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Abstract—We consider the bilevel mixed integer location and pricing problems. Each problem is
determined by the optimization problems of the upper and lower levels of which the first describes the
choice of location and pricing, while the second models the reaction of the customers on the upper-
level solution. The article focuses on studying the computational complexity of bilevel problems with
various pricing strategies: uniform, mill, and discriminatory pricing. We show that, for an arbitrary
pricing strategy, the corresponding optimization problem is NP-hard in the strong sense, belongs to
the class Poly-APX, and is complete in it with respect to AP-reducibility.
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INTRODUCTION

The processes of facility location and pricing are usually studied separately and independently of each
other [3, 9, 13, 14, 17], mainly because they lie at different levels of planning. The processes of location
are long-term, while the processes of pricing are part of short-term planning. As a consequence, in the
majority of cases we choose firstly locations and then prices. However, already [15] pointed out that the
separation of location and pricing is unacceptable because the facilities (shops) must be placed taking
demand into account, which in some way depends on the prices. On the other hand, decisions on the
best prices depend on the facility locations. Thus, the separation of location and pricing in the model
can make it impossible to obtain the best variants of location and prices. Moreover, even in the situation
when there is no need to know the exact prices on the product produced, but it suffices to know only the
price range in the chosen niche of the market to match the competitors, the separation of location and
pricing is also pointless [6]. Therefore, the modern approaches to the choice of an efficient mechanism
for the interaction between the processes of facility location and pricing rest on their joint analysis in the
framework of one model [5, 6, 11, 16].

But to estimate the quality of the solutions made it is also necessary to be able to adequately
estimate the reaction of the market and, in particular, customers to the proposed variants of location
and pricing. Aiming at that, we find it convenient to model the whole process as a bilevel programming
problem [2, 12].

The article is organized as follows: in Section 1 we give the mathematical statements of the problems
and in Section 2 present the results.
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1. STATEMENTS OF THE PROBLEMS

Consider the following Stackelberg game. The two types of players participate in the game: the
Leader (manufacturer) and the Followers (customers). The manufacturer makes the first move by
opening (placing) a facility to manufacture certain homogeneous products and puts a price on the
product. Then each customer chooses an open facility at which his total expenses on buying the product
and transportation are minimal and makes a purchase in the case that his budget allows these expenses.
The goal of the game is to open the facilities and establish the prices for which the manufacturer’s
revenue (the sum of the prices on the goods bought by the customers) minus the expenses on opening
the facilities is maximal.

We consider only the cooperative version of this game. Assume that if the expenses of some customer
are minimal at several facilities then he chooses the nearest facility; that is, from the manufacturer’s point
of view, the chosen facility will have the greatest price of the product. This means that the customers
always make choices maintaining the manufacturer’s profit.

We confine the discussion to just three pricing strategies [15]: mill pricing, uniform pricing, and
discriminatory pricing.

When the first pricing strategy is used, prices are set individually at each open facility. For the uniform
pricing, the same price is set at all open facilities. The discriminatory pricing is the strategy which can
infringe upon the interests of some groups of customers; that is, at each open facility different prices may
be set for different customers.

Introduce the notation:
I = {1, . . . , n} is the set of possible locations of open facilities;
J = {1, . . . ,m} is the set of customers;
bj ≥ 0 is the budget of customer j;
cij ≥ 0 is the matrix of transportation expenses of customers;
fi ≥ 0 is the cost of opening a facility at location i ∈ I (facility i);

yi =

{
1, if facility i is open,

0, otherwise;
xij =

{
1, if facility i serves customer j,

0, otherwise.

We use this notation in the formulations of all three problems we study: LDP (location and discriminator
pricing) problem, LMP (location and mill pricing) problem, and LUP (location and uniform pricing)
problem, which correspond to the three pricing strategies described above. In addition, introduce the
following notation different for each formulation:

pij ≥ 0 is the price of the product at facility i for customer j;
pi ≥ 0 is the price of the product at facility i (the same for all customers);
p ≥ 0 is the price of the product (the same at all facilities for all customers).
Using this notation, express the Stackelberg game in the case of discriminatory pricing as the

following (LDP) problem of bilevel quadratic programming:∑
i∈I

∑
j∈J

pijxij −
∑
i∈I

fiyi → max
p,x,y

,

pij ≥ 0, yi ∈ {0, 1}, i ∈ I, j ∈ J,

where the vector x stands for the optimal solution to the lower-level problem:∑
i∈I

∑
j∈J

(bj − cij − pij)xij → max
x

,

∑
i∈I

xij ≤ 1, j ∈ J,

xij ≤ yi, i ∈ I, j ∈ J,

xij ∈ {0, 1}, i ∈ I, j ∈ J.
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The objective function of the problem determines the manufacturer’s revenue. At the lower-level the
objective function expresses the budget saved by customers, while the constraints ensure that each
customer is served at most at one open facility. These constraints and the definition of objective function
also imply that the customer makes a purchase provided that his budget allow it.

Basing on LDP problem, we describe LMP and LUP problems. Refer as the location and mill
pricing problem (LMP) to the LDP problem with the variable pi, instead of pij , and as the location
and uniform pricing problem (LUP) to the LDP problem with the variable p instead of pij .

The cooperativity condition introduced above enables us to talk about optimal solutions to LDP,
LMP, and LUP problems. In the case of equal expenses, each customer chooses the nearest facility
in accordance with the matrix of transportation expenses, which enables the manufacturer to calculate
his revenue explicitly.

Express the bilevel problem as a quadratic programming problem with mixed variables:∑
i∈I

∑
j∈J

pijxij −
∑
i∈I

fiyi → max
p,x,y

, (1)

∑
i∈I

(bj − cij − pij)xij ≥ 0, j ∈ J, (2)

∑
i∈I

(cij + pij)xij ≤ ckj + pkj, k ∈ I, j ∈ J, (3)

∑
i∈I

xij ≤ 1, j ∈ J, (4)

xij ≤ yi, i ∈ I, j ∈ J, (5)

pij ≥ 0, xij, yi ∈ {0, 1}, i ∈ I, j ∈ J. (6)

The objective function (1) determines the manufacturer’s revenue. The constraints (2) ensure that the
customers stay within their budgets. The fulfillment of constraints (3) leads to the minimization of the
total expenses of each customer on purchases and transportation. The constraints (4) mean that each
customer can be served at most at one facility. The constraints (5) imply that customers can be served
only at open facilities.

Keep the same acronym LDP for this reformulation of the bilevel problem. Similarly we obtain the
equivalent one-level representations for the bilevel location problems with uniform pricing and mill
pricing. Also we use the acronyms LMP and LUP for the corresponding one-level reformulations of
these bilevel problems.

Assume henceforth that all input data fi, bj , and cij amounts to rational numbers.

2. COMPUTATIONAL COMPLEXITY

A key question in studying the complexity of finding an optimal or even an feasible solution to an
optimization problem is the relation of this problem to the polynomial hierarchy of recognition problems.
Usually we consider only the zeroth and first levels of this hierarchy, namely, the classes P, NP, and
co-NP.

Theorem 1. The LDP, LMP, and LUP problems are NP-hard problems in the strong sense.

Proof. Consider the minimal covering problem [1] NP-hard in the strong sense.
Take a set M = {1, . . . ,m} and a tuple of its subsets M1, . . . ,Mn such that

⋃
i∈N Mi = M , where

N = {1, . . . , n}. A collection Ñ ⊂ N of subsets Mi, i ∈ Ñ is called a covering of M whenever⋃
i∈Ñ

Mi = M . Assign unit weight to each Mi. We need to find a covering of minimal weight.
Reduce the minimal covering problem to the LDP, LMP, and LUP problems, that is, construct the

functions g and h such that g constructs from input t of the minimal covering problem some input v of the
LDP, LMP, or LUP problem whose length is bounded by a polynomial in the length |t| of t in polynomial
time with respect to |t|, while h constructs from an optimal solution to the LDP, LMP, or LUP problem
for input v an optimal solution to problem t in polynomial time with respect to |t|.
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To begin with, construct from an arbitrary input of the minimal covering problem an input of the
LDP, LMP, or LUP problem; that is, define g. Suppose that I := N is the set of possible locations to
open facilities and J := M is the set of customers. Define the budget of each customer: bj := 2 for j ∈ J .
Put cij := 1 for i ∈ I and j ∈ Mi. Otherwise, put transportation expenses equal to 2 and thus block the
remaining transportation paths. Suppose that fi := 1 for i ∈ I. Put Ĩ := {i ∈ I : yi = 1}.

Lemma 1. The LDP, LMP, and LUP problems for the input g(t) are equivalent to the problem
|J | − |Ĩ| → max for Ĩ ⊆ I under the constraint

⋃
i∈Ĩ

Mi = J .

Proof. Verify firstly that there exist optimal solutions (pLDP, xLDP, yLDP), (pLMP, xLMP, yLMP), and
(pLUP, xLUP, yLUP) to the LDP, LMP, and LUP problems for the input g(t) with pLDP

ij = pLMP
i =

pLUP = 1, for i ∈ I and j ∈ J . Consider an arbitrary optimal solution (pLDP, xLDP, yLDP) to the LDP
problem with the input g(t) and a tuple (p̃LDP, xLDP, yLDP), where p̃LDP

ij = 1 for i ∈ I and j ∈ J .
Checking all constraints, we easily see that this tuple is an feasible solution. The constraints of the
LDP problem imply that if xLDP

ij = 1 then pLDP
ij ≤ 1. We obtain

wLDP(pLDP, xLDP, yLDP) =
∑
i∈I

∑
j∈J

pLDP
ij xLDP

ij −
∑
i∈I

yLDP
i

≤
∑
i∈I

∑
j∈J

xLDP
ij −

∑
i∈I

yLDP
i = wLDP(p̃LDP, xLDP, yLDP),

where wLDP is the objective function (1). Hence, (p̃LDP, xLDP, yLDP) is an optimal solution. For the
LMP and LUP problems the argument is similar.

It follows that in order to find an optimal solution to the LDP, LMP, and LUP problems for the input
g(t), the brute-force search of feasible solutions of the form (1, . . . , 1, x, y) suffices. Furthermore, if some
customer j ∈ Mi is not served then assign him to facility i. If this facility is closed then open it. At that,
the value of the objective function cannot decrease. Thus, these particular cases are equivalent to the
problem:

|J | − |Ĩ | → max
Ĩ⊆I

under the constraint
⋃
i∈Ĩ

Mi = J.

The proof of Lemma 1 is complete.

According to Lemma 1, the maximum of the particular cases described above of the problems under
study is attained on Ĩ = Ñ∗, a covering of minimal weight, that is, when {i ∈ I : yi = 1} = Ñ∗.

This completes the proof of Theorem 1.

There is an even simpler proof that the LMP problem is NP-hard. It suffices to consider its particular
case in which all facilities are already constructed, that is, on assuming that fi = 0. A reduction of the
minimal covering problem to this particular case of the LMP problem is described in [3].

Consider the complete weighted graph Kn+m in which the vertices are customers and the possible
locations to open facilities, while the weights of edges are transportation expenses. Denote LDP, LMP,
and LUP on Kn+m by LDPK , LMPK , and LUPK . Then Theorem 1, provided that cik = 2, where either
i, k ∈ I or i, k ∈ J , implies

Corollary 1. The LDPK , LMPK , and LUPK problems are NP-hard in the strong sense even if
transportation expenses satisfy the triangle inequality.

Introduce some notation that correspond to an arbitrary optimization problem A with a criterion for
maximizing the objective function:

L(A) is a set of instances of problem A (refer to an arbitrary example t ∈ L(A) as a problem t);
OPTA(t) is the optimal value of the objective function in t ∈ L(A);
DA(t) is the set of feasible solutions to t ∈ L(A);
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FA(t, s) is the value of the objective function in a problem t ∈ L(A) on a solution s ∈ DA(t).

Theorem 1 implies, on assuming that P �=NP, that finding an optimal solution of either the LDP,
or LMP, or LUP problem becomes rather laborious as the dimension grows. Then it makes sense
to consider the question of finding a “good” feasible solution. Usually in this case we consider the
complexity of the problem from the viewpoint of constructing an efficient algorithm for finding an
approximate solution with a guaranteed accuracy estimate, that is, the position of the optimization
problem in the hierarchy of approximation classes [7]

PO ⊆ FPTAS ⊆ PTAS ⊆ APX ⊆ Log-APX ⊆ Poly-APX ⊆ Exp-APX ⊆ NPO.

Each of these classes describes a certain quality of approximation which its constituent optimization
problems enjoy. This hierarchy is used to describe the properties of problems in the class NPO. We can
describe it meaningfully as the class of optimization problems for which the corresponding recognition
problem is of class NP. The class PO is formed by the problems for each of which some exact polynomial
algorithm for solution exists. The class FPTAS consists of the problems for which fully polynomial
approximate schemes for solution exist, while the class PTAS is formed by the problems for which
some polynomial approximate schemes for solution exist. The classes APX, Log-APX, Poly-APX,
and Exp-APX consist of the problems for which there exist polynomial approximate algorithms for
solution with constant, logarithmic, polynomial, and exponential estimates for the accuracy of error
respectively. In the last three cases, the values of the above-mentioned functions depend on the length
of the expression for the input data of the problem. For a formal definition, see [7, 8]. It is also known,
on assuming that P �=NP, that the inclusions mentioned above among the classes are proper [7, 8, 10].

In the definition of this hierarchy, the error of a solution s ∈ DA(t) to the problem A with an input
t ∈ L(A) is determined as

RA(t, s) = max
{

FA(t, s)
OPTA(t)

,
OPTA(t)
FA(t, s)

}
≥ 1.

It is clear that if A is an optimization problem with a criterion for the maximization of the objective
function then

RA(t, s) =
OPTA(t)
FA(t, s)

.

It is shown in [4] that, for a fixed location, the LMP problem belongs to the class Log-APX, while
LDP and LUP problems are polynomially solvable. The following establishes in some sense an “upper
bound” on the position of the problems under study in the approximation hierarchy:

Lemma 2. The LDP, LMP, and LUP problems belong to the class Poly-APX.

Proof. Consider particular cases of these problems. Denote by L1DP, L1MP and L1UP the corre-
sponding problems with at most one open facility. It is shown in [3] that L1DP, L1MP, and L1UP are
polynomially solvable. We use the optimal solutions to these problems as feasible solutions to the original
problems. Consider only LDP since the proofs for LMP and LUP are similar.

It is obvious that an arbitrary optimal solution to the L1DP problem is an feasible solution to the LDP
problem. Verify that

OPTLDP(t) ≤ n ∗ OPTL1DP(t),

where n = |I|. Take an arbitrary feasible solution (ỹ, p̃, x̃) to the LDP problem. Put

i∗ = arg max
i∈I : ỹi=1

{∑
j

p̃ij x̃ij − fi

}
,

yi∗
i =

{
1, if i = i∗,

0, otherwise,
xi∗

ij =

{
x̃ij, if i = i∗,

0, otherwise.
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Then (yi∗ , p̃, xi∗) is an feasible solution to the L1DP problem. In addition, the following relation holds by
definition:

FLDP(t, (ỹ, p̃, x̃)) =
∑
i,j

p̃ijx̃ij −
∑

i

fiỹi ≤ n ∗
( ∑

i,j

p̃ijx
i∗
ij −

∑
i

fiy
i∗
i

)
≤ n ∗ OPTL1DP(t).

We infer that the optimal solution to the L1DP problem is an feasible solution to the LDP problem with
the accuracy estimate n. The proof of Lemma 2 is complete.

Corollary 2. The LDPK , LMPK and LUPK problems belong to the class Poly-APX even if
transportation expenses satisfy the triangle inequality.

Lemma 2 presents some efficient algorithms for finding feasible solutions to the LDP, LMP, and LUP
problems with accuracy estimates bounded by polynomials in the length of the input of the corresponding
problems. However, this result does not guarantee the absence of polynomial algorithms with better
estimates corresponding to the lower-lying classes of the hierarchy. Theorem 2 enables us to solve this
problem.

Recall the definition of AP-reducibility [7]. Take two problems A and B of class NPO with a criterion
for the maximization of the objective function. Say that A AP-reduces to B if and only if there exist two
functions ϕ and ρ and a positive constant α such that

(i) ϕ(t, r) ∈ L(B) for all t ∈ L(A) and r > 1 and ϕ is computable in polynomial time with respect to
the length |t| of the input t and r;

(ii) ρ(t, s, r) ∈ DA(t) for all t ∈ L(A), r > 1, and s ∈ DB(ϕ(t, r)), and ρ is computable in polynomial
time with respect to |t|, the length of the solution s, and r;

(iii) it follows from RB(ϕ(t, r), s) ≤ r that RA(t, ρ(t, s, r)) ≤ 1 + α(r − 1) for all t ∈ L(A), r > 1, and
s ∈ DB(ϕ(t, r)).

Recall the definition of closed subclass of the class NPO with respect to some reducibility. A sub-
class C of the class NPO is closed under reducibility Γ whenever the Γ-reducibility of a problem A
to a problem B ∈ C implies that A ∈ C. It is known, on assuming that P �=NP, that the inclusions of
classes in the approximation hierarchy are proper, while the classes FPTAS, PTAS, APX, and Log-
APX are closed under AP-reducibility [7, 8, 10]. Since AP-reducibility is transitive, we infer that, for
every problem which is Poly-APX-complete with respect to AP-reducibility, on assuming that P �=NP
there exist no polynomial approximate algorithms with better estimates for the errors of feasible solutions
as compared to optimal solutions than the estimates bounded by a polynomial in the length of input.

Theorem 2. The LDP, LMP, and LUP problems are Poly-APX-complete with respect to AP-
reducibility.

Proof. Consider the maximal independent set problem which is Poly-APX-complete with respect to
AP-reducibility [7, 8, 10]. Take an arbitrary graph G = (V,E) with vertex set V and edge set E ⊆ V × V .
Refer as an independent set in G to a subset of vertices Ṽ ⊆ V with Ṽ × Ṽ ∩ E = ∅. Then we can
express the maximal independent set (MIS) problem as the optimization problem:

|Ṽ | → max
Ṽ ⊆V

with the constraint Ṽ × Ṽ ∩ E = ∅.

Consider the reduction of the MIS problem to the LDP problem which is easy to transform into
reductions to the LMP and LUP problems.

Given t ∈ L(MIS), construct ϕ(t) ∈ L(LDP) as follows: Put w(i) := |j ∈ V : (i, j) ∈ E|, which is
the number of vertices adjacent to vertex i. Given i ∈ I, consider the tuple of customers Ji such that
Ji ∩ Jk = ∅ for k ∈ I \ i, Ji ∩ E = ∅, as well as |Ji| = |I| − w(i) = n − w(i). Denote by ϕ(t) the input
in which

I := V, J :=
( ⋃

i∈I

Ji

)
∪ E,

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 8 No. 4 2014



580 PANIN, PLYASUNOV

the expenses to open an arbitrary facility are equal to n− 1, the budget of every customer equals 2, while
transportation expenses are defined as follows: at facility i, the transportation expenses cij are equal to 1
if j ∈ Ji or j = (i, k) ∈ E for some k ∈ I, and otherwise transportation expenses are equal to 2.

Take an feasible solution (y, p, x) to the LDP problem. Apply the following algorithm constructing
from (y, p, x) an auxiliary feasible solution (ỹ, p̃, x̃) to LDP, constructing from which a solution to the
MIS problem is easy. Put p̃ij := 1 for all i ∈ I and j ∈ J , as well as ỹ := y and x̃ := x. Inspect all
facilities i ∈ I one by one. If ỹi = 1 and facility i is unprofitable, that is,∑

j∈J

p̃ijx̃ij − fi ≤ 0,

then put ỹi := 0 and x̃ij := 0 for all j ∈ J .
By the choice of prices and inputs, the solution (ỹ, p̃, x̃) is feasible. It is also obvious that there is

no difference precisely between location and pricing problems this solution refers to. Observe also that
the set Ṽ = {i ∈ I : ỹi = 1} is independent, that is, an feasible solution to the MIS problem. Indeed,
if there exists a pair of distinct facilities i, k ∈ Ṽ then, since customer (i, k) can only be served at one
facility (assume for definiteness that facility i does not serve him), the profit at facility i equals∑

j∈J

p̃ijx̃ij − fi =
∑

j∈J\(i,k)

p̃ij x̃ij − fi ≤
∑

s=1,n−1

(1) − (n − 1) = 0

by the definitions of transportation and opening expenses. This implies that i �∈ Ṽ . We infer that Ṽ is an
independent set. The complexity of the algorithm described above equals O(n2), and so it is polynomial
in the length of the input of the MIS problem. Therefore, we determined the function ρ of the definition of
AP-reducibility. Put α = 1. For the reduction of the MIS problem to the LDP problem described above
to be AP-reduction, it remains to show that

if RB(ϕ(t, r), s) ≤ r, then RA(t, ρ(t, s, r)) ≤ 1 + α(r − 1).

By construction, the solution (ỹ, p̃, x̃) satisfies

FLDP(ϕ(t), (y, p, x)) ≤ FLDP(ϕ(t), (ỹ, p̃, x̃)).

The optimal value in the LDP problem equals n|V ∗| − (n − 1)|V ∗| = |V ∗|, where V ∗ is an optimal
solution to the MIS problem. Thus, we obtain

r ≥ RLDP(ϕ(t), (y, p, x)) ≥ OPTLDP(t)
FLDP(ϕ(t), (ỹ, p̃, x̃))

=
n|V ∗| − (n − 1/n)|V ∗|
n|Ṽ | − (n − 1/n)|Ṽ |

=
|V ∗|
|Ṽ |

.

Since α = 1, we obtain

RMIS(t, ρ(t, (y, p, x))) =
|V ∗|
|Ṽ |

≤ r.

The argument for the LMP and LUP problems is similar.
Thus, every problem of class Poly-APX is AP-reducible to location and pricing problems under study,

while Lemma 2 implies that they belong to the class Poly-APX.
The proof of Theorem 2 is complete.

If we put cik = 2, where either i, k ∈ I or i, k ∈ J , then Theorem 2 and Corollary 2 implies

Corollary 3. The LDPK , LMPK , and LUPK problems are Poly-APX-complete with respect to
AP-reducibility even if transportation expenses satisfy the triangle inequality.

CONCLUSION
The main result of this article is that the bilevel problems under study with uniform pricing, mill

pricing, and discriminatory pricing are Poly-APX-complete with respect to AP-reducibility. Thus, on
assuming that P �=NP, for this problems there cannot exist exact or approximate polynomial algorithms
with some better estimates for the error of feasible solutions as compared to optimal solutions than the
estimates bounded by a polynomial in the length of input.

Subsequently we expect to clarify the relations of these problems to the polynomial hierarchy.
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