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Abstract—A spectral-based computational algorithm is presented, showing the effects of rotation
and curvature on a fluid flow with natural and forced convective heat transfer (CHT) in a rotating
curved rectangular channel with an aspect ratio of 3 and curvature ratio ranging from 0.001 to
0.5. The bottom wall of the channel is heated, with cooling from the ceiling; the vertical walls
are thermally insulated. The system is rotated about the vertical axis in the positive and negative
directions with the Taylor number −2500 ≤ Tr ≤ 2500 due to a constant pressure gradient force
applied in the stream-wise direction. With the numerical computation presented, five branches of
asymmetric steady solution curves comprising single-pair to 11-pair vortices are found. The change
in the flow state is then evaluated by means of time-evolution computation, and sketching of the
phase space of the solutions enables good prediction of the flow transition. It is found that in the
case of co-rotation, a chaotic flow turns into a steady-state flow via a periodic or multi-periodic flow.
In the counter-rotation case, however, irregular oscillations change directly to a multi-periodic flow.
The study shows appearance of maximum 6-pair vortices at a small curvature, 11-pair vortices at a
moderate curvature, and maximum 2-pair vortices at strong curvature. It is also observed that the
number of secondary vortices reduces as Tr increases. The vortex structure of secondary flows is
also shown in bar diagrams for easy visualization of the effect of curvature on the flow evolution. The
study shows that the CHT is significantly enhanced by the secondary flow and a chaotic flow boosts
the heat transfer more effectively than other physically realizable solutions. Finally, a comparison
between the simulated and experimental results is performed and reasonable matching between the
two solutions is observed.
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1. INTRODUCTION

Fluid flows, mixing, and heat transfer processes in curved ducts (CDs) and channels are common
phenomena with a vast range of applications in fluids engineering like flow separation, heat exchangers,
cooling systems, solar energy, electric generators, rocket engines, and many more. A fluid flow through
a curved channel also attracts the interest of biomedical researchers and pharmaceutical industry due
to real-life applications such as blood flow in the complex non-dichotomously curved network of the
blood vessels. In a rotating curved channel, due to the influence of the channel curvature, a counter-
rotating vortex motion is produced, which acts in the main flow direction and generates a twisted fluid
flow in the curved passage, known as a secondary flow. Due to the centrifugal force and tangential fluid
pressure at the outer concave wall, acting towards the curvature of the channel center, a supplementary
pair of counter-rotating secondary vortices appear on the outer concave wall of the curved fluid passage,
which are known as the Dean vortices [1]. Since the pioneering work by Dean [1], several researchers
have studied these flows using experimental [2–4], numerical and experimental [5–8], analytical and
experimental [9, 10], and numerical [11–16] techniques.
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Since the nature of the Navier–Stokes equation is highly non-linear and the existence of multifarious
solutions of a partial differential equation does not come as a surprise, the solution structure belonging
to a combined flow bifurcation consists of a number of branches, which are generally influenced by the
parameters of the governing equations, including the curvature and rotational effect of the channel. The
literature is replete with numerous instances of detailed numerical computations of fundamental flows
in a fluid flow. Daskopoulos and Lenhoff [17] studied a detailed bifurcation diagram of flow through
a rectangular curved duct. A significant number of studies have been published on a fluid flow and
energy distribution in a curved square or rectangular channel flow [14, 18–21]. Several researches were
conducted on rotation and curvature of duct for a two-dimensional (2D) flow in a confined geometry. For
instance, Selmi et al. [22] and Dennis and Ng [23] investigated the Coriolis and centrifugal force effects in
curvature in a square duct. A comprehensive study of combined solution structure through a CSD was
performed by Winters [24]. In connection with that study, Yanase et al. [15] conducted a magnificent
research on a combined solution structure of incompressible flow through a CRD. They found a
combined solution structure consisting of different steady solution structures and a relationship among
them. A detailed pore-scale study on such systems by the spectrum-based method for a combined
flow bifurcation (Holf and Pitchfork bifurcation) structure and their stability points are available in the
literature [25]. Hasan et al. [26–28] applied the spectral method to develop a solution structure for non-
isothermal flows through non-circular ducts. To obtain reliable and meaningful characteristics and to get
better fundamental understanding of swirling flow and its thermal properties, Chandratilleke [29] used an
advanced numerical simulation model based on 3D vortex structures. A review by Watanabe and Yanase
[30] describes bifurcation phenomena, as well as linear stability of solutions, for a square geometry in
both two- and three-dimensional analysis. Yanase et al. [31] and Wang and Yang [32] reported the
structural fluctuation of steady solution structures at change in the truncation numbers and the stability
for a curved square duct flow. Most of the previous studies focused on non-rotating geometries, and the
researchers did not approach the effect of the Taylor number in the steady or transient solution along
with the number of secondary near-wall vortices for increasing or decreasing the rotation, which is an
important matter. Hence, motivated by these unresolved issues, the present study deals with the effects
of rotation and curvature on a steady and unsteady fluid flow in a curved rectangular channel.

Yanase and Nishiyama [33] were the first to realize a time-dependent flow in a curved rectangular
duct to observe oscillating behavior of flow in a curved channel. Several works related to the oscillating
behavior in a confined geometry have been conducted. Yanase et al. [14] and recently Mondal et al. [34]
investigated the oscillating behavior numerically. They have identified two types of oscillations: periodic
and aperiodic oscillating flows, which appear with and without symmetry condition, respectively. Wang
and Yang [6, 7] performed a detailed numerical analysis and experiment with an oscillating flow by
using a flow visualization technique. Yamamoto et al.[3] developed an experimental technique, called
visualization method, to solve the problem of secondary flow characteristics and flow structure through
a curved square geometry. Mondal et al. [35, 36] obtained numerical prognosis for oscillation behavior
by time advancement for a fully developed flow, considering square and rectangular configurations, and
discussed details of transitions between periodic and aperiodic oscillating behaviors. Regarding the
development of the axial velocity and secondary flow structure, Li et al. [8] used both experimental and
numerical approach for a 3D flow in 120◦ curved rectangular ducts, varying the curvatures and aspect
ratios.

To improve the understanding of thermo-fluid behavior and heat transfer in a curved channel,
Chandratilleke and Nursubyakto [37] conducted a numerical analysis to explain properties of swirling
flow through curved rectangular and elliptical ducts of different aspect ratios with the concave outer wall
heated. Concerning the convective heat transfer, Norouzi et al. [38] performed numerical simulations
assisted by the FDM to analyze the inertial flow and second-grade creeping flow of fluid in a curved
square-shaped channel. To find the effects of secondary flow, Yanase et al. [39] simulated the heat transfer
numerically for an oscillating flow through a curved duct of a rectangular cross-section. Sohn and
Chang [40] calculated the heat transfer, as well as the friction factor, for straight ducts and revealed the
effects of laminar viscosity in temperature-dependent fluids. Mondal et al. [41, 42] performed numerical
prediction of the oscillating behavior of thermal flows through a curved square enclosure with impacts
of rotation and heat transfer. The influence of the aspect on a transient fluid flow and energy distribution
through a coiled rectangular channel was analyzed by Mondal et al. [43]. Zhang et al. [44] used
a numerical procedure known as the second order finite difference method to investigate the time-
dependent convective heat transfer and mixing behavior between two different geometries: an enclosure
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and an inner concentric circular cylinder. Very recently, Hasan et al. [45–48] demonstrated the heat
transfer through a curved duct for different Dean and Taylor numbers and established a relationship
between the typical flow behavior and enhancement of the heat transfer. The earlier studies admittedly
illustrate the flow patterns and heat transfer characteristics in various geometries with rotation. Besides,
the investigation considers only a low rotational speed; unsteady flow characteristics in the presence of
centrifugal and heating-induced buoyancy forces and the Coriolis effects in a curved rectangular channel
with high rotational speed are not considered, despite numerous engineering applications, e.g., plastic
industry, metallic industry, gas turbines, etc. The key intention of the current study is to examine the
perplexing flow behavior and energy distribution in a coiled rectangular duct with impact of rotation.

The main intention of the ongoing study is to explore the steady solution branches and investigate
unsteady characteristics with heat-flux effects in the secondary flow structure. The study further presents
and discusses a novel approach for a numerical scheme in identifying the onset of flow instability in a
CRD, reflected by the appearance of Dean vortices.

2. PHYSICAL MODEL AND GOVERNING EQUATIONS
Consideration is given for a fully developed two-dimensional (2D) flow through a CRD. Figure 1

presents the cross-sectional view and coordinate system of the computational domain with necessary
notations. The system rotates with the angular velocity ΩT about the y′ axis. The bottom of the working
system is heated, while the opposite side is at normal room temperature; the remaining walls are well
insulated to prevent heat loss. The fluid passes uniformly in the z axis direction, as shown in Fig. 1. The
governing equations for the flow and HT are as follows.

Continuity equation:

∂u′

∂r′
+

∂v′

∂y′
+

u′

r′
= 0. (1)

Momentum equations:

∂u′

∂t′
+ u′∂u′

∂r′
+ v′

∂u′

∂y′
− w′2

r′
− 2ΩT w′ = −1

ρ

∂P ′

∂r′
+ υ

[
∂2u′

∂r′2
+

∂2u′

∂y′2
+

1
r′

∂u′

∂r′
− u′

r′2

]
, (2)

∂v′

∂t′
+ u′ ∂v′

∂r′
+ v′

∂v′

∂y′
= −1

ρ

∂P ′

∂y′
+ υ

[
∂2v′

∂r′2
+

1
r′

∂v′

∂r′
+

∂2v′

∂y′2

]
+ gβT ′, (3)

Fig. 1. (a) Schematic representation of physical domain. (b) Cross-section of channel.
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∂w′

∂t′
+ u′ ∂w′

∂r′
+ v′

∂w′

∂y′
+

u′w′

r′
+ 2ΩT u′ = −1

ρ

1
r′

∂P ′

∂z′
+ υ

[
∂2w′

∂r′2
+

∂2w′

∂y′2
+

1
r′

∂w′

∂r′
− w′

r′2

]
. (4)

Energy equation:

∂T ′

∂t′
+ u′∂T ′

∂r′
+ v′

∂T ′

∂y′
= κ

[
∂2T ′

∂r′2
+

1
r′

∂T ′

∂r′
+

∂2T ′

∂y′2

]
, (5)

where r′ = L + 3x′ and the dimensional velocity components can be decomposed into u′, v′, and w′ in
the x′, y′, and z′ directions, respectively. The dimensional variables are made non-dimensional via use
of the characteristic length d and velocity scale U0 = υ

d . The resulting non-dimensional variables are
defined as

u =
u′

U0
, v =

v′

U0
, w =

√
2δ

U0
w′, x =

(
x′

d
− 1

δ

)
, y =

y′

3d
, z =

z′

d
,

T =
T ′

ΔT ′ , t =
U0

d
t′, δ =

d

L
, P =

P ′

ρU2
0

, G = −∂P ′

∂z′
d

ρU2
0

,

where u, v, and w are the non-dimensional velocity components in the x, y, and z directions, respectively;
t, P , and δ = d

L are for the time, pressure, and curvature, respectively, in the non-dimensional form.
Henceforth, all the variables are non-dimensional, unless otherwise specified. The stream functions for
the cross-sectional velocities have the following form:

u =
1
r

∂ψ

∂y
=

1
1 + δx

∂ψ

∂y

v =
1
r

∂ψ

∂x
= − 1

1 + δx

∂ψ

∂x

⎫
⎪⎪⎬

⎪⎪⎭
. (6)

Then, the basic equations for w, ψ, and T are derived from the Navier–Stokes equations and energy
equation as follows:

(1 + δ x)
∂w

∂t
= Dn− 1

3
∂(w,ψ)
∂(x, y)

− δ2w

1 + δ x
+ (1 + δ x)Δ2w− δ

3(1 + δ x)
∂ψ
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∂ w

∂ x
− δ Tr

∂ψ
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, (7)

(
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δ
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∂
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)
∂ ψ

∂ t
= − 1

3(1 + δ x)
∂ (Δ2 ψ,ψ)

∂(x, y)
+

δ

(1 + δ x)2

[
3 δ

∂2ψ

∂ x2
− 3δ2
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]
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δ
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(
2Δ2 ψ − 3δ
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∂ x
+

∂2ψ

∂ x2
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−∂ψ
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− 2δ
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∂

∂ x
Δ2 ψ +

1
3
w

∂ w
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+ Δ2

2ψ − Gr (1 + δ x)
∂ T

∂ x
+

1
3
Tr

∂ w
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,

(8)

∂T

∂t
=

1
Pr

(
Δ2T +

δ

1 + δx

∂T

∂x

)
− 1

3(1 + δx)
∂(T,ψ)
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, (9)

where

Δ2 ≡ ∂2

∂ x2
+

1
9

∂2

∂ y2
,

∂(f, g)
∂(x, y)

≡ ∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
. (10)
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The system is therefore governed by the four non-dimensional parameters: the Dean number, Dn; the
Taylor number, Tr; the Grashof number, Gr; the Prandtl number, Pr. They are included in Eqs. (7)–(9)
defined as follows:

Dn =
Gd3

μυ

√
2d
L

, Gr =
βgΔTd3

υ2
, T r =

2
√

2δΩTd3

υδ
, Pr =

υ

κ
. (11)

The no-slip boundary conditions for the fluid velocity are applied for w and ψ as follows:

w(±1, y) = w(x,±1) = ψ(±1, y) = ψ(x,±1) =
∂ψ

∂x
(±1, y) =

∂ψ

∂y
(x,±1) = 0 (12)

and the temperature T is assumed to be constant on the walls:

T (x, 1) = 1, T (x,−1) = −1, T (±1, y) = −y. (13)

There is a class of solutions that satisfy the following symmetry condition with respect to the
horizontal plane y = 0:

w (x, y, t) ⇒ w (x,−y, t) ,

ψ(x, y, t) ⇒ −ψ(x,−y, t),

T (x, y, t) ⇒ −T (x,−y, t).

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(14)

The solution which satisfies condition (14) is called a symmetric solution, otherwise it is an
asymmetric solution. In the present study, Tr (−2500 ≤ Tr ≤ 2500) and δ (0.001 ≤ δ ≤ 0.5) vary,
whereas Gr, Dn, and Pr are fixed: Gr = 100, Dn = 1000, and Pr = 7.0 (water).

3. NUMERICAL ANALYSIS

3.1. Numerical Procedure

In order to find out the numerical solution from Eqs. (7)–(9), we apply the spectral method [49] with
the obtained non-dimensionalized momentum and energy equations. By this method, the variables are
expanded into a series of functions consisting of the Chebyshev polynomials. That is, the expansion
functions ϕn(x) and ψn(x) are stated as

ϕn(x) = (1 − x2)Cn(x),

ψn(x) = (1 − x2)2Cn(x).

⎫
⎬

⎭ (15)

Here Cn(x) = cos(n cos−1(x)) is the nth order Chebyshev polynomial. w(x, y, t), ψ(x, y, t), and
T (x, y, t) are expressed in terms of ϕn(x) and ψn(x) as follows:

w(x, y, t) =
M∑

m=0

N∑
n=0

wmn(t)φm(x)φn(y),

ψ(x, y, t) =
M∑

m=0

N∑
n=0

ψmn(t)ψm(x)ψn(y),

T (x, y, t) =
M∑

m=0

N∑
n=0

Tmn(t)φm(x)φn(y) − y,

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(16)

where M and N represent the truncation numbers in the x and y directions, respectively, and wmn, ψmn,
and Tmn are the coefficients of the expansion. To obtain the time dependent evolution of wmn, ψmn,
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and Tmn, we substitute required series expansion (16) into basic equations (7)–(9) by the collocation
method. Consequently, a set of nonlinear algebraic equations for wmn, ψmn, and Tmn is found. The
steady solutions are determined by the Newton–Raphson iteration method (N-RIM), assisted by the
path continuation technique. To evade difficulty near the point of inflection for the steady solution
branches, we use the following arc-length equation:

M∑

m=0

N∑

n=0

{(
dwmn

ds

)2

+
(

dψmn

ds

)2

+
(

dTmn

ds

)2
}

= 1, (17)

which is solved simultaneously with Eq. (19) using the N-RIM. An initial guess at the point s + Δs is
considered starting from point s as follows:

wmn (s + Δs) = wmn (s) +
dwmn (s)

ds
Δs,

ψmn (s + Δs) = ψmn (s) +
dψmn (s)

ds
Δs,

Tmn (s + Δs) = Tmn (s) +
dTmn (s)

ds
Δs.

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(18)

The convergence is ensured if εp(εp < 10−10) defined as

εp =
M∑

m=0

N∑

n=0

[(
w(p+1)

mn − wp
mn

)2
+

(
ψ(p+1)

mn − ψp
mn

)2
+

(
T (p+1)

mn − T p
mn

)2
]

(19)

is taken suitably small.

3.2. Resistance Coefficient

The resistance coefficient λ, called the hydraulic resistance coefficient, denotes the quantity of the
flow state and is defined as follows:

P ∗
1 − P ∗

2

Δz∗
=

λ

d∗h

1
2
ρ 〈w∗〉2 , (20)

where 〈 〉 stands for the mean over the cross-section of the duct, d∗h is the hydraulic diameter, ρ is the
density, P ∗

1 and P ∗
2 are the pressure at upstream and downstream positions of the duct, respectively, and

〈w∗〉 is the stream-wise main velocity:

〈w∗〉 =
ν

4
√

2δd

1∫

−1

dx

1∫

−1

w̄(x, y, t)dy. (21)

Since P ∗
1 −P ∗

2
Δz∗ = G, λ is linked with the mean non-dimensional axial velocity 〈w〉 =

√
2δd〈w∗〉/υ as

follows:

λ =
16
√

2δDn

3〈w〉2 . (22)
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Fig. 2. (a) Branching structure of SCs for δ = 0.1, Dn = 1000, Gr = 100, and 0 ≤ Tr ≤ 2500. (b) Velocity contours
(top and bottom) and isotherm (middle) on SSB for various values of Tr.

Values of Q and w(0, 0) for various M and N at Dn = 1000, Gr = 100, Tr = 200, and δ = 0.1

M N Q w(0, 0)

14 42 580.3289478 1108.325360

16 48 581.0745552 1110.106655

18 54 581.0486605 1111.835302

20 60 581.0552044 1112.001216

22 66 581.0562282 1112.176767

3.3. Grid Sensitivity Test

Based on five test cases with truncation numbers M and N , the comparative study is conducted at five
truncation numbers in conjunction with Dn = 1000, Gr = 100, Tr = 200, and δ = 0.1. The computational
domain size in this research is 14 × 42, 16 × 48, 18 × 54, 20 × 60, and 22 × 66, i.e., N is chosen equal
to 3M . The 20 × 60 grid resolution was sufficiently fine to ensure the accuracy of the present numerical
computation, as shown in the table.

To obtain time-dependent solutions, we applied the Crank–Nicolson and Adams–Bashforth meth-
ods together with function expansion (16) and the collocation method, which are not shown here for
brevity. Details of this method are available in [49] and [16].
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4. RESULTS AND DISCUSSION

4.1. Structure of Steady Solutions

Here we present a detailed examination of combined flow structure in a steady solution branch for
the curvature δ = 0.1, discuss the flow configurations in various steady branches, and then sum up
the results for other curvatures at the end of this section. After a rigorous survey, five branches of
axisymmetric steady solutions are obtained for Dn = 1000 and Gr = 100 with 0 ≤ Tr ≤ 2500. The
whole process for Tr values ranging from 0 to 2500 finds five branches of complex bifurcation structure
of steady solutions, as presented in Fig. 2a. The five steady solution branches (SSBs) are referred to as
the 1st, 2nd, 3rd, 4th, and the 5th branch, respectively; they are distinguished with different colors and
lines. It is found that there exists no bifurcating connectivity among the solution curves (SCs).

Fig. 3. (a) 1st steady branch for δ = 0.1 and 0 ≤ Tr ≤ 2500. (b) Expansion at point c. (c) Expansion at point e.
(d) Contour plots of secondary flow (top), energy distribution (middle), and axial velocity (bottom) on the 1st steady
branch for different values of Tr.
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Fig. 4. (a) 2nd steady branch for δ = 0.1 and 0 ≤ Tr ≤ 2500. (b) Expansion at point b. (c) Expansion at point c.
(d) Expansion at point d. (e) Expansion at point e. (f) Expansion at point f .

Fig. 5. Contour plots of secondary flow (top), energy distribution (middle), and axial velocity (bottom) on the 2nd steady
branch at fixed value of Tr for δ = 0.1. (a) Tr = 250, (b) Tr = 500, and (c) Tr = 750.
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Fig. 6. (a) Schematic of the 3rd SB for δ = 0.1 and 0 ≤ Tr ≤ 2500. (b) Contour plots of secondary flow (top), energy
distribution (middle), and axial velocity (bottom) on the 3rd SB for different Tr.

4.1.1. Description of the 1st Steady Branch

The 1st steady solution branch (SSB) is solely illustrated by the solid line in Fig. 3a. The whole
branching pattern is pointed out with six points: a, b, c, d, e, and f . starting point of the branch is a (Tr =
0). The turning points c and e are shown in Figs. 3b and 3c, respectively, where we see that the branch
changes the direction smoothly at both points. Soon the branch again moves to its way of increasing Tr,
and at point d (Tr = 1108.566) we find another turning, where the branch changes its direction again,
decreases Tr up to point e (Tr = 793.75), and experiences another smooth turning, as shown in Fig. 3c,
where the branch changes its direction again to larger Tr, then goes to point f (Tr = 1170.444), and finally
arrives at point a (Tr = 0) with many turnings on its way. It is also noticed that more than one turning is
found at points b, c, d, and e. After that, in order to observe the configurations and dissimilarities on this
branch, we trace the streamlines of the secondary flow (SF), isotherms (energy distribution), and axial
flow (AF) at different Tr, as presented in Fig. 3d, which shows that the branch consists of solutions with
axisymmetric single-pair cell to axisymmetric multi-pair cell vortices.

Additional vortices appear near the concave wall because of the Dean unstableness (centrifugal
instability) as Tr increases, and these additional vortices, called Dean vortices, can only be seen in a
rotating system, which plays a pivotal role for boosting of heat transfer. At small Tr, the swirling flow is
a strongly axisymmetric single-pair cell. The curve starts with an axisymmetric single-pair cell at Tr = 0
and the branch turns into a multi-pair cell with increasing Tr. It is seen that the axial flow is moved a little
bit towards the outer bend of the duct as Tr increases. In the presence of rotation and the fluid pressure on
swirling-flows causing increasing the number of Dean vortices extensively change. Strong interaction
of the heating-induced buoyancy force and the centrifugal force causes the flow axisymmetry, which
induces secondary vortices. In this regard, the centrifugal force caused by the duct curvature produces
two effects: the positive outward fluid pressure field and the tangential fluid motion, both transferred from
the convex wall towards the concave wall.

The positive outward fluid motion, induced by the centrifugal effect, takes place against the outward
pressure field and is superimposed on the main flow to create the secondary vortex flow structure. In
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Fig. 7. (a) The 4th SB for δ = 0.1 and 0 ≤ Tr ≤ 2500. (b) Expansion at point b. (c) Expansion at point c. (d) Contour
plots of secondary flow (top), energy distribution (middle), and axial velocity (bottom) on the 4th SB for different values
of Tr.

the neighbourhood of the concave wall, the resultant action of the flow divergence, or pressure gradient
along the axis (adverse outward pressure), and viscous effects decelerates the tangential fluid motion
and constructs an inactive flow zone; the increase in the critical value of Dn, beyond a certain limit that
the pressure gradient field along the axis (adverse outward pressure) becomes more and more stronger
so that the direction of the tangential fluid flow reverses on the duct wall. Dean vortices appear in the
motionless region near the outer wall if a weak local flow re-circulation is established; this flow condition
is known as Dean’s hydrodynamic instability.

4.1.2. Description of the 2nd Steady Branch

The 2nd SSB for 0 ≤ Tr ≤ 2500 is explicitly shown by the solid line in Fig. 4a. This is the only branch
that exists for the whole range of the Taylor number in this study. The 2nd branch is very entangled, e.g.,

JOURNAL OF ENGINEERING THERMOPHYSICS Vol. 30 No. 2 2021



254 CHANDA et al.

Fig. 8. The 5th SSB and its expansion for δ = 0.1 and 0 ≤ Tr ≤ 2500. (a) 5th SC. (b) Expansion at point b.
(c) Expansion at point e. (d) Expansion around Tr = 1150.

experiencing many turnings in the region a → b → c → d → e → f . To observe the turning points b, c, d,
e, and f , we draw Figs. 4b–4f, respectively, with expansion. It should be noted that the branch changes
its direction smoothly at all above mentioned turning points. Figures 5a–5c show the streamlines of
SF, thermal profile (TF), and AF on the 2nd steady branch at Tr = 250, 500, and 750, respectively. The
branch has many turnings on its way and it is found that the flow consists of symmetric 1-, 2-, 3-, 5-,
7-, 8-, 9-, and 10-pair cell vortex solutions. With increase in Tr, the AF is moved towards the concave
wall of the duct.

4.1.3. Description of the 3rd Steady Branch

Figure 6a represents the 3rd SSB (line). As seen in Fig. 6a, the branch starts from point a (Tr = 0)
and returns to the starting point with a single reversal at Tr = 1661.4769838. It is observed that the upper
part (from point a to point b) and the lower part (from point b to point a) of the branch pass are very close
to each other, as in the study by Mondal et al. [25] for a non-isothermal flow (no rotation case). Figure 6b
shows streamlines of SF, TF, and AF on the 3rd SB at various values of Tr. As shown in Fig. 6b, the 3rd
SB consists of asymmetric 1- and 2-pair cell solution. The patterns of the secondary flow in the lower
part of the branch are opposite (mirror symmetric) to those in the upper part of the curve.

4.1.4. Description of the 4th Steady Branch

The fourth SSB is presented in Fig. 7a by the solid line. It is clear from the plot that the branch has
three turning points: b, c, and d. The curve turns very smoothly at points b (Tr = 1409.6155948) and
c (Tr = 465.438993), as evidenced by Figs. 7b and 7c, which visualize the turning points more clearly.
A more comprehensive analysis behind point d shows that the upper part (from point c to point d) and
the lower part (from point d to point c) of the branch pass very close to each other, as in [25]. As seen
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Fig. 9. Contour plots of secondary flow (top) and axial velocity (bottom) on the 5th steady branch at fixed value of Tr
for δ = 0.1. (a) Tr = 750. (b) Tr = 1000. (c) Tr = 1250.

in Fig. 7d, the 4th branch consists of axisymmetric single- and 2-pair cell vortex solutions. The SF
patterns in the lower part of the branch are opposite to those of the upper part of the branch. The SF
patterns are axisymmetric for every Tr except for those at point d (Tr = 1443.5633877). With increase in
Tr, the AF is transferred to the concave bend of the duct.

4.1.5. Description of the 5th Steady Branch

The line in Fig. 8a plots the 5th SSB. Figures 8b–8d present expansions at points b and e and around
Tr = 1150, respectively. Figures 8a and 8d elucidate the curve where it is twisted, experiencing many
turnings at larger Tr. Moreover, the branch turns very smoothly at points b (Tr = 1629.6939) and e (Tr =
705.409022), as evidenced by Figs. 8b and 8c, respectively. Since the branch is very twisted, we consider
fixed values Tr = 750, Tr = 1000, and Tr = 1250 for observing the streamline contours of the SF patterns
and AF distribution as shown in Figs. 9a–9c, respectively. The figures show that the flow consists of
symmetric 2-, 4-, 5-, 7-, 8-, and 11-pair cell solution. It should be noted that the 5th steady branch
contains more than one solution at the same value of Tr.

A schematic representation of the vortex-structure of the secondary flows observed at various values
of Tr for δ = 0.001, 0.1, and 0.5 is presented in the (Tr–θ) plane in Fig. 10. Figure 10a shows the vortex
structure for the steady solutions at δ = 0.001, Fig. 10b for δ = 0.1, and Fig. 10c for δ = 0.5. As seen
in Fig. 10, 1- to 5-pair cell solutions were visible at the same value of Tr on various branches of steady
solutions for different curvatures. It is seen that the maximum 5-pair cell is realized at Tr = 500 and
Tr = 750 for δ = 0.1. However, as the curvature grows, i.e., the duct becomes more curved, e.g., δ = 0.5,
the number of secondary vortices decreases and we get only 1-pair to 2-pair cell solutions. Figure 10b
shows that there are many solutions at the same value of Tr, that is, the 2nd branch has many turnings
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Fig. 10. Vortex structure of secondary flows: number of vortices in (Tr-θ) plane vs. Taylor number. (a) δ = 0.001.
(b) δ = 0.1. (c) δ = 0.5.
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Fig. 11. Time progress, phase space, and streamlines for Tr = 0 and δ = 0.1. (a) Time advancement of λ with values of
λ for steady solutions. (b) Phase portrait. (c) Contour plots of secondary flow (top), energy distribution (middle), and
axial velocity (bottom) for 3.00 ≤ t ≤ 7.50.

Fig. 12. Time progress, phase space, and streamlines for Tr = 1000 and δ = 0.1. (a) Time advancement of λ with values
of λ for steady solutions. (b) Phase portrait. (c) Contour plots of secondary flow (top), energy distribution (middle), and
axial velocity (bottom) for 10.00 ≤ t ≤ 24.00.
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Fig. 13. Time progress, phase space, and streamlines for Tr = 1570 and δ = 0.1. (a) Time advancement of λ with values
of λ for steady solutions. (b) Phase-portrait. (c) Contour plots of secondary flow (top), energy distribution (middle), and
axial velocity (bottom) for 7.50 ≤ t ≤ 18.50.

at Tr = 250 and Tr = 500, as does the 5th branch at Tr = 750 and Tr = 1000. Again, from Fig. 10c it
is also observed that the number of branches decreases gradually and the first branch exists above Tr =
500 only.

4.2. Oscillating Behavior and Phase Spaces

4.2.1. Case I: Positive Rotation (0 ≤ Tr ≤ 2500)

The results of oscillating behavior at δ = 0.1 with Tr varying from 0 to 2500 are discussed in this
subsection. In the interest of brevity, we present the oscillating behavior for δ = 0.1 only. We calculate
the oscillating behavior of λ for Tr = 0, Tr = 1000, Tr = 1570, Tr = 1585, Tr = 2000, Tr = 2185, Tr = 2188,
and Tr = 2289 with the λ values for steady solutions for the above-mentioned Tr at δ = 0.1, pointed out
by straight lines of the same sort as used in Fig. 2a. It is found that the oscillating behavior is chaotic
at Tr = 0, Tr = 1000, and Tr = 1570, as shown in Figs. 11a, 12a, and 13a, respectively. To be sure
whether the flow is chaotic or not, we draw the phase space (PS) of the time-advancement solutions,
as shown in Figs. 11b, 12b, and 13b in the λ − γ plane, where γ =

∫ ∫
ψ dx dy. Figures 11c, 12c, and

13c suggest that the flow oscillates irregularly between the axisymmetric 5-pair cell and 6-pair cell, 5-
and 9-pair cell, and 7- and 8-pair cell solutions for Tr = 0, Tr = 1000, and Tr = 1570, respectively, and
the axial velocity that generated near the outer wall of the duct. In rotating plane-channel flows, the
resulting force of the centrifugal, Coriolis, and buoyancy forces affects the fluid, and the flow becomes
accelerated. It is seen that the chaotic solutions for Tr = 0, Tr = 1000, and Tr = 1570 move around
λ = 0.142, λ = 0.215, and λ = 0.234 and that the chaotic solutions for Tr = 0, Tr = 1000, and Tr = 1570
are independent on the initial condition. It is also observed that the chaotic solutions for Tr = 0, Tr =
1000, and Tr = 1570 fluctuate above all the steady solution branches, that is, the oscillating behaviors
are very chaotic (Mondal et al. [25]).
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Fig. 14. Time progress, phase space, and streamlines for Tr = 1585 and δ = 0.1. (a) Time advancement of λ at λ
values for steady solutions. (b) Expansion of (a). (c) Phase portrait. (d) Contour plots of secondary flow (top), energy
distribution (middle), and axial velocity (bottom) for 11.92 ≤ t ≤ 12.38.

The present study shows that as Tr is increased gradually, the chaotic flow transforms into the
multi-periodic flow at Tr = 1585, 2000, and 2185. Figures 14a, 15a, and 16a display the multi-periodic
flow. Figures 14b, 15b, and 16b show the multi-periodic flow to be more pronounced in comparison
with Figs. 14a, 15a, and 16a. It is well justified by the PS diagrams presented in Figs. 14c, 15c, and
16c. Furthermore, the multi-periodic oscillations at Tr = 1585, Tr = 2000, and Tr = 2185 fluctuate
above all the steady solutions, and the multi-periodic solutions at Tr = 1585, Tr = 2000, and Tr =
2185 move around λ = 0.234, λ = 0.249, and λ = 0.255, respectively, the multi-periodic solutions being
independent on the initial condition. Various flow patterns observed for Tr = 1585, Tr = 2000, and Tr =
2185 are presented in Figs. 14d, 15d, and 16d. It is also noticed that the time-dependent flow oscillates
multi-periodically between the asymmetric 4-pair cell and 5-pair cell solutions at 11.92 ≤ t ≤ 12.38
and 4-pair cell at 12.55 ≤ t ≤ 12.65, 3- and 4-pair cell solutions at 12.49 ≤ t ≤ 12.59. For Tr ranging
between 2188 and 2289, the flow behavior changes to the steady state with asymmetric single-pair
vortices noted, as shown in Figs. 17a, 17b, 18a, and 18b. From Fig. 17a, the steady solution and time
advancement of the steady-state solution at Tr = 2188 are very close to each other. It is necessary to
note that the transition from the multi-periodic flow to the steady state takes place between Tr = 2185
and Tr = 2188. If the Dean vortices are generated near the outer wall of the duct and the secondary flow
becomes stronger, then the heat transfer occurring is greater than usual.
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Fig. 15. Time progress, phase space, and streamlines for Tr = 2000 and δ = 0.1. (a) Time advancement of λ at λ
values for steady solutions. (b) Expansion of (a). (c) Phase portrait. (d) Contour plots of secondary flow (top), energy
distribution (middle), and axial velocity (bottom) for 12.55 ≤ t ≤ 12.65.

4.2.2. Case II: Negative Rotation (−2500 ≤ Tr < 0)

The results of oscillating behavior for δ = 0.1 with Tr varying from −2500 to −10 are discussed in this
subsection. For brevity, we present oscillating behavior for δ = 0.1. At Tr ranging from −10 to −1970,
the flow oscillates irregularly with asymmetric 2-pair to 3-pair vortices at Tr = −10 and Tr = −1000
and 4-pair to 5-pair vortices at Tr = −1970, as evidenced by Figs. 19a, 19c, 20a, 20c, 21a, and 21c,
respectively. Figures 19b, 20b, and 21b plot the PS diagram to show the chaotic behavior. It is observed
that the streamlines of the thermal profiles are consistent, i.e., the high temperature fluid near the bottom
wall is forced upwards, and the convective heat generation is strengthened markedly throughout the area
of the contours. With further increase in Tr in the negative direction, another flow transformation occurs
at Tr = −1975, where the chaotic flow turns into the multi-periodic flow, which is well evidenced by the
SP plot with asymmetric 2-pair and 3-pair vortices at 14.37 ≤ t ≤ 14.70, as shown in Figs. 22a and
22c. If Tr is further increased, the multi-periodic flow remains unchanged, but with 3-pair and 4-pair
vortices at Tr = −2500, as shown in Figs. 23a and 23c. Figure 23b shows the PS diagram for clearer
visualization; it can be seen that the flow is multi-periodic. It is perceived that the transition from the
chaotic to multi-periodic oscillations occurs between Tr = −1970 and Tr = −1975.
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Fig. 16. Time progress, phase space, and streamlines for Tr = 2185 and δ = 0.1. (a) Time advancement of λ at λ
values for steady solutions. (b) Expansion of (a). (c) Phase-portrait. (d) Contour plots of secondary flow (top), energy
distribution (middle), and axial velocity (bottom) for 12.49 ≤ t ≤ 12.59.

Fig. 17. Time progress, phase space, and streamlines for Tr = 2188 and δ = 0.1. (a) Time advancement of λ.
(b) Contour plots of secondary flow (left), energy distribution (middle). and axial velocity (right) at t = 14.50.
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Fig. 18. Time progress, phase space, and streamlines for Tr = 2289 and δ = 0.1. (a) Time advancement of λ.
(b) Contour plots of secondary flow (left), energy distribution (middle), and axial velocity (right) at t = 10.00.

Fig. 19. Time progress, phase space, and streamlines for Tr = −10 and δ = 0.1. (a) Time advancement of λ.
(b) Phase portrait. (c) Contour plots of secondary flow (top), energy distribution (middle), and axial velocity (bottom)
for 10.00 ≤ t ≤ 18.00.

4.3. Time Advancement and Vortex Structure

4.3.1. Time Advancement in the (Tr–δ) Plane

In this subsection, the distribution of diverse transient solutions obtained by TEv computations is
offered in Fig. 24 in the Tr–δ plane for −2500 ≤ Tr ≤ 2500 and 0.001 ≤ δ ≤ 0.5. Here the steady-state
solution is denoted with circles, chaotic solution with crosses, multi-periodic solution with squares, and
periodic solution with triangles. At δ = 0.001 over a wide range of Tr (−1250 ≤ Tr ≤ 1250), the chaotic
flow is noticed. The oscillating chaotic flow, on the other hand, transforms into the multi-periodic one
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Fig. 20. Time progress, phase space, and streamlines for Tr = −1000 and δ = 0.1. (a) Time advancement of λ.
(b) Phase portrait. (c) Contour plots of secondary flow (top), energy distribution (middle), and axial velocity (bottom)
for 12.00 ≤ t ≤ 17.00.

Fig. 21. Time progress, phase space, and streamlines for Tr = −1970 and δ = 0.1. (a) Time advancement of λ.
(b) Phase portrait. (c) Contour plots of secondary flow (top), energy distribution (middle), and axial velocity (bottom)
for 13.00 ≤ t ≤ 18.00.
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Fig. 22. Time progress, phase space, and streamlines for Tr = −1975 and δ = 0.1. (a) Time advancement of λ.
(b) Phase portrait. (c) Contour plots of secondary flow (top), energy distribution (middle), and axial velocity (bottom)
for 14.37 ≤ t ≤ 14.70.

in the range for 1585 ≤ Tr ≤ 2185 and −2500 ≤ Tr ≤ −1975 at δ = 0.1. It is interesting that in the
small range −500 ≤ Tr ≤ 295 at δ = 0.5, four types of solutions occur in this region: chaotic, multi-
periodic, periodic, and steady-state solutions, i.e., with weak rotation (positive or negative) and strong
curvature, the flow state behaviors change quickly. In contrast, the steady-state solution occurs for
295 ≤ Tr ≤ 2289 and −2500 ≤ Tr ≤ −750, (strong rotation, positive or negative), as the curvature is
increased. It is clear that the oscillating behavior is chaotic at small curvature for weak or strong rotation,
and consequently the flow transforms into the steady state via periodic and multi-periodic ones at strong
rotation as the curvature is gradually increased in the rotating system.

4.3.2. Schematic Diagram of Vortex-Structure in the (Tr–δ) Plane

In this subsection, we show the vortex structure of the secondary flows for time-dependent solutions.
Figure 25 represents the vortex structure of the flow state in the Tr–δ plane for Tr varying from −2500
to 2500 and the curvature ratio 0.001 ≤ δ ≤ 0.5. The variation of the curvature with respect to Tr is
plotted. Figure 25 clearly shows that the flow state has 1-pair to 5-pair vortices at various values of Tr.
However, a closer observation reveals that the maximum 1-pair to 5-pair solutions are at the moderate
curvature δ = 0.1 and δ = 0.001. As the value of Tr is increased, the number of vortices decreases. A
more comprehensive analysis of Figs. 24 and 25 shows that 1-pair and 2-pair vortices exist in the steady-
state region, whereas 1-pair to 6-pair vortices exist in the chaotic region. Therefore, it may be supposed
that the enhancement of heat transfer for the chaotic flow is more pronounced than that for the steady-
state or periodic flow and this is a result of many secondary vortices produced near the concave wall in
the chaotic flow, which agrees well with the numerical result for a rotating curved duct in the literature
[50]. However, the solution structure for steady branches, as well as characteristics of the flow transition,
is still absent in the literature for a rotating CRD, as the present work shows clearly. Furthermore, this
study gives a clear view regarding the CHT, hydrodynamic instability, and vortex generation in a curved
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Fig. 23. Time progress, phase space, and streamlines for Tr = −2500 and δ = 0.1. (a) Time advancement of λ.
(b) Phase portrait. (c) Contour plots of secondary flow (top), energy distribution (middle), and axial velocity (bottom)
for 11.57 ≤ t ≤ 11.68.

Fig. 24. Schematic diagram of time-advancement solutions for 0.001 ≤ δ ≤ 0.5 at positive and negative rotation.

duct. So far, no reliable technique for the Dean instability in a rectangular duct has been known in
literature for such flows.

4.4. Convective Heat Transfer (CHT)

In this subsection, we discuss the effect of rotation of the system shown in Fig. 2 on the CHT from
the heated wall to the fluid, which is quantitatively assessed by the temperature gradient (TG) at the
differentially heated walls. In Figs. 26a and 26b, the variation of the temperature gradient ∂T

∂x is plotted
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Fig. 25. Schematic diagram of vortex structure of secondary flows for 0.001 ≤ δ ≤ 0.5 and −2500 ≤ Tr ≤ 2500.

Fig. 26. (a) TG at heated wall. (b) TG at cooling wall.

Fig. 27. Experimental vs. numerical results. Left: Experimental result by Chandratilleke [51] for curved rectangular
duct flow with aspect ratio of 2. Right: numerical result by authors.

as a function of y. As seen in Fig. 26a, the TG variation exhibits a much complex manner for the bottom
wall. The TG magnitude on the bottom wall declines in the central zone around y = 0 from Tr = 300
to Tr = 900 and then decreases and fluctuates through small and medium amplitude oscillations (the
number of oscillations increases with the rotation speed) around Tr = 1100 for the heating wall. On
the other hand, at the bottom wall, the TG magnitude approaches to increase the zone other than the
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central zone when Tr ≤ 900. In Fig. 26b, the TG magnitude at the top (cooled) wall increases slowly
in the central zone around y = 0 from Tr = 300 to Tr = 700, and then the curve rapidly approaches to
approximately flat shape (very small oscillations), and the magnitude decreases over the whole zone at
the top wall for Tr = 900 and Tr = 1000. It is also seen that the peak TG appears in the centre at Tr =
1170. This happens owing to advection of the SF in the inward direction there, which is a reverse flow of
the outward SF in the central zone. This result shows that heat transfer occurs mostly from the heated
wall to the fluid as Tr increases.

4.5. Validation Test

In this subsection, validation of our numerical results in the present study is performed in Fig. 27
in comparison with experimental investigations by Chandratilleke [51]. The left figure presents the
experimental results and the right one displays the numerical results for the curved rectangular duct.
As can be seen, there is great similarity between the experimental data and our numerical results. Note
that not enough experimental research has been found on a flow through a curved rectangular duct.

5. CONCLUSION

The current paper uses the spectral method to numerically explore the 2D flow characteristics and
heat transfer through a tightly coiled duct with an aspect ratio of 3 by for the Taylor number −2500 ≤
Tr ≤ 2500 and curvature 0.001 ≤ δ ≤ 0.5. The lower wall of the duct is heated with cooling from the
upper wall, the other walls being thermally insulated to prevent heat loss. Five branches of asymmetric
steady solutions, comprising single-pair to 11-pair vortices, are found. To discuss the transient behavior,
time advancement of the flow is performed and flow transition is well predicted through the phase space
of the solutions, which shows that in the case of co-rotating system, a chaotic flow transforms into a
steady state flow via a multi-periodic flow; in the case of counter-rotating system, however, a chaotic
flow changes to a multi-periodic flow directly. Streamlines of the secondary flow, isotherms (energy
distribution), and axial velocity are obtained for different values of Tr, and it is found that in the co-
rotation case there exist a single-pair vortex for the steady-state, 3-pair to 5-pair vortices for the periodic
or multi-periodic flow, and 3-pair to 5-pair vortices for the chaotic solution. In the counter-rotation case,
however, there exist 2-pair to 5-pair vortices for the chaotic solution and 3-pair and 4-pair vortices for
the multi-periodic solution. The present study shows that maximum 6-pair vortices appear at small
curvature (δ = 0.001), 11-pair vortices at moderate curvature, and maximum 2-pair vortices at strong
curvature (δ = 0.5). It is found that the number of secondary vortices decreases as Tr increases and
increasing the secondary vortices makes the flow chaotic, multi-vortex solutions propagating at the
outer concave wall; consequently, the chaotic flow is more effective for heat transfer in the fluid than
the steady-state or periodic flow. The study clearly shows that the existence of axial velocity and wall
pressure is greatly influenced by the Dean vortices. The present study also shows that the fluid mixing
is certainly induced by the duct curvature and rotation, and as a consequence, the overall heat transfer
becomes larger throughout the fluid in the curved channel.
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