(x, t, p) = −2p
∂F

∂y

/
F

∣∣∣∣
y=v(x,t)

satisfies the following equation independent of F :
⎛
⎝ n∑

i,j=1

aij(x, t)
∂v

∂xi

∂v

∂xj

⎞
⎠ ∂w

∂t
= p

n∑
i,j=1

aij(x, t)
∂2w

∂xi∂xj
− w

n∑
i,j=1

aij(x, t)
∂w

∂xi

∂v

∂xj

+

⎡
⎢⎢⎢⎣

n∑
i,j=1

aij(x, t) ∂v
∂xi

∂v
∂xj

∂v
∂t − p

n∑
i,j=1

aij(x, t) ∂2v
∂xi∂xj

n∑
i,j=1

aij(x, t) ∂v
∂xi

∂v
∂xj

⎤
⎥⎥⎥⎦

n∑
k,l=1

akl(x, t)
∂w

∂xk

∂v

∂xl
. (1)

The proof is immediate from the following relations obtained by the representation

w(y, t, p) = −2p
∂F

∂y

/
F

∣∣∣∣
y=v(x,t)

with account taken of the equation
∂F

∂t
= p

∂2F

∂y2
and the equalities

∂w

∂t
= −2p

(
∂2F

∂y2

∂v

∂t
+

∂2F

∂y∂t

)/
F + 2p

(
∂F

∂y

∂v

∂t
+

∂F

∂t

)
∂F

∂y

/
F 2,

∂w

∂xi
=

(
−2p

∂2F

∂y2

/
F + 2p

(
∂F

∂y

)2 /
F 2

)
∂v

∂xi
,

w
∂w

∂xi
= −2p

F

∂F

∂y

(
−2p

∂2F

∂y2

/
F + 2p

(
∂F

∂y

)2 /
F 2

)
∂v

∂xi
,

∂2w

∂xi∂xj
=

∂2v

∂xi∂xj

(
−2p

∂2F

∂y2

/
F + 2p

(
∂F

∂y

)2 /
F 2

)

+

(
−2p

∂3F

∂y3

/
F + 6p

∂2F

∂y2

∂F

∂y

/
F 2 − 4p

(
∂F

∂y

)3 /
F 3

)
∂v

∂xi

∂v

∂xj
.

For aij = δij , n = 1, and v(x, t) = x, from equation (1) we obtain the one-dimensional Burgers
equation. Assume in what follows that

n∑
i,j=1

aij(x, t)
∂v

∂xi

∂v

∂xj
�= 0, x ∈ D ⊂ R

n, t1 < t < t2,
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without further specification. Of interest are the more general solutions w; namely, if we suppose that
w(x, t, p) is the root of the equation

g(w(x, t, p), p) = −2p
∂F

∂y

/
F

∣∣∣∣
y=v(x,t)

,

where g(z, p) is a twice continuously differentiable function,
∂g

∂z
(z, p) �= 0, and F is three times con-

tinuously differentiable then equation (1) has a substantially nonlinear and more general form which is
convenient for applications.

We have

Theorem 2. Suppose that g(z, p) and v(x, t) are twice continuously differentiable functions,
while F (y, t, p) �= 0 is an arbitrary three times continuously differentiable function,

α < p < β, z ∈ R
1, y ∈ R

1, x ∈ D ⊂ R
n, t1 < t < t2.

Then the function w(x, t, p) that is the root of the equation

g(w(x, t, p), p) = −2p
∂F

∂y

/
F

∣∣∣∣
y=v(x,t)

satisfies the equation

n∑
i,j=1

aij(x, t)
∂v

∂xi

∂v

∂xj

∂w

∂t
= p

g′′zz(w, p)
g′z(w, p)

n∑
i,j=1

aij(x, t)
∂w

∂xi

∂w

∂xj

+ p

n∑
i,j=1

aij(x, t)
∂2w

∂xi∂xj
− g(w, p)

n∑
i,j=1

aij(x, t)
∂w

∂xi

∂v

∂xj

+

⎡
⎢⎢⎢⎣

n∑
i,j=1

aij(x, t) ∂v
∂xi

∂v
∂xj

∂v
∂t − p

n∑
i,j=1

aij(x, t) ∂2v
∂xi∂xj

n∑
i,j=1

aij(x, t) ∂v
∂xi

∂v
∂xj

⎤
⎥⎥⎥⎦

n∑
k,l=1

akl(x, t)
∂w

∂xk

∂v

∂xl

− 2p
g′z(w, p)

[
∂

∂y

(
∂F

∂t
− p

∂2F

∂y2

)/
F − ∂F

∂y

(
∂F

∂t
− p

∂2F

∂y2

)/
F 2

]∣∣∣∣
y=v(x,t)

n∑
i,j=1

aij(x, t)
∂v

∂xi

∂v

∂xj
. (2)

Proof. Differentiating g(w(x, t, p), p) = −2p
∂F

∂y

/
F

∣∣∣∣
y=v(x,t)

, we infer

g′z
∂w

∂t
= −2p

(
∂2F

∂y2

/
F −

(
∂F

∂y

)2 /
F 2

)
∂v

∂t
− 2p

(
∂2F

∂y∂t

/
F − ∂F

∂y

∂F

∂t

/
F 2

)
, (3)

g′z
∂w

∂xi
= −2p

(
∂2F

∂y2

/
F −

(
∂F

∂y

)2 /
F 2

)
∂v

∂xi
, (4)

g′z
∂2w

∂xi∂xj
+ g′′z

∂w

∂xi

∂w

∂xj
= −2p

(
∂3F

∂y3

/
F − 3

∂2F

∂y2

∂F

∂y

/
F 2 + 2

(
∂F

∂y

)3 /
F 3

)
∂v

∂xi

∂v

∂xj

− 2p

(
∂2F

∂y2

/
F −

(
∂F

∂y

)2 /
F 2

)
∂2v

∂xi∂xj
. (5)

Inserting (3)–(5) into (2), we prove Theorem 2.
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14 ANIKONOV, AYUPOVA

Theorem 2 obviously implies

Theorem 3. Suppose that g(z, p) and v(x, t) are twice continuously differentiable functions,

g′z(z, p) �= 0, and F (y, t, p) �= 0 is a solution to the parabolic equation
∂F

∂t
= p

∂2F

∂y2
. Then the

function w(x, t, p) that is the root of the equation

g(w(x, t, p), p) = −2p
∂F

∂y

/
F

∣∣∣∣
y=v(x,t)

,

satisfies the following equation with the coefficients independent of F :

n∑
i,j=1

aij(x, t)
∂v

∂xi

∂v

∂xj

∂w

∂t
= p

g′′zz(w, p)
g′z(w, p)

n∑
i,j=1

aij(x, t)
∂w

∂xi

∂w

∂xj

+ p
n∑

i,j=1

aij(x, t)
∂2w

∂xi∂xj
− g(w, p)

n∑
i,j=1

aij(x, t)
∂w

∂xi

∂v

∂xj

+

⎡
⎢⎢⎢⎣

n∑
i,j=1

aij(x, t) ∂v
∂xi

∂v
∂xj

∂v
∂t − p

n∑
i,j=1

aij(x, t) ∂2v
∂xi∂xj

n∑
i,j=1

aij(x, t) ∂v
∂xi

∂v
∂xj

⎤
⎥⎥⎥⎦

n∑
k,l=1

akl(x, t)
∂w

∂xk

∂v

∂xl
.

Now, consider the questions of using the fundamental systems of solutions for representing the solu-
tions and coefficients of the second-order multidimensional evolution equations. To this end, consider the
second-order linear ordinary differential equation with meromorphic coefficients and variable parameter
p ≥ 0:

F ′′(z) + b(z)F ′ + (pa(z) + c(z))F (z) = 0. (6)

Let Z1(z, p), Z2(z, p) be a fundamental system of solutions to (6). Give an example of constructing
Z1(z, p) and Z2(z, p). Consider the hypergeometric equation

z(1 − z)F ′′ + (γ − (α + β + 1)z)F ′ − αβF (z) = 0, γ > 0, (7)

with the fundamental system of solutions Z1 and Z2 [10]:

Z1(α, β, γ, z) =
Γ(γ)

Γ(α)Γ(β)

∞∑
k=0

Γ(α + k)Γ(β + k)
Γ(γ + k)

zk

k!
, |z| < 1,

Z2(α, β, γ, z) = z1−γZ1(α − γ + 1, β − γ + 1, 2 − γ, z), |z| < 1.

If in equation (7) we assume the parameters γ = a0 > 0 and −(α + β + 1) = b0 to be fixed and the
values −αβ = p ≥ 0 to be variable then, for z �= 0 and |z| < 1, equation (7) can be rewritten as

F ′′ +
a0 + b0z

z(1 − z)
F ′ +

p

z(1 − z)
F (z) = 0

for

b(z) =
a0 + b0z

z(1 − z)
, a(z) =

1
z(1 − z)

, c(z) = 0

with the explicitly computed Z1(z, p) and Z2(z, p).
As above, denote by aij(x, t), v(x, t), aij = aji, x ∈ D ⊂ R

n, and t1 < t < t2 respectively the
continuously differentiable functions with the condition

n∑
i,j=1

aij(x, t)
∂v

∂xi

∂v

∂xj
�= 0,
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and designate as Q(p) and R(p) with p ≥ 0 the integrable functions decreasing at infinity rapidly enough.
We have

Theorem 4. Suppose that the function

w(x, t) =

∞∫
0

[Q(p)Z1(v(x, t), p) + R(p)Z2(v(x, t), p)]e−pt dp, x ∈ D ⊂ R
n, t1 < t < t2,

twice differentiable under integral is well defined. Then it satisfies the equation

a(v)
n∑

i,j=1

aij(x, t)
∂v

∂xi

∂v

∂xj

∂w

∂t
=

n∑
i,j=1

aij(x, t)
∂2w

∂xi∂xj
+ c(v)

n∑
i,j=1

aij(x, t)
∂v

∂xi

∂v

∂xj
w

+

⎡
⎢⎢⎢⎣

a(v)
n∑

i,j=1
aij(x, t) ∂v

∂xi

∂v
∂xj

∂v
∂t −

n∑
i,j=1

aij(x, t) ∂2v
∂xi∂xj

n∑
i,j=1

aij(x, t) ∂v
∂xi

∂v
∂xj

+ b(v)

⎤
⎥⎥⎥⎦

n∑
i,j=1

aij(x, t)
∂w

∂xi

∂v

∂xj
. (8)

Proof. Let F (z, p) be an arbitrary solution to (6) with parameter p, 0 ≤ p < ∞, and let α(p) be a suitable
function. Consider the function

u(x, t) =

∞∫
0

α(p)F (v(x, t), p)e−pt dp

and show that it satisfies (8). We have

∂u

∂t
=

∞∫
0

α

[
F ′ ∂v

∂t
− Fp

]
e−pt dp,

∂u

∂xi
=

∞∫
0

αF ′ ∂v

∂xi
e−pt dp,

∂2u

∂xi∂xj
=

∞∫
0

α

[
F ′′ ∂v

∂xi

∂v

∂xj
+ F ′ ∂2v

∂xi∂xj

]
e−pt dp.

Hence,

a(v)
n∑

i,j=1

aij(x, t)
∂v

∂xi

∂v

∂xj

∂v

∂t

∞∫
0

αF ′ ∂v

∂t
e−pt dp − a(v)

n∑
i,j=1

aij(x, t)
∂v

∂xi

∂v

∂xj

∞∫
0

αFpe−pt dp

−

⎧⎨
⎩

n∑
i,j=1

aij(x, t)
∂v

∂xi

∂v

∂xj

∞∫
0

αF ′′e−pt dp +
n∑

i,j=1

aij(x, t)
∂2v

∂xi∂xj

∞∫
0

αe−pt dp

+ c(v)
n∑

i,j=1

aij(x, t)
∂v

∂xi

∂v

∂xj

∞∫
0

αF (v(x, t), p)e−pt dp
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16 ANIKONOV, AYUPOVA

+

⎡
⎢⎢⎢⎣

a(v)
n∑

i,j=1
aij(x, t) ∂v

∂xi

∂v
∂xj

∂v
∂t −

n∑
i,j=1

aij(x, t) ∂2v
∂xi∂xj

n∑
i,j=1

aij(x, t) ∂v
∂xi

∂v
∂xj

+ b(v)

⎤
⎥⎥⎥⎦

×
n∑

i,j=1

aij(x, t)
∂v

∂xi

∂v

∂xj

∞∫
0

αF ′e−pt dp

⎫⎬
⎭

=
n∑

i,j=1

aij(x, t)
∂v

∂xi

∂v

∂xj

∞∫
0

α(p)
[
F ′′(z, p) + b(z)F ′(z, p) + (pa(z) + c(z))F (z, p)

]∣∣
z=v(x,t)

e−pt dp.

Choosing Q(p) and R(p) as α(p) and Z1 and Z2 as F , we completely prove Theorem 4.

In view of the representation of a solution w(x, t) to (6) by the formula of Theorem 4

w =

∞∫
0

[Q(p)Z1(v(x, t), p) + R(p)Z2(v(x, t), p)]e−pt dp,

a possibility opens for applying the theory of second-order linear differential equations with some
constant parameters. We confine ourselves to just one example.

Suppose that b(z) = 0, a(z) = 1, and c(z) = 0 in (6); i.e., F ′′ + pF = 0. We have

Z1(z, p) = sin
√

p z, Z2(z, p) = cos
√

p z.

Assume that

R(p) =
∞∑

k=0

Rkδ(p − k), Q(p) =
∞∑

k=0

Qkδ(p − k),

Rk and Qk are constant, |Rk| ≤ 1/kα, and |Qk| ≤ 1/kα with α > 1. Then

w(x, t) =
∞∑

k=0

[Rk sin
√

kv(x, t) + Qk cos
√

kv(x, t)]e−kt, (10)

series (10) converges for t ≥ 0, and equation (8) has the form

n∑
i,j=1

aij(x, t)
∂v

∂xi

∂v

∂xj

∂w

∂t
=

n∑
i,j=1

aij(x, t)
∂2w

∂xi∂xj

+

⎡
⎢⎢⎢⎣

n∑
i,j=1

aij(x, t) ∂v
∂xi

∂v
∂xj

∂v
∂t −

n∑
i,j=1

aij(x, t) ∂2v
∂xi∂xj

n∑
i,j=1

aij(x, t) ∂v
∂xi

∂v
∂xj

⎤
⎥⎥⎥⎦

n∑
i,j=1

aij(x, t)
∂w

∂xi

∂v

∂xj
.

As was observed many times [4–7], the representations of solutions and coefficients found here can
be used in the direct and inverse problems of mathematical physics.
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