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Abstract—At present, electronic systems are thermally designed on the basis of the assumption
that all the parameters and factors that determine the thermal processes are fully known and
unambiguously determined, id est, that they are determinate. However, the practice of creation
and operation of real electronic systems shows that the real values of determining parameters and
factors, as well as the thermal processes and temperature distributions, are uncertain and can take
any values within some intervals of their variation with an equal probability. The disregard for the
interval stochastic character of the thermal processes leads to design errors and development of
uncompetitive electronic systems. This article elaborates a method that permits modeling non-
stationary interval stochastic thermal processes in an electronic system at interval uncertainty of
input factors and parameters. The method is based on obtaining equations for non-stationary sta-
tistical measures (mathematical expectations, variances, mean square deviations, and covariances)
of thermal processes at specified statistical measures of input data. The article gives an example
of applying the elaborated method to thermal processes in a real electronic system that consists of
electronic modules with printed circuit boards, as well as integrated microcircuits, resistors, and
other electronic components installed on them.
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1. INTRODUCTION

At the present time, electronic systems (ESs) are thermally designed on the basis of the assumption
that all the parameters and factors that determine the thermal processes are fully and unambiguously
known and determined, id est, that they are determinate. However, as shown in [10–12], the real practice
of development and operation of ESs shows that parameters determining thermal processes in ESs
are not determinate at all. For example, if parameters that determine thermal processes in different
specimens of theoretically identical ESs are compared, they as a rule significantly differ one from another.
For example, measurements of most important parameters of integral microcircuits (ICs) such as the
junction-casing (Rjc) and casing-environment (Rca) thermal resistances, as well as the consumed
powers (P ), for different specimens of ICs of identical type show that their values have a significant
statistical spread within some intervals. The boundaries of these intervals are determined both by the
technology of making the ICs and by the further output control over the ICs.

In fact, different specimens of theoretically identical ESs contain lots of interchangeable electronic
components (microprocessors, ICs, and other electronic components), and the exact values of param-
eters of components installed in every particular specimen of an ES are unknown a priori. It is only
known that these parameters vary within some intervals, the boundaries of which are determined by the
statistical technological spread of manufacturing the components. Within these intervals, the particular
values of the parameters can take arbitrary values with an equal probability. That is why it may be
supposed that the indeterminate parameters of the components are random values evenly distributed
within their intervals. The interval uncertainty of the parameters and factors that determine the thermal
processes causes in turn interval uncertainty of the thermal processes and temperature distributions in
the ESs. The interval uncertainty of the factors and processes the values of which are evenly distributed
within their variation intervals is called interval stochastic uncertainty.
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Disregard for the stochastic nature of thermal processes in an ES and considering them as exclusively
determined with point values of temperatures are not adequate to the real practice and hampers reliable
calculation of the component temperatures and temperature distributions in the ES, which leads to
design errors and creation of uncompetitive ESs.

The interval stochastic uncertainty of parameters and factors that determine interval stochastic
thermal processes in an ES occurs because of three groups of interval stochastic factors:

(1) the statistical technological spread of the manufacturing, assembling, and mounting parameters
of the ES components;

(2) the random character of the factors that arise while the ES is functioning, id est, the electricity
supply currents and voltages, the powers consumed by the microprocessors, ICs, resistors, and other
components of the ES, and the temperature and velocity of the cooling medium flows inside the ES;

(3) the randomness of the environmental parameters such as the temperature, pressure, and flow
velocities.

The interval stochastic uncertainty of factors and parameters that determine the thermal processes
in ESs is unavoidable and inherent to any technology of making and mounting ES components. That
is why the problem of mathematical and computer modeling of interval stochastic thermal processes
subject to interval stochastic factors and parameters is topical for adequate thermal design of ESs.
Despite the importance and topicality of this problem, there are only few works dedicated to the said
problematics [2–4, 7–12]. The methods that they consider are ad hoc and cannot be used in the
practice of modeling and thermally designing complex ESs, which consist of a large number of diverse
components, which interact one with another and with the environment.

This article considers a method for mathematical and computer modeling of non-stationary non-
linear thermal processes under the conditions of interval stochastic uncertainty of factors and parameters
that determine thermal processes in ESs. The method is based on obtaining equations that describe
non-stationary statistical measures (mathematical expectations, variances, mean square deviations, and
covariances) of thermal processes at specified statistical measures of input interval stochastic factors and
parameters. Application of the devised method is exemplified by modeling interval stochastic thermal
processes in a particular real ES.

2. THERMAL AND MATHEMATICAL MODELS OF NON-STATIONARY NON-LINEAR
INTERVAL STOCHASTIC THERMAL PROCESSES IN ELECTRONIC SYSTEMS

Let us examine rather a generalized structure of an ES enclosed in a casing inside which diverse
electronic components and commutating, fastening, and other structural parts are installed [10, 11].
The components used in the ES are divided into active and passive ones. The active components
(microprocessors, ICs, resistors, and heat-releasing electronic components) consume electricity from
electric power sources and convert it into heat, which warms up both the components and the whole
ES. The passive components (heatsinks, electrical connectors, condensers, and fastening and structural
components) do not consume electricity and are not heat sources. The fluid medium (air and drop liquid)
inside the ES casing is formed by the flows that enter through the ES casing inlets and exit through its
outlets. All the active and passive components of the ES thermally interact one with another, with the
fluid medium inside the ES casing, and the environment outside the ES casing.

The thermal model of ES developed in the works [5, 9, 10, 11] is a system of N + 1 isothermal
components that is obtained after discretization of the ES structure into its constituents.

The ES thermal scheme (Fig. 1) that corresponds to the ES thermal model and is built on the
basis of electrothermal analogy [5, 9–11] is a graph consisting of N + 1 nodes, M + 1 lines, N − 1
independent sources of heat flows (Φi, i = 1, 2, . . . , N − 1), and two nodes with a priori known and
specified temperature Te of the environment and temperature Ta,in of the fluid flow at the ES inlet (Fig. 1).
According to the electrothermal analogy, the thermal scheme nodes model the isothermal components
of the thermal model; the potentials in the nodes are the temperatures of the isothermal components;
the currents in the lines are the thermal flows; the independent sources of the currents are the active
component heat sources (powers consumed by them); the independent potentials in the nodes are the
specified temperatures; the lines with the condensers are the total volume heat capacities of the thermal
model components.
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Fig. 1. A thermal scheme that corresponds to the ES’s thermal model.

The mathematical model that describes the interval stochastic thermal processes in the ES is built
on the basis of the thermal scheme graph (Fig. 1).

A thermal process in the ES is unambiguously defined by the following determining factors:
—the shape, dimensions, and spatial arrangement of the components in the ES, as well as the ES

structure;
—the power consumed by the active components;
—the boundary conditions on the surfaces of the ES components and casing;
—the heat exchange character, determined by the convection (forced or natural), radiation, and

conduction;
—the temperature and velocity of the fluid medium inside the ES casing;
—the environment temperature;
—conditions at the initial moment of time;
—the thermophysical characteristics (density, heat conductivity, heat capacity, and emissivity factor)

of the materials of the components, fluid medium, and environment.
If the factors and parameters that determine the thermal processes in the ES are determinate,

the thermal process will also be determinate, and the mathematical model that describes it will be
determinate, too. If at least one of the parameters or factors of the thermal process is interval stochastic,
the thermal process itself that takes place in the ES will have an interval stochastic character and will
be described by a stochastic mathematical model. In order to ensure the adequacy, the mathematical
model must reflect the character of the real thermal processes in the ES, namely: non-stationarity, non-
linearity, and interval stochastic uncertainty.

The stochastic mathematical model that describes the interval stochastic temperatures Ti(t, ω),
i = 1, 2, . . . , N + 1, of the thermal scheme components (Fig. 1) and allows their calculation using the
computer looks as follows [9, 10]:

H
dT (t, ω)

dt
+ AG(T, ω)AT T (t, ω) = Φ(ω) + AG(T, ω)Ta(t, ω), (1)

T (0, ω) = Ta(0, ω), (t, ω) ∈ [0, τ ] × Ω,
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where T (t, ω) = (T1(t, ω), T2(t, ω), . . . , TN+1(t, ω))T is the stochastic (N + 1) vector of the stochastic
temperatures in the thermal scheme nodes (thermal model components, Fig. 1); A is the rectangular
(N + 1) × (M + 1) matrix of the incidences of the thermal scheme graph, M + 1 is the quantity of the
lines; G(t, ω) = diag(g1(ω), g2(ω), . . . , gM+1(ω)) is the stochastic diagonal (M + 1) × (M + 1) matrix
of the stochastic heat transfer rates in the lines gk(ω), k = 1, 2, . . . ,M + 1; H = diag(h1, h2, . . . , hN+1),
is the diagonal (N + 1) × (N + 1) matrix of the total volume heat capacities hi = ρi ciVi of the ES
thermal model components of a volume Vi, density ρi and specific heat capacity ci (i = 1, 2, . . . , N +
1); Φ(ω) = (Φ1(ω),Φ2(ω), . . . ,ΦN−1(ω), 0, 0)T is the stochastic (N + 1) vector of the stochastic
independent sources of heat (consumed powers) Φi(ω) of the ES active components; T (0, ω) =
(T1(0, ω), T2(0, ω), . . . , TN+1(0, ω))T is the stochastic (N + 1) vector of the known initial temperatures
in the thermal scheme nodes; Ta(t, ω) = (0, 0, . . . , Te(t, ω), Ta,in(t, ω))T is the stochastic (M + 1)
vector of the known stochastic temperatures of the environment Te(t, ω) outside the ES casing and
the fluid flow Ta,in(t, ω) at the ES inlet; Ta(0, ω) = (0, 0, . . . , Te(0, ω), Ta,in(0, ω))T is the stochastic
(M + 1) vector of the known temperatures of the environment at the initial moment of time t = 0; Ω is
the space of elementary events in the probability space {Ω, U, P}, where U is the σ-algebra of Ω subsets
and P is the probability on U [6]; (∗)T is the transposition operation.

Thus, in the thermal scheme lines (Fig. 1), the heat transfer rates gk (k = 1, 2, . . . ,M + 1) are
stochastic functions of the stochastic temperatures Ti = Ti(t, ω), Tj = Tj(t, ω), Te = Te(t, ω), and
Ta,in = Ta,in(t, ω), namely:

—in lines k = 1, 2, . . . ,M − 1 connected to nodes i and j, i, j = 1, 2, . . . , N + 1, the heat transfer
rates are functions of the temperatures Ti, Tj , id est gk = gk(Ti, Tj , ω);

—in line M between node N and a node with a known and specified temperature of the environment
Te, the heat transfer rate is the function gM = gM (TN , Te, ω);

—in line M + 1 between node N + 1 and a node with a known and specified temperature of the fluid
flow Ta,in at the ES inlet, the heat transfer rate is the function gM+1 = gM+1(TN+1, Ta,in, ω).

Stochastic matrix equation (1) with the stochastic vector initial condition is a system of non-
stationary, non-linear, stochastic differential equations of the first order in the ordinary derivatives; the
system fully determines the sought vector of the stochastic non-stationary temperatures T (t, ω) of the
ES components.

It is known [1, 6, 13] that the laws of distribution of probabilities of all orders at all moments of
time constitute an exhaustive characteristic of random processes. However, because of the extreme
complexity of mathematical model equations (1), it seems to be impossible to determine the laws of
distribution of the stochastic non-stationary temperatures T (t, ω) of the ES components. At the same
time, no knowledge of the laws of distribution of the stochastic non-stationary temperatures of the ES
components is required for modeling the stochastic thermal processes in an ES. For the engineering
practice of thermal design of ESs, the most important and informative characteristics consist in the
statistical measures of the ES component interval stochastic temperatures Ti(t, ω), i = 1, 2, . . . , N + 1,
such as (E{ · } is the mathematical expectation operator)

—the mathematical expectations T i(t) = E{Ti(t, ω)};

—the variances DT i(t) = E

{
(

0
T i(t, ω))2

}
, where

0
T i(t, ω) = Ti(t, ω) − T i(t) is the centered sto-

chastic temperature with a zero mathematical expectation E

{
0
T i(t, ω)

}
= 0 and a variance equal to

DT i(t);

—the mean square deviations σT i(t) =
√

DT i(t);

—the covariances KT i,T j(t) = E

{
0
T i(t, ω)

0
T j(t, ω)

}
between the temperatures Ti = Ti(t, ω) and

Tj = Tj(t, ω) of components i and j (i, j = 1, 2, . . . , N + 1).

From the found statistical measures of the stochastic temperatures (T i(t), DT i(t), σT i(t), KT i,T j(t),
i, j = 1, 2, . . . , N + 1) one can determine the boundaries of the intervals of the real values of the ES
component temperatures.
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3. LINEARIZED MATHEMATICAL MODEL OF STOCHASTIC
THERMAL PROCESSES

Because of the non-linearity of Eqs. (1) relative to the stochastic temperatures Ti = Ti(t, ω), Tj =
Tj(t, ω), Te = Te(t, ω), and Ta,in = Ta,in(t, ω), it seems to be impossible to obtain equations for the
statistical measures of the stochastic temperatures Ti(t, ω), i = 1, 2, . . . , N + 1. However, the random
deviations of the random functions contained in the equations from their mathematical expectations
are as a rule rather small in comparison with their mathematical expectations, which permits applying
methods of linearization of the examined non-linear equations relative to the centered random functions.
As a result of the linearization developed in works [10–12], the initial equations will preserve their non-
linear character relative to the mathematical expectations of the non-stationary stochastic temperatures,
but they will be linear relative to the centered stochastic temperatures. Such an approach makes
it possible to find the final equations that describe the non-stationary statistical measures of the
component stochastic temperatures.

Let us write the centered stochastic temperatures
0
T i =

0
T i(t, ω) (i = 1, 2, . . . , N + 1),

0
T e =

0
T e(t, ω),

0
T a,in =

0
T a,in(t, ω), and heat transfer rates

0
gij =

0
gij(ω):

0
T i = Ti(t, ω) − T i(t),

0
T e = Te(t, ω) − T e(t),

0
T a,in = Ta,in(t, ω) − T a,in(t),

0
gij = gij(ω) − gij ,

where T i(t), T e(t), T a,in(t), and gij are the mathematical expectations of the respective stochastic
functions.

In practice, the random deviations of the temperatures and heat transfer rates from their mathematical
expectations always meet the following conditions:

∣∣∣∣ 0
T i/T i

∣∣∣∣ < 1,
∣∣∣∣ 0
T e/T e

∣∣∣∣ < 1,
∣∣∣∣ 0
T a,in/T a,in

∣∣∣∣ < 1,
∣∣∣∣0
gij/gij

∣∣∣∣ < 1,

and that is why non-linear equations (1) of the mathematical model may be linearized using the method
of Taylor series expansion, terms of order not higher than the first one kept. As a result, we will obtain a
stochastic matrix system of equations that is non-linear relative to the non-stationary mathematical
expectations of the temperatures T (t) and linear relative to the non-stationary stochastic centered

temperatures
0
T (t, ω), namely [11]:

H
dT (t, ω)

dt
+ AG(T )AT T (t) + AV (T )AT

0
T (t, ω) + A

0
Q(ω)AT T (t)

= Φ(ω) + AG(T )Ta(t) + A
0
Q(ω)Ta(t) + AV (T )

0
Ta(t, ω),

(2)

T (0, ω) = Ta(0, ω),

where T (t) = (T 1(t), T 2(t), . . . , TN+1(t))T is the N + 1 vector of the mathematical expectations of

the temperatures in the thermal scheme nodes;
0
T (t, ω) =

(
0
T 1(t, ω),

0
T 2(t, ω), . . . ,

0
TN+1(t, ω)

)T

is the

stochastic (N + 1) vector of the centered stochastic temperatures in the thermal scheme nodes; T a(t) =
(0, 0, . . . , 0, T e(t), T a,in(t))T is the (M + 1) vector of the mathematical expectations of the stochastic

temperatures Te(t, ω) and Ta,in(t, ω);
0
T a(t, ω) =

(
0, 0, . . . ,

0
T e(t, ω),

0
T a,in(t, ω)

)T

is the stochastic

(M + 1) vector of the centered stochastic temperatures Te(t, ω) and Ta,in(t, ω); G(T ) = diag(g1,
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g2, . . . , gM+1) is the diagonal (M + 1) × (M + 1) matrix of the mathematical expectations of the heat
transfer rates in the lines gk = gk(T i, T j), k = 1, 2, . . . ,M + 1; V (T ) = diag(v1, v2, . . . , vM+1) is the
diagonal (M + 1) × (M + 1) matrix with elements vk, k = 1, 2, . . . ,M + 1, equal to the first derivatives
of the heat transfer rates gk = gk(Ti, Tj , ω) with respect to the temperatures Ti and Tj taken at the math-
ematical expectations T i and T j in the expansion of the non-linear heat transfer rates gk = gk(Ti, Tj , ω),

k = 1, 2, . . . ,M + 1, in the Taylor series;
0
Q(ω) = diag

(
0
gcond
1 (ω),

0
gcond

2 (ω), . . . ,
0
gcond

M−1(ω), 0, 0
)

is the

stochastic diagonal (M + 1)× (M + 1) matrix of the centered stochastic conductive heat transfer rates.
Assessment of the error of the linearization developed in works [10, 11] shows that the Taylor series

expansion linearization with only the linear terms kept makes it possible to model the thermal processes
in ESs with an accuracy sufficient for engineering practice.

The stochastic thermal process in the ES described by Eq. (8) with the initial conditions is fully
determined by the statistical measures of the following stochastic factors:

—mathematical expectation T e(t) and variance DTe(t) of the interval stochastic temperature of the
environment Te(t, ω);

—mathematical expectation T a,in(t) and variance DTa,in(t) of the interval stochastic temperature of
the fluid flow Ta,in(t, ω) at the ES inlet;

—mathematical expectations Φi(ω) and variances DΦi(t) of the interval stochastic powers of the
internal sources of heat with a power Φi(ω), i = 1, 2, . . . , N + 1;

—mathematical expectations g cond
ij and variances Dgij of the interval stochastic conductive heat

transfer rates gcond
ij (ω), i, j = 1, 2, . . . , N ;

—mathematical expectation T e(0) and variance DTe(0) of the component initial interval stochastic
temperatures Te(0, ω), i = 1, 2, . . . , N + 1.

4. OBTAINING EQUATIONS FOR STATISTICAL MEASURES OF ES
COMPONENT STOCHASTIC TEMPERATURES

We will obtain equations that describe the following statistical measures of the stochastic tempera-
tures Ti(t, ω) of components i = 1, 2, . . . , N + 1 of the ES thermal model:

—the temperature mathematical expectation vector T (t) = (T 1(t), T 2(t), . . . , TN+1(t))T , where
T i(t) = E{Ti(t, ω)};

—the temperature covariance matrix KT,T (t) = E

{
0
T (t, ω)

0
T T

N+1(t, ω)
}

, the elements of which are

equal to the covariances KT i,T j(t) = E

{
0
T i(t, ω)

0
T j(t, ω)

}
between the temperatures Ti = Ti(t, ω) and

Tj = Tj(t, ω) of components i and j (i, j = 1, 2, . . . , N + 1);

—the temperature variance vector DT (t) = (DT1(t),DT2(t) . . . DT,N=1(t))T , where DT i(t) =

E

{
(

0
T i(t, ω))2

}
are the diagonal elements of the covariance matrix KT,T (t);

—the component temperature mean square deviation vector σT (t) = (σT1(t), σT2(t), . . . ,
σT,N=1(t))T , where σT i(t) =

√
DT i(t).

The found mathematical expectations T i(t) and mean square deviations σT i(t) of the stochastic
temperatures Tj(t, ω) of components i = 1, 2, . . . N + 1, permit determining the lower TBot,i(t) and
upper TUp,i(t) boundaries of the temperature intervals [TBot,i(t), TUp,i(t)] of the real values of the ES
component temperatures, id est,

TBot,i(t) = T i(t) − ε · σT i(t), TUp,i(t) = T i(t) + ε · σT i(t), (3)
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where ε is the coefficient that determines the width of the interval that covers the real values of the ES
component temperatures with a specified probability value P . The coefficient ε value may be assessed

using Chebyshev’s inequality [6, 13] P

{
0
T i(t, ω) ≤ ε · σT i(t)

}
≥ 1 − 1/ε2 with an accuracy sufficient

for the engineering practice.
Without belittling the generality and simplification of the following results, let us accept that the

stochastic temperatures Te(ω) and Ta,in(ω) do not depend on the time and are random values with
known mathematical expectations and variances.

As a result, according to the method developed in works [10, 11, 12], we will obtain the following
equations relative to the statistical measures of the stochastic temperatures Ti(t, ω) of the ES thermal
model components, i = 1, 2, . . . , (N + 1):

—the Equation for the Temperature Mathematical Expectation Vector T (t)

H
dT (t)

dt
+ AG(T )AT T (t) = Φ + AG(T )T a, (4)

T (0) = T a(0),

—the Equation for the Temperature Covariance Matrix KTT (t)

dKTT (t)
dt

+ H−1AV (T )AT KTT (t) + KTT (t)AV (T )AT H−1 + H−1AKQT (t) + KT
QT (t)AT H−1

= H−1KΦT (t) + KT
ΦT (t)H−1 + H−1AV (T )KTaT (t) + KT

TaT (t)V (T )AT H−1,

(5)

KTT (0) = DTeI1,

where I1 is the (N + 1) × (N + 1) matrix all the elements of which equal 1.

As it follows from Eq. (4), in order to obtain its solution relative to the covariance matrix KTT (t), it is
also necessary to have some equations for determining the matrices KΦT (t), KTaT (t), and KQT (t) and
included in it.

According to [10–12], we obtain

dKΦT (t)
dt

+ KΦT (t)AV (T )AT H−1 = KΦΦH−1, (6)

KΦT (0) = 0,

where KΦΦ = E

{
0
Φ(ω)

0
ΦT (ω)

}
is the known covariance matrix of the stochastic powers of the inde-

pendent sources of heat in the ES components,

dKTaT (t)
dt

+ KTaT (t)AV (T )AT H−1 = KTaTaV (T )AT H−1, (7)

KTaT (0) = KTaTa · IT
2 ,

where IT
2 = (11 . . . 1)T is the N + 1 vector with elements equal to 1; KTaTa = E

{
0
T a(ω)

0
T T

a (ω)
}

is the

known covariance matrix of the environment’s stochastic temperatures, and
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Fig. 2. ES structure with electronic devices I and II and heat-conducting plate 3. Electronic devices I and II consist
of electronic modules EM1 and EM2, their edges attached to ribbed radiators 4, 5, 6, and 7 through heat-conducting
elastic gaskets 8, 9, 10, and 11. Electronic modules EM1 and EM2 contain multilayer printed circuit boards 1 and 2,
as well as active and passive components 12 (ICs, resistors, heat-releasing electronic components, radiators, electrical
connectors, condensers, etc.) installed on them.

dKgT (t)
dt

+ KgT (t)AV (T )AT H−1 + KggR(T )AT H−1 = 0, (8)

KgT (t) = 0,

where Kgg = E

{
0
gcond(ω)

(
0
gcond(ω)

)T
}

is the known covariance (M + 1) × (M + 1) matrix of

the conductive heat transfer rates. Taking into account the independence of the random values
0
gcond(ω) for all the k = 1, 2, . . . ,M + 1, we will obtain that the correlation matrix Kgg is diago-
nal with its elements equal to the variances of the conductive heat transfer rates, id est, Kgg =
diag(Dgcond,1Dgcond,2, . . . ,Dgcond,M−1, 0, 0).

Thus, the statistical measures of the stochastic temperatures Ti(t, ω), i = 1, 2, . . . , N + 1, of the ES
thermal model components are determined from the solution of non-linear matrix differential equations
(4) and (5). In so doing, in order to obtain the solution of equations (5) relative to the covariance matrix
KTT (t), it is necessary to additionally solve non-linear matrix differential equations (6), (7), and (8).

Equations (4)–(8) are a system of matrix non-stationary non-linear differential equations of the first
order in ordinary derivatives. However, despite the substantially non-linear character of these equations,
they are easily computed with personal computers and do not require much machine time.

5. APPLICATION IN PRACTICE

Let us exemplify the application of the method elaborated in the article by an ES (Fig. 3) that includes
electronic devices I and II, as well as heat-conducting plate 3, on which electronic device II is installed.
The electronic devices consist of electronic modules EM1 and EM2 (1 and 2, Fig. 2), their edges
attached to ribbed radiators 4, 5, 6, and 7 through heat-conducting elastic gaskets 8, 9, 10, and 11.
Each of the electronic modules EM1 and EM2 contains a multilayered printed circuit board with active
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Fig. 3. The thermal scheme that corresponds to the ES structure in Fig. 2.

and passive electronic components 12 (ICs, resistors, heat-releasing electronic components, radiators,
electrical connectors, condensers, etc.) installed on it. When the ES works, the powers consumed by the
active electronic components transform into heat, which warms up the electronic modules and the whole
ES; the heat exchange among all the ES components and the environment takes place simultaneously
through the natural convection, radiation, and conduction.

Because of the interval stochastic technological spread in making, installing, and mounting the
electronic modules in the ES, the thermal processes in the ES components, electronic modules, and the
whole ES will have an interval stochastic character. In the example under consideration, we accept that
the following ES factors and parameters are subject to a statistical spread: the powers consumed by the
electronic modules EM1 and EM2 (the independent sources Φ1(ω) and Φ2(ω) on the thermal scheme,
Fig. 4); the thicknesses of gaps 8 and 9 (the thermal resistances R46(ω) and R57(ω), Fig. 4) between
electronic devices I and II; the thicknesses of gaps 10 and 11 (the thermal resistances R36(ω) and
R37(ω), Fig. 3) between electronic device II and heat-conducting plate 3; the environment temperature
Te(ω) (the fluid temperature Ta,in(ω) at the ES inlet is equal to the environment temperature Te(ω)).

Non-stationary non-linear equations (4)–(8) relative to the statistical measures are solved by means
of the Runge–Kutta numerical method using the STP-ES (Simulation of Thermal Processes in Elec-
tronic Systems) software complex specially developed by the authors, which permits computer modeling
of interval stochastic thermal processes in electronic systems of any complexity. The computations are
made at the following interval spreads of the initial data:

• the interval stochastic temperature of the environment Te(ω) ∈ [19.5; 26.5], ◦C, and its mathemat-
ical expectation T e = 23◦C;

• the interval stochastic powers consumed by the electronic modules EM1 Φ1(ω) ∈ [12; 18] and
EM2 Φ2(ω) ∈ [16.5; 19.5] as well as their mathematical expectations Φ1 = 15 W and Φ2 = 18 W ;

• the interval stochastic rates of the conductive heat transfer through the gaps g46(ω), g57(ω), g36(ω),
g39(ω) ∈ [0, 12; 1, 32], W/K, and their mathematical expectations g46, g57, g36, g37 = 0.72, W/K.

The non-stationary values of the lower TBot,i(t) and upper TUp,i(t) boundaries of the intervals
[TBot,i(t), TUp,i(t)], i = 1, 2, within which the real temperatures of the electronic modules EM1 and EM2
will vary (thermal scheme nodes i = 1, 2, Fig. 3) are calculated according to formulas (3) at ε = 3 and a
probability P = 0.89.
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Fig. 4. Dynamics of variation of interval stochastic temperatures (◦C) of electronic modules EM1 and EM2 with time
(minutes).

6. RESULTS AND ANALYSIS

The obtained results (Fig. 4) show that in the electronic modules EM1 and EM2, the interval
stochastic temperatures set in starting from the moment of time t ≥ 25 min. In the thermal process
that has set in, the temperature of the electronic module EM1 varies within the interval [59.7; 75.5],
◦C, at a mathematical expectation T 1 = 67.6◦C, and the temperature of the electronic module EM2
lies within the interval [53.8; 64.9], ◦C, at a mathematical expectation T 1 = 59.4◦C (Fig. 4). Thus, the
interval stochastic temperatures T1(t, ω) and T2(t, ω) that settled in the real electronic modules EM1
and EM2 can have any values within the intervals T1(ω) ∈ [59.7; 75.5], ◦C, and T2(ω) ∈ [53.8; 64.9],
◦C, with a probability of not less than 0.89. The spread of the EM1 and EM2 temperature variation
intervals—T1(ω) and T2(ω)—amounts to 15.8◦C and 11.1◦C respectively.

The found interval values of the temperatures are of a great practical importance since they make it
possible to prognosticate —as early as at the stage of thermally designing the ESs —the real biggest
and smallest temperatures of components that will take place in practice during the operation of real
ESs and to assess the electric and reliability parameters of the designed ESs more accurately.

JOURNAL OF ENGINEERING THERMOPHYSICS Vol. 29 No. 1 2020



180 MADERA, KANDALOV

7. CONCLUSIONS
This article presents a method elaborated for mathematical modeling of non-linear non-stationary

interval stochastic thermal processes in electronic systems (ESs); the method permits calculating the
non-stationary temperatures of electronic and other components of ESs, as well as the intervals of the
real temperature values. The method elaborated in the article makes it possible to obtain equations that
describe the non-stationary statistical measures of the interval stochastic temperature distributions in
an ES: mathematical expectations, variances, mean square deviations, and covariances between the
temperatures of all the components. Equations (4)–(8) for calculating the statistical measures of the
thermal processes in an ES are a system of non-stationary non-linear differential equations of the first
order in ordinary derivatives. They are obtained under the most common conditions that do not use
unrealistic assumptions about representing the stochastic factors in the form of white noises or Wiener
processes such as Brownian motion.

The method elaborated in the article takes into account principal peculiarities of the structure of and
heat exchange in an ES such as the stochastic character of heat exchange in the ES, conditioned by
the statistical spread of the thermal, electrical, and structural factors and parameters at manufacturing,
assembling, and mounting the ES, as well as by the interval stochastic character of the environment
conditions;

—the non-linearity of the heat exchange processes, conditioned by the temperature dependence of
the parameters and factors that determine the thermal processes in the ES;

—the non-stationary character of the thermal processes.
In order to model and calculate the statistical measures of the interval stochastic thermal processes in

ESs, the authors developed a specialized software complex STP-ES (Simulation of Thermal Processes
in Electronic Systems) for thermal design of ESs of any complexity; the software has shown its adequacy
and effectiveness in designing and creating modern competitive ESs.
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