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Abstract—Macromolecules densely end-grafted to a planar solid surface form a polymer monolayer (brush).
It is known that, in a good solvent, the density profile of monodisperse brushes parabolically decays on mov-
ing away from the plane. Using the analytical theory and computer simulation methods, we studied the struc-
ture of a polydisperse brush from homopolymers, for which molecular-mass distribution is set by the Schulz–
Zimm distribution. It is found that, at a polydispersity index of 1.143, the polymer brush in a good solvent has
a linear density profile. In this brush, the average distance of chain ends to the grafting plane is proportional
to the square of their contour length. If any chain of the brush is chemically modified so that it will be able to
adsorb on the grafting surface, then the adsorption of this chain inside the brush will proceed via a discontin-
uous first-order phase transition with the bimodal distribution of the order parameter (free end height). This
transition has unusual features: the energy of adsorption corresponding to the midpoint of the transition is
proportional to the contour length of the adsorbing chain N, the sharpness of the transition is proportional
to N2, and the height of the barrier separating adsorbed and desorbed states is proportional to N3. The pre-
dicted dependences are verified by computer simulation.
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INTRODUCTION
Polymer chains densely end-grafted to a planar

inert solid surface are called a polymer monolayer or
brush. For neighboring chains to overlap, the grafting
density should be fairly high. Polymer brushes have
long been used for the surface modification of various
objects. This phenomenon made it possible to
increase the protector and antipollution properties of
biomaterials [1, 2], found wide use in biomedicine [3],
improved tribological characteristics and reduced fric-
tion in machines [4, 5] and in the prosthetics of artifi-
cial joints [6], and enabled the synthesis of smart sur-
faces with stimuli-responsive mechanical and optical
characteristics [7]. At present, the use of polymer
brushes has formed a separate field of nanotechnolo-
gies [8, 9]. In our opinion, the rapid progress in this
field is in many respects is associated with the fact
that, already at early stages, the detailed theoretical
description of the structure of polymer brushes was
obtained which provided the possibility to evaluate
and predict their potential.

Polymer brushes have been the subject of extensive
theoretical study for more than three decades since
publication of the theoretical work by S. Alexander
[10], in which expression for the average thickness of
the monodisperse brush  was derived in

terms of the mean-field approach. In the Alexander
theory, the density profile of the brush was supposed
to be constant, except the near-wall region of order

. The first calculations of brushes in a good
solvent by the self-consistent field method were per-
formed in 1988 [11, 12]. It was shown that, as opposed
to predictions from the mean field theory, in the cen-
tral region of the brush, the density profile decays par-
abolically on moving away from the grafting plane,
while in the monolayer decoration it decays exponen-
tially. Another unexpected point was abnormally high
fluctuations of brush free ends—they extended to dis-
tances on the order of , that is, the whole thickness
of the monolayer.

The results of these calculations induced E.B. Zhu-
lina, O.V. Borisov, and V.A Pryamistin to develop the
first analytical self-consistent field theory of mono-
disperse brushes immersed in a good solvent [13, 14],
which agrees well with numerical calculations [11, 12].
Remarkably, simultaneously and quite independently,
American researchers S.T. Milner, T.A. Witten, and
M. Cates advanced the analogous theory of mono-
disperse polymer brushes with a parabolic density pro-
file [15, 16]. The mathematical apparatus of these two
theories was drastically different; however, their out-
comes coincided. It is interesting that the Milner–σ1/3~H N

−ξ σ 1/2~

H
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Witten–Cates theory was also triggered by numerical
calculations [17], although comparison between them
was absent.

Currently, there is a large body of theoretical data
describing structural features of monodisperse poly-
mer brushes coating solid surfaces of different shapes
and taking into account the quality of solvent and the
thermodynamic f lexibility of grafted macromolecules
[18–24]. In addition, the behavior of a pair of mono-
disperse brushes upon their compression and inter-
penetration was studied [25–28]. The specific feature
of the theoretical data on polymer brushes is not only
the abundant information accumulated by computer
simulation but also the existence of well-developed
and approved analytical theories. Russian researchers
E.B. Zhulina, O.V. Borisov, and T.M. Birshtein
greatly contributed to the emergence and development
of analytical theories (review [22]).

Note that in principle the possibility of construct-
ing analytical theories of polymer brushes of different
shape is determined by the existence of a self-consis-
tent parabolic potential in brushes which, at not too
high a grafting density, is universal and is preserved
both for brushes consisting of linear chains and for
brushes composed of star-shaped macromolecules or
dendrons [29, 30]. This universal character is related
to the monodisperse character of brushes; it disap-
pears once polydispersity effects become operative.
Just this circumstance is responsible for the fact that
the overwhelming minority of analytical theories con-
cerned monodisperse brushes solely.

In experiments to create monodisperse polymer
brushes or brushes with a narrow molecular-mass dis-
tribution, well-fractionated polymer chains with the
known average number of units Nn are grafted to the
solid surface or are anchored to it. Given this proce-
dure, grafted chains should diffuse and go through
already formed brush parts; therefore, long and dense
brushes cannot be synthesized. For this synthesis pro-
cedure, the maximum grafting density is approxi-
mately one chain per square nanometer [31]. Denser
brushes are prepared using another procedure,
according to which initiators are placed on the surface
and grafted chains are polymerized from melt or solu-
tion. The resulting brushes turn out to be polydisperse,
and, as was shown in [32], their chain length distribu-
tion is close to the Schulz–Zimm distribution and the
polydispersity index is in the range of 1.1–1.2 regard-
less of polymerization time. Brushes with a wider dis-
tribution are typical of biological objects, for example,
glycocalix coating the cells or the surface of blood ves-
sels [33].

It is known that polydispersity strongly affects the
properties of brushes, for example, the pressure–dis-
tance relationship changes during compression of two
brushes [19, 34, 35]. The effect of polydispersity on
the structure of polymer brushes was studied via self-
consistent field numerical calculations [36] and ana-
POLYMER SCIENCE, SERIES C  Vol. 60  Suppl. 1  20
lytical methods and computer simulation [37]. It was
shown that, with increasing polydispersity, the brush
thickness grows and the density profile changes and
acquires a concave shape. Large f luctuations of the
height of chain free ends above the grafting plane
inherent in monodisperse brushes are suppressed by
even a small polydispersity [37].

In this study, we will consider the planar surface
coating polymer brush with a certain polydispersity at
which the density profile has a strictly linear shape
and, hence, creates inside the brush a self-consistent
field with a linearly decreasing potential on moving
away from the grafting plane. We will describe struc-
tural characteristics of chains of such a brush in a good
solvent. Comparing characteristics of polydisperse
and monodisperse brushes, we will examine behavior
of the “probe” chain in these brushes. The probe
chain will imply chain of a brush that differs from
minority chains in its particular characteristic. For
example, for the monodisperse brush the chain of
another contour length may be probe. The probe
chain which randomly mixed with minority chains of
the brush may be of another chemical nature. We will
suppose that another chemical nature of the probe
chain makes itself evident as the only difference from
minority chains, namely, it possesses sorption activity
and may occur in the adsorbed state on the solid sur-
face (on the grafting surface). The addition of desorb-
ing agent to solution has no effect on the properties of
minority chains of the brush but entails desorption of
the probe chain. We will analyze influence of the
internal self-consistent field of the brush on the char-
acter and features of probe chain switching from the
adsorbed state to the stretched one. Predictions from
the analytical theory will be verified by computer sim-
ulation. Gaining insight into behavior of probe chains
inside polymer brushes is not only of academic inter-
est, because modified chains specially included in the
brush may be used as stimuli-responsive switches [38].
The possible coexistence of chemically different
chains in the same solvent at different sorption activity
of chains will be discussed at the end of the paper.

MODEL AND METHOD

In most Monte Carlo simulations of polymer
brushes, the model of lattice or off-lattice f lexible
chain in a good solvent was used. Lattice chains had a
fixed length, and in off-lattice chains, the number of
units was fixed so that chains possessed finite extensi-
bility. In our calculations a polymer chain is composed
of beads, which are linked by elastic bonds (harmonic

springs) with spring constant , where a is the aver-

age bond length, k is the Boltzmann constant, and T is
temperature. Thus, in the used model, the polymer
chain had infinite extensibility. The grafting point was
located at distance z0, assuming 0 < z0 < a.

2
3
2
kT
a
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In what follows, we will use kT as the energy unit
and a as the length unit. Therefore, the length of any
brush chain will simply coincide with its degree of
polymerization N and the grafting density σ; that is,
the number of chains per surface unit will be a dimen-
sionless value as are the coordinate of chain free end
height z and brush thickness H.

Another feature of the used model is that volume
interactions between randomly approached units are
taken into account. In Monte Carlo calculations, these
interactions in the model off-lattice chains are usually
considered by setting the potential of solid spheres; in
lattice chains, by forbidding getting in neighboring
cells. Volume interactions of units were taken into
account approximately by calculating the local density
of units ϕ around the chosen chain unit at distance b.
The effective potential of volume interactions was
specified as the product of excluded-volume parame-
ter  and the squared local density ϕ2 in the sphere of
radius b. In calculations, we assume that  = 1, which
corresponds to good solvent conditions. The described
model was advanced in [39] and previously applied in
[40]. The effect of radius b of local density averaging
on the simulation results was analyzed in [40]. It was
shown that at  the results of Monte Carlo simula-
tion cease to be dependent on the choice of b.

Periodic boundary conditions were set along axes X
and Y, and the impenetrable grafting plane was situ-
ated at Z = 0.

In calculation of polydisperse brushes, the distri-
bution of chains was given as the Schulz–Zimm distri-
bution [41, 42], which is most frequently used to
describe polydispersity effects and corresponds to the
synthesis of real brushes. This distribution is the two-
parameter function of the number-average length of
chains Nn and parameter k:

(1)

where  is a gamma function. Parameter k in the
Schulz–Zimm distribution is related to the polydis-
persity index  via the relation

(2)

In the limit , the distribution transforms
into a delta-shaped peak, and at k = 1, it becomes an
exponentially decaying function. It is easy to verify
that distribution P(N) is normalized to unity. In this
study, calculations are performed at the fixed number-
average chain length Nn = 100.

In Monte Carlo simulations, as usual, the trial
move was made to shift the chain unit to the new state
at a distance comparable with the size of the chain
length. Given this, the change in energy was calculated
and the trial move was accepted or rejected according
to the probability accepted in the Metropolis method.
The first 4 × 105 steps per monomer were performed to

v
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equilibrate the system, and the next 4 × 105 steps were
performed to extract average values. Averaging was
performed over 48 MC simulation runs with different
arrangement of grafted chains. The model and calcu-
lation method are described in more detail in [39, 40].

DENSITY PROFILES AND CHAIN SIZES
IN MONODISPERSE AND POLYDISPERSE 

BRUSHES
Density Profiles

The density profile of monodisperse brushes is well
studied and is described by the expression

(3)

where the density near the wall is

(4)

and the thickness of the monodisperse brush is given
by the known expression

(5)

Hereinafter, σ is the grafting density and Nn is the
number-average length of brush chains, which for the
monodisperse brush is the same for all of the chains.
Remember that monomer length а is assumed to be
unity as the second virial coefficient  describing
interaction between monomers inside the brush
immersed in a good solvent, so that , and  are
dimensionless quantities. The distribution of chain
ends in the monodisperse brush is described by the
known formula

(6)

At , the density profile  goes to zero;
therefore, it makes sense to consider only the region

.
Figure 1а presents the results of Monte Carlo sim-

ulation of monodisperse brushes, which are matched
with formulas (3) and (4). The length of chains in
monodisperse brushes is , and the grafting
density is σ = 0.1, 0.2, and 0.3. For monodisperse
brushes, the results of density calculations рresented
in Fig. 1a are well described by expression (3).

For polydisperse brushes, the density profile is
determined not only by the grafting density and num-
ber-average chain length Nn but also by the chain
length distribution function. If the distribution func-
tion is chosen as the Schulz–Zimm distribution, as in
[36], then the profiles of brushes for various polydis-
persity values may be derived only numerically. In
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Fig. 1. (Color online) Density profiles of (a) monodisperse and (b) polydisperse brushes in a good solvent obtained by the Monte
Carlo method at Nn = 100 and a grafting density of σ (1) 0.1, (2) 0.2, and (3) 0.3 in comparison with predictions from analytical
theories. For polydisperse brushes, the molecular-mass distribution of chains was set as function (7) at the distribution parameter

 = 1.153 (solid lines) and as the Schulz–Zimm distribution (1) at  = 1.143 (symbols). Theoretical dependences for the par-

abolic density profile (3) and the linear profile (8) are shown by thin lines.
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[37], we managed to obtain an analytical expression
for density profile using the chain length distribution
in the following form:

(7)

This distribution is cut off at a certain maximum

number of units  and is characterized by

the polydispersity index . The shape
of distribution (7) is shown in Fig. 2. As is clear from
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Fig. 2. (Color online) Profiles of molecular-mass distribu-
tions in polydisperse brush with the linear density profile.
The solid line corresponds to the theoretical distribution

(7) with Nn = 100 and  = 1.153 having the maximum

value Nmax = 170. Squares correspond to the Schulz–Zimm

distribution (1) with Nn=100 and  = 1.143; k = 7.
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formulas (6) and (7), the length distribution in the
polydisperse brush has the same functional shape as
the height distribution of chain ends in the mono-
disperse brush. As predicted by the theory [37], for this
somewhat artificial shape of distribution, the density
profile of the polydisperse brush should have a strictly
linear shape:

(8)

and the thickness of the brush is described by formula

(9)

The self-consistent field of the brush creates the
stretching force

(10)

acting on any monomer of brush chains.
Figure 1b presents the data on the Monte Carlo

simulation of polydisperse brushes in comparison with
predictions of the theory. The average length of chains
in polydisperse brushes was the same and equal to
Nn = 100. Grafting density σ was set to 0.1, 0.2,
and 0.3.

As follows from the computer simulation of
polydisperse brushes, brushes with the length distribu-
tion specified by formula (7) actually have a linear
density profile at different grafting densities (Fig. 1b,
solid lines). In order to clarify whether the linear den-
sity profile can be realized in the polydisperse brush at
any more realistic shape of distribution, for example,
at the Schulz–Zimm distribution, calculations were
performed using distribution (1) at k = 7, which corre-

( ) ⎛ ⎞φ = φ − = φ −⎜ ⎟
⎝ ⎠

lin 0 0
mono

31
4

zz fz
H

= mono
4 .
3

H H

( )π πσ= φ =
1/3

0
n

9/ ,
16 2

f H
N

18



S88 KLUSHIN et al.

Fig. 3. (Color online) Average height of free end Ze of probe chain as a function of its length N. Probe chains reside in (a) mon-
odisperse brush with the squared density profile and (b) polydisperse brush with the linear density profile. The average number
of minority chain units in brushes is Nn = 100; the grafting density is σ = 0.2. Squares and circles show the results of numerical
calculations according to the self-consistent field method (circles) and Monte Carlo simulation (squares). Solid lines correspond
to the analytical dependences constructed through formulas (14) and (18).
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sponds to the polydispersity index  = 1 +  ≈ 1.143.

The results of calculations for different grafting densi-
ties are shown by circles, triangles, and squares in
Fig. 1b. As is seen, the density profile for these brushes
is also almost linear, although the shape of the chain
length distribution is appreciably different (Fig. 2).

Conformations of a Probe Chain inside Monodisperse 
and Polydisperse Brushes

To better appreciate the difference in self-consis-
tent fields created inside monodisperse and
polydisperse brushes, let us consider first the charac-
teristics of probe chains with length N embedded in a
monodisperse brush. For a chain residing in a mono-
disperse brush in a good solvent, Green’s function

 is a solution of the Edwards equation in the
presence of the parabolic potential ω(z) and provided
that boundary conditions are specified as the impene-
trable inert grafting plane:

(11)

(12)

The solution takes the form [43]

(13)

where B is the normalization factor. If probe chains are
shorter than minority chains N ≤ Nn, then the average
height of their free end Ze(N) is described by the
expression
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(14)

Figure 3a shows the average height of the free end
for probe chains of different length N inside the mon-
odisperse brush with Nn = 100. As is seen, analytical
expressions (14) are verified by numerical calculations
and simulation results. Short probe chains included in
the monodisperse brush are weakly deformed coils,
which begin to unwind and behave as minority chains
of the brush only at N close to Nn. Folding of the probe
chain to a coil proceeds if its length N is shorter than
the length of minority chains by only several units, and
this effect becomes more pronounced with lengthen-
ing of minority chains of the brush. It is reasonable to
suggest that the monodisperse brush is characterized
by a peculiar instability, because small changes in the
length of any chain lead to its “falling out” from the
self-consistent parabolic field of the brush.

Let us consider the polydisperse brush. In this case,
it makes no sense to suggest probe chains of another
length, because chains in the brush are distributed
over length and are present in the self-consistent field
with the linear potential . For a chain in
this field, the Green’s function is also the solution of
the Edwards equation [44]:

(15)
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Fig. 4. (Color online) Average height of the free end Ze of the sorption-active probe chain with length N as a function of adsorption
energy of unit (–ε) in (a) monodisperse brush with the squared density profile and (b) polydisperse brush with the linear density
profile. The average number of minority chain units in brushes is Nn =100; the grafting density is σ = 0.2. N = (1) 70, (2) 80, and
(3) 90. The results are obtained by numerical calculations according to the self-consistent field method; k = 7.
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If the impenetrable inert grafting plane is present,
the Green’s function of the chain in the polydisperse
brush becomes [37]

(17)

(B' is the normalization factor, and ).
The average height of the free end of the chain in

the polydisperse brush with the linear density profile
at  is described by the simple expression

(18)

The average height of the free end for chains of dif-
ferent length N inside the polydisperse brush with the
linear density profile is presented in Fig. 3b.
Polydisperse brushes were calculated using the chain
length distribution set by formula (7) with Nw/Nn =
1.153 and the Schulz–Zimm distribution given by for-
mula (1) at Nw/Nn = 1.143. The grafting density of
brushes σ was set to be the same and equal to 0.2. The
average length of minority chains Nn of brushes was
also the same and equal to 100. Numerical self-consis-
tent field calculations and Monte Carlo simulations
are shown by different colored figures. Solid lines cor-
respond to analytical dependence (18). As is seen, in
the polydisperse brush, all chains are stretched and the
height of their free ends always grows is proportion to
the square of their contour length.

ADSORPTION TRANSITIONS OF PROBE 
CHAINS INSIDE BRUSHES

In this section, we will consider probe chains which
have the same length as the minority chains of the
brush but have another chemical nature. Another
chemical nature of the probe chain will manifest itself
only in relation to one parameter, namely, interaction
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with the solid substrate, that is, the grafting plane. If
minority chains of the brush sterically repulse from the
substrate, the probe chain will be capable of sorption
activity. In other words, we will consider that the probe
chain is adsorbed on the grafting plane, but upon addi-
tion of the desorbing agent to solution, it may desorb
and switch to the exposed state, in which the minority
chains of the brush occur (it is assumed that addition
of the desorbing agent has no effect on properties of
minority chains of the brush). The possibility of prac-
tical implementation of this system will be discussed
later.

Figure 4 shows dependences of Ze(–ε) of the aver-
age height of the free ends of probe sorption-active
chains residing inside monodisperse and polydisperse
brushes on the energy of adsorption of the unit (–ε).
The results are obtained by the numerical self-consis-
tent field method at the same grafting density σ = 0.2
in all of the brushes and at the same value of Nn = 100.
The monodisperse brush had a parabolic density pro-
file, while for the polydisperse brush the density pro-
file was linear. The number of units in probe chains
was varied within 70–90. As is clear from Fig. 4,
Ze(‒ε) plots for monodisperse and polydisperse
brushes are similar: in both cases, as the energy of
adsorption interactions decreases, the height of chain
free ends grows. This is evidence that the chains desorb
and stretch along the normal to the grafting plane. The
profiles of transitions are sharper for chains in the
polydisperse brush. This is natural, because in this
case chains are more strongly stretched in the nonad-
sorbed state.

Although dependences Ze(–ε) look similar for
monodisperse and polydisperse brushes, the end
height distributions of probe chains with N = 80 inside
these brushes are substantially different (Fig. 5). In the
monodisperse brush, the end height distributions are
always unimodal, while in the polydisperse brush they
are bimodal in the vicinity of transition. This fact indi-
18
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Fig. 5. (Color online) Free end height distribution of the sorption-active probe chain with length N = 80 at several energies of
adsorption interactions. The probe chain resides inside (a) the monodisperse brush with the parabolic density profile and (b) the
polydisperse brush with the linear density profile. Minority chains of brushes are sorption inactive and exist in the desorbed
exposed state. The average number of minority chain units in brushes Nn is the same and equal to 100; the grafting density σ is
also the same and equal to 0.2; k = 7; ε = (a) (1) 0, (2) –0.20, (3) –0.30, (4) –0.60 and (b) (1) –0.20, (2) –0.35, (3) –0.40,
(4) ‒0.45, and (5) –0.60.
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cates that, in the monodisperse brush, probe chains
are adsorbed via continuous transition, whereas in the
polydisperse brush the adsorption of probe chains pro-
ceeds according to the two-state principle. The
adsorbed state is characterized by a narrow distribu-
tion  at a small height Ze. The exposed state has a
wide distribution at high values of Ze. In the vicinity of
transition, these states coexist. As is known, the pic-
ture of bimodal distributions is inherent in first-order
phase transitions in finite systems [45, 46].

Analytical Description of Probe Chain Adsorption
in a Polydisperse Brush

We will describe the switching transition of the
sorption-active probe chain occurring inside the
polydisperse chain with the linear density profile using
the continuous ideal chain model. Gaussian confor-
mations of the probe chain are disturbed under the
action of the self-consistent field of the polydisperse
brush  =  and the adsorption interac-
tion  of the chain with the surface of grafting. In
the continuous chain model, adsorption interactions
between chain units and grafting plane are usually
described by pseudopotential  = , where
c is the parameter of adsorption interactions. This
parameter was introduced by de Gennes to replace the
real adsorption potential with the boundary condition
in the Edwards equation

(19)

where .
Therefore, the Edwards equation

(20)
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with initial conditions  and boundary
conditions  =  +  =  and

 =  +  = 0 may be solved analyt-
ically and the Green’s function in the adsorbed state
may be written as

(21)

Hence, after integration over z, we arrive at the sta-
tistical sum of the probe chain in the adsorbed state:

(22)

Thus, the chemical potential  has the
sense of a gain in the free energy of adsorption per unit
of an asymptotically long chain.

For the desorbed exposed state of the probe chain
having no contacts with the grafting surface, the
Green’s function is given by Eq. (17). Using this
expression, we may obtain the statistical sum of the
probe chain in the exposed desorbed state:

(23)

Determining the transition point from the exposed
state to the adsorbed one from condition 
and disregarding logarithmic corrections, we obtain

(24)

In accordance with Eq. (24), for adsorption of the
long probe chain, a much stronger adsorption interac-
tion of the unit with the substrate than for the short
chain should be specified. Accordingly, upon addition
of the desorbing agent to solution, long probe chains

( ) ( )= δ,0G z z
(0)V brush(0)V ads(0)V φ −0 с

( )V H brush( )V H ads( )V H

( ) ⎡ ⎛ ⎞ ⎤= −φ − −⎜ ⎟⎢ ⎥
⎣ ⎝ ⎠ ⎦

2

ads 0, 2 exp .
6
cG z N c N cz

⎛ ⎞= − φ +⎜ ⎟
⎝ ⎠

2

ads 0( ) 2 exp .
6
cQ N N N

μ = 2
ads /6c

⎛ ⎞≈ − φ +⎜ ⎟
⎝ ⎠

2 3

exp 0exp .
18

f NQ BH N

=ads expQ Q

=tr .
3

fNc
MER SCIENCE, SERIES C  Vol. 60  Suppl. 1  2018



POLYDISPERSE BRUSH WITH THE LINEAR DENSITY PROFILE S91

Fig. 6. (Color online) Scaling dependences of (a) the posi-
tion of transition center, (b) the sharpness of transition,
and (c) the height of barrier at the center of transition
between exposed and adsorbed states of probe sorption-
active chain inside the polydisperse brush with the linear
density profile. Calculations are performed according to
the self-consistent field method at a grafting density of σ =
(1) 0.1, (2) 0.2, and (3) 0.3; k = 7. The average length of
probe chains in brushes is varied in the interval N = 70, 80,
…, 170. The average number of minority chain units is
Nn = 100. 
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will desorb first and only then will short probe chains
do so.

Remember that the adsorption of plane-grafted
ideal isolated continuous model chain (in the absence
of brush) takes place via a second-order phase transi-
tion at сcr = 0. If a constant tearing force acting along
the normal to the plane is applied to the end of this
chain, then switching to the adsorbed state proceeds
via a first-order phase transition and the value of ctr
equal to the value of the tearing force regardless of the
chain length corresponds to the transition point [46].
Thus, action of the tearing self-consistent field of the
POLYMER SCIENCE, SERIES C  Vol. 60  Suppl. 1  20
polydisperse brush on the probe chain is dramatically
different from tearing off the adsorbed chain end.

In addition to continuous chain models adsorption
theories frequently use lattice models in which the
energy of adsorption (–ε) is set in the explicit form as
the depth of potential of chain interaction with the
surface. In the lattice model, adsorption of the ideal
isolated chain (in the absence of external forces or
fields) proceeds via a second-order phase transition at
the critical adsorption energy εс, and the chemical
potential of the unit in the vicinity of transition is
expressed as

(25)

where α and εc are model-dependent constants [46].
Comparing  and  makes it possible to unveil
the relation  between the critical adsorp-
tion pseudopotential and lattice potential depth (– )
in describing adsorption of the ideal probe chain
within the self-consistent field of the polydisperse
brush and to get

(26)

The sharpness of chain switching from the
adsorbed state to the exposed one may be calculated
through the formula obtained for the two-state model
[47]:

(27)

As was mentioned above, the function of minority
chain end height distribution is bimodal in the vicinity
of transition. This finding suggests that the two men-
tioned states are separated by a barrier. The height of
the barrier may be estimated under the assumption
that, in the exposed state at Ze = 〈Ze〉, the chain resides
at a minimum, while at Ze ≈ 〈Ze〉/2 it occurs at the bar-
rier apex:

(28)

The scaling dependences (26)–(28) were verified
through calculation of the transition point, the sharp-
ness of transition, and the height of barrier for probe
sorption-active chains of different lengths N = 70, 80,
…, 170 inside the polydisperse brush with the linear
density profile at σ = 0.2 and Nn = 100. The linear pro-
file of the brush was set by the length distribution of
brush minority chains as the Schulz–Zimm distribu-
tion with k = 7 (Nw/Nn = 1.143). Calculations per-
formed by the self-consistent field method (Fig. 6)
confirm the general pattern of dependences (26)–
(28).
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Hence, according to the analytical theory and
computer simulation, polydisperse brushes with the
Schulz–Zimm distribution at polydispersity index
Nw/Nn = 1.143 have an almost linear density profile
and form within the brush a self-consistent field, the
potential of which provides the constant stretching
force acting on all units of brush chains. It is interest-
ing that, two and a half decades ago, F. Brochard-
Wyart [48, 49] showed that, if a fixed-end macromol-
ecule is imposed by a liquid f low with a constant rate,
then provided that the draining is complete a constant
stretching force acts on each macromolecular unit.
The characteristic features of chain conformation and
its normal modes in this f low were described [50].
Because the analogous conformations are realized in
polydisperse brushes with a linear density profile, it
would be useful to verify predictions of the theory via
molecular or Brownian dynamics simulation of
polydisperse brushes. Note that there is also a certain
analogy between chain conformations in the mono-
disperse brush and the behavior of a separate macro-
molecule in the longitudinal hydrodynamic f low at
the critical gradient [51].

Unexpected features are exhibited by the confor-
mation discontinuous transition of the sorption-active
probe chain occurring inside the polydisperse brush. It
was found that, for this transition from the adsorbed
state to the exposed desorbed one to occur, the value
of adsorption interactions should be set different
depending on probe chain length. Accordingly, at the
same fixed level of adsorption interactions of probe
chain unit with the substrate, short probe chains may
reside in the adsorbed state, whereas long chains turn
out be desorbed. Naturally, this is associated with the
effect of the self-consistent field of the polydisperse
brush; the higher the chain parts from the planar graft-
ing surface, the stronger the field stretches them. In
the analytical theory, we took into account the effect
of self-consistent field of the brush only on the com-
pletely exposed desorbed state assuming that the
adsorbed state is determined only by the energy of
adsorption interactions of probe chain units with the
grafting surface. However, the stretching field of the
brush evidently acts on all fragments of the probe
adsorbed chain unbound to the surface—its ends and
loops. Taking into account these interactions, which
may be substantial in the description of adsorption of
probe chains at low adsorption energies, is a separate
task.

Now we touch on two questions which were asked
in various auditoria when discussing this work. Why
do short probe chains in the monodisperse brush
switch to the adsorbed state via the continuous diffuse
pathway, while in the polydisperse brush this transi-
tion is sharp? To answer this question it is best to dis-
cuss the limiting case of the Alexander brush with the
density profile as a step. In this stepwise potential, a
POLY
short probe chain “does not know” that the field
formed by the brush somewhere goes to zero and,
therefore, assumes the conformation of a chaotically
folded coil. The transition of the coil to the adsorbed
state is known to proceed smoothly without jumps.
The density profile of the monodisperse brush looks
like a step; therefore, the adsorption of short chains in
the monodisperse brush also looks like a continuous
transition. In addition, in the polydisperse brush with
a linear density profile, even short probe chains are
stretched by the brush field. As a result, switching of
the stretched chain to the adsorbed state proceeds
sharply via overcoming of the barrier.

The second question is related to difference of the
probe chain, which is supposed to be sorption active,
from minority chains of the brush inert with respect to
the grafting surface. According to the theory, the
chemical structure of the probe chain is different from
the chemical structure of minority chains of the brush;
however, it is assumed that the thermodynamic f lexi-
bility of both types of chains is the same or at least sim-
ilar. It is also supposed that interaction of these two
types of chains with the solvent is also the same—the
solvent is assumed to be good in all of the cases. The
question arises to what extent this situation is realistic
and whether these chemically different chains (probe
chain and minority chains of the brush) exist, which
under the same conditions (in the same solvent and at
the same temperature) demonstrate a sharp difference
only with respect to their sorption activity.

Needless to say, not any pair of chemically different
chains under the same conditions is distinguished
solely by sorption activity. However, these pairs do
exist, especially in mixed solvents, for example,
poly(methyl methacrylate) and polystyrene in methyl
ethyl ketone–cyclohexane mixture taken at a volume
ratio of 86 : 14. This solvent is good for both polymers.
Note that the first polymer with a change in the com-
position of the solvent switches to the adsorbed state,
whereas the second one remains sorption inactive
[52]. A similar behavior of this pair of polymers is
observed in CH2Cl2/CH3CN mixture (74 : 26,
vol/vol) [53]. Mixed solvents specially selected for
polystyrene and polybutadiene, poly(ethylene glycol)
and poly(propylene glycol), and other pairs are given
in book [54].

In conclusion, let us dwell on some features of the
adsorption transition of the probe chain residing
inside the polydisperse brush and its difference from
other adsorption transitions. As was mentioned above,
adsorption of the grafted isolated chains (in the
absence of brush), provided that a constant tearing
force is applied to the chain end along the normal to
the plane, proceeds discontinuously [46]. The transi-
tion point, that is, the energy of adsorption required
for transition from the exposed state to the adsorbed
one, is independent of chain length and is determined
solely by the applied stretching force. This discontinu-
MER SCIENCE, SERIES C  Vol. 60  Suppl. 1  2018
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ous transition from the exposed state to the adsorbed
one has unusual features typical of second-order tran-
sitions. Namely, throughout the transition region, the
distribution over the order parameter (over free end
height) remains unimodal, and fluctuations in the
vicinity of the transition point grow according to a
power law. Recent studies showed [55] that, in the
vicinity of transition, there is a critical retardation of
order parameter relaxation times typical of critical
phenomena. Thus, in the adsorption of end-stretched
chain, features of first- and second-order phase tran-
sitions manifest themselves. The reasons behind this
phenomenon are associated with the microphase state
of the system and are discussed in [56].

Adsorption of the probe chain in the self-consistent
field of the polydisperse brush likewise occurs discon-
tinuously but with the bimodal distribution over the
order parameter (over free end height), in accordance
with the standard classification of first-order phase
transitions. However, this transition demonstrates
unusual features: the transition point, that is, the
energy of adsorption corresponding to the midpoint of
transition, is proportional to the contour length of the
adsorbing chain N, the sharpness of transition is pro-
portional to N2, and the height of barrier separating
adsorbed and desorbed states is proportional to N3. To
our knowledge, the specific system demonstrating
these features of the first-order phase transition was
reported for the first time.
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