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Abstract—This paper presents a numerical solution for the steady mixed convection magneto-
hydrodynamic (MHD) flow of an electrically conducting micropolar fluid over a porous shrinking
sheet. The velocity of shrinking sheet and magnetic field are assumed to vary as power functions
of the distance from the origin. A convective boundary condition is used rather than the customary
conditions for temperature, i.e., constant surface temperature or constant heat flux. With the aid of
similarity transformations, the governing partial differential equations are transformed into a system
of nonlinear ordinary differential equations, which are solved numerically, using the variational finite
element method (FEM). The influence of various emerging thermophysical parameters, namely
suction parameter, convective heat transfer parameter, magnetic parameter and power index on
velocity, microrotation and temperature functions is studied extensively and is shown graphically.
Additionally the skin friction and rate of heat transfer, which provide an estimate of the surface
shear stress and the rate of cooling of the surface, respectively, have also been computed for
these parameters. Under the limiting case an analytical solution of the flow velocity is compared
with the present numerical results. An excellent agreement between the two sets of solutions is
observed. Also, in order to check the convergence of numerical solution, the calculations are carried
out by reducing the mesh size. The present study finds applications in materials processing and
demonstrates excellent stability and convergence characteristics for the variational FEM code.
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1. INTRODUCTION

The boundary layer flow induced by stretching surface is an important type of flow occurring in several
materials manufacturing and chemical flow processes. These include wire drawing, paper production,
glass-fiber production, liquid metal and polymer sheet synthesis. In all these cases, the mechanical
properties of the final product are significantly affected by the rate of cooling and stretching in the process
and material characteristics may, therefore, be manipulated to desired specifications. The pioneering
work in this area was carried out by Sakiadis [1]. Tsou et al. [2] carried out combined analytical
and experimental study of the flow and heat transfer in the boundary layer on a continuous moving
surface. Boundary layer flow of a Newtonian fluid caused by a linearly stretching sheet was described
by Crane [3], who derived an exact similarity solution in closed analytical form. Thereafter, various
aspects of Newtonian fluid flows from a stretching surface have been reported by Grubka and Bobba
[4], Elbashbeshy [5], Magyari and Keller [6], Andersson [7] and Cortell [8]. However, many engineering
processes utilize non-Newtonian fluids such as paints, lubricants, human and animal blood, body fluids,
polymers, colloidal fluids and suspension fluids. The classical theories of continuum mechanics cannot
be used for the realistic description of the flow of these fluids. Eringen [9] has formulated the theory of
micropolar fluids, which describes the physics of such fluids by taking into account the effect arising
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from local structure and micro-motions of the fluid elements. Micropolar fluids can support couple
stresses, shear stresses and body couples and also exhibit micro-rotational effects and inertia. The
fundamentals of micropolar fluid theory, with some simple engineering applications, are elucidated
in the book by Eringen [10]. More advanced scenarios of a multi-physical nature are covered in the
monograph by Bég et al. [11]. Eringen [12] has extended the theory of microfluids (or “micromorphic”
fluids) to thermomicrofluids, of which thermo-micropolar fluids are again a special case. This theory
takes into account thermal effects, i.e., heat conduction, convection and dissipation. These effects were
not included in the classical field theories.

Boundary layer flow from a shrinking sheet is also a significant problem in modern materials
processing technologies. This type of flow was first examined analytically by Wang [13]. Later, Miklavcic
and Wang [14] presented closed-form solutions for the Navier–Stokes equations for the flow over a
shrinking sheet. Shrinking sheet flow is essentially a backward flow as discussed by Goldstein [15].
From the physical point of view, steady flow over a shrinking sheet is not possible since the generated
vorticity is not confined within the boundary layer. To overcome this difficulty, the flow requires a certain
amount of external opposite force at the sheet. This has been extensively discussed in the literature.
Some relevant expositions in this regard are Miklavcic and Wang [14], Wang [16], and Bachok et al. [17].
Fang et al. [18] computed solutions for the unsteady flow over a shrinking surface with mass suction and
highlighted the deviation in flow behavior for an unsteady shrinking sheet compared with an unsteady
stretching sheet. Flow and heat transfer of a viscous fluid over a stretching/shrinking sheet was later
considered by Fang et al. [19]. Numerical solutions for the boundary layer flow and heat transfer over
a porous shrinking sheet in the presence of thermal radiation flux were obtained by Bhattacharyya and
Layek [20]. The shrinking sheet problem was extended to micropolar fluids by Ishak et al. [21] who
considered stagnation point flow. Yacob and Ishak [22] subsequently obtained computational solutions
for coupled flow and heat transfer over a shrinking sheet immersed in a micropolar fluid.

In the above-mentioned studies, the effect of magnetic field on the flow and heat transfer has not
been considered. Magnetohydrodynamics (MHD) with heat transfer from a shrinking sheet is important
in many manufacturing processes in the industry. Keeping in view some specific applications such
as polymer processing technology, many investigators have analyzed the effect of magnetic field on
momentum and thermal boundary layer flow characteristics. Muhaimin et al. [23] conducted numerical
computations to examine the effects of heat and mass transfer on nonlinear MHD flow over a shrinking
sheet with wall suction/injection. Magnetohydrodynamic flow of a viscous fluid over a shrinking
sheet was examined by Fang and Zhang [24]. They obtained the closed-form exact solution of the
Navier–Stokes equations. Using the homotopy semi-numerical technique, Nadeem and Hussain [25]
investigated the magnetohydrodynamic flow of a viscous fluid over a nonlinear porous shrinking sheet.
Schit and Haldar [26] reported on the combined effects of radiation and magnetic field on the flow and
heat transfer over a shrinking sheet by taking into account the power function variation of magnetic field
and shrinking velocity from the origin. Hayat et al. [27] studied the magnetohydrodynamic dissipative
stagnation point flow of micropolar fluid over a shrinking surface with heat source/sink effects. A
computational study of MHD stagnation point flow of a micropolar fluid towards a heated shrinking
sheet was conducted by Ashraf and Bashir [28] using a finite-difference algorithm. Das [29] investigated
the slip effects on MHD mixed convection flow of a micropolar fluid towards a shrinking vertical sheet.

Heat transfer with convective boundary condition is more general and realistic especially with respect
to various engineering and industrial processes including material drying [30], laser pulse heating [31]
and transpiration cooling [32]. Aziz [33] examined the Blasius flow of a viscous fluid with convective
boundary condition and demonstrated the condition for the similarity solution to exist. Boundary layer
flow and heat transfer of a viscous fluid over a permeable surface with a convective boundary condition
was presented by Ishak [34]. Numerical solution of MHD mixed convection from a vertical plate with
heat and mass transfer and a convective boundary condition at the plate was carried out by Makinde
and Aziz [35]. Yao et al. [36] studied the heat transfer of a viscous fluid over a stretching/shrinking
sheet with a convective boundary condition. They showed that convective boundary condition results
in temperature slip at the wall and is affected by mass transfer parameter. Using an implicit finite
difference scheme in combination with the quasi-linearization technique Subhashini et al. [37] reported
on the double-diffusive convection from a vertical permeable flat surface under a convective boundary
condition. Magneto-convective boundary layer flow from a translating vertical plate with convective heat
exchange at the surface with cross diffusion effects was studied by Makinde et al. [38] using MAPLE.
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Recently Yacob and Ishak [39] investigated the stagnation point flow of a micropolar fluid towards a
stretching/shrinking sheet with a convective surface boundary condition and showed that heat transfer
rate at the surface for the stretching case exceeds that for the shrinking case.

The aim of the present paper is to analyze the effect of magnetic field on mixed convection flow and
heat transfer of magneto-micropolar fluid over a permeable shrinking sheet. The shrinking velocity and
the magnetic field are assumed to vary as power functions of distance from the origin. The governing
nonlinear partial differential equations are rendered into a coupled, highly nonlinear system of nonlinear
ordinary differential equations by applying a suitable similarity transformation. The resulting normalized
two-point boundary value problem, under appropriate boundary conditions, is solved numerically by
using a variational formulation of the finite element method (FEM). The influence of the pertinent
dimensionless parameters on the velocity, microrotation and temperature functions has been depicted
graphically. The numerical results for the skin friction coefficient and the local Nusselt number have also
been computed. In order to check the convergence of the numerical solution, calculations are carried out
by reducing the mesh size. The FEM code is also validated with previous studies demonstrating excellent
correlation. The current study is relevant to thermophysical sheet processing of electro-conductive
polymers [40, 41] and aims to further reveal the influence of MHD effects on micro-structural and
thermofluid characteristics in such systems.

2. MATHEMATICAL MODEL

Let us consider a steady laminar boundary layer flow of an incompressible electrically conducting
micropolar fluid over a porous shrinking sheet. The x axis is taken along the sheet and y axis is taken
normal to it. The continuous shrinking sheet is assumed to move with a velocity according to power-law
form, i.e., U(x) = −axn, where a > 0 is constant of proportionality and n is a power index. A magnetic
field B (x) is applied perpendicular to the surface of the sheet. The strength of the magnetic field is

B (x) = B0x
n−1

2 , where B0 represents the constant magnetic field strength applied perpendicular to the
shrinking sheet. The special form of the magnetic field B (x) is chosen to obtain a similarity solution.
This form has also been considered by Chiam [42]. Since the magnetic Reynolds number is small for
most of the fluids in industrial applications, we assume that the induced magnetic field is negligible.
It is also assumed that there is no applied electric field and the electric field due to polarization of
charges is negligible. Moreover, the viscous dissipation effect is neglected in the present study. The flow
configuration and the coordinate system are shown in the Fig. 1. Under the above assumptions along
with the boundary layer approximations, the equations that govern the problem under consideration can
be expressed as follows:

Conservation of mass:

∂u

∂x
+

∂v

∂y
= 0, (1)

Conservation of linear momentum:

u
∂u

∂x
+ v

∂u

∂y
=

(
μ + S

ρ

)
∂2u

∂y2
+

S

ρ

∂N

∂y
+ geβ(T − T∞) − σ0B

2(x)
ρ

u, (2)

Conservation of angular momentum:

u
∂N

∂x
+ v

∂N

∂y
=

γ

ρj

∂2N

∂y2
− S

ρj

(
2N +

∂u

∂y

)
, (3)

Conservation of energy:

u
∂T

∂x
+ v

∂T

∂y
=

κ

ρcp

∂2T

∂y2
, (4)

JOURNAL OF ENGINEERING THERMOPHYSICS Vol. 27 No. 2 2018



FINITE ELEMENT ANALYSIS OF MHD FLOW OF MICROPOLAR FLUID 205

Fig. 1. Physical model and coordinate system.

where the spin gradient viscosity γ is given by γ =
(
μ + S

2

)
j and j = (ν/a) x1−n.

The boundary conditions for the flow field are given by

u = U(x) = −axn, v = Vwx
n−1

2 , N = −0.5
∂u

∂y
at = 0,

u → 0, N → 0, as y → ∞. (5)

On the other hand, it is assumed that the left side of the sheet surface is heated by convection from a hot
fluid of uniform temperature Tf , which provides a heat transfer coefficient hf . The temperature boundary
conditions at the surface of the sheet and far into the cold fluid are given as

−κ
∂T

∂y
= hf (Tf − Tw) at y = 0,

T → T∞ as y → ∞, (6)

where Tf > Tw > T∞.

In order to solve Eqs. (1)–(4), we introduce the following similarity transformations:

η =

√
a (n + 1)xn−1

2ν
y, φ =

√
2aνxn+1

(n + 1)
f, N =

√
a3 (n + 1) x3n−1

2ν
g, θ =

T − T∞
Tf − T∞

, (7)

where stream function φ, satisfies the continuity equation (1) automatically with u = ∂φ/∂y and v =
−∂φ/∂x. Using (7) we obtain

u = axnf ′, v = −x
n−1

2

√
aν (n + 1)

2

[
f (η) +

(
n − 1
n + 1

)
ηf ′ (η)

]
. (8)

Using (7) and (8), Eqs. (2)–(4) reduce to
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(1 + K)f ′′′ + ff ′′ − 2n
(n + 1)

(
f ′)2 − 2

(n + 1)
Mf ′ + Kg′ +

2
(n + 1)

σθ = 0, (9)

(
1 +

K

2

)
g′′ + fg′ −

(
3n − 1
n + 1

)
f ′g − 2

(n + 1)
K

(
2g + f ′′) = 0, (10)

θ′′ + Pr fθ′ = 0, (11)

and the transformed boundary conditions (5) and (6) take the form

f = −λ, f ′ = −1, g = −0.5f ′′, θ′ = −c [1 − θ (0)] at η = 0, (12)

f ′ = 0, g = 0, θ = 0 as η → ∞, (13)

where primes denote differentiation with respect to η only, K = S/μ (the coupling constant parame-
ter), M = σ0B

2
0

/
ρa (the magnetic parameter), σ = Grx

/
Re2

x (buoyancy parameter), Grx = geβ(Tw −
T∞)x3/ν2 (local Grashof number), Rex = axn+1

/
ν (local Reynolds number), Pr = μcp/κ (Prandtl

number), λ =
√

2Vw

/(√
νa(n + 1

)
(suction parameter); λ > 0 corresponds to suction and λ < 0

corresponds to injection (is not considered in the present study), c =
(
hf

√
2νx(1−n)

)/(
κ
√

a (n + 1)
)

(convective heat transfer parameter). It may be noted that the heat transfer coefficient hf should be
proportional to x−(1−n)/2 so as to eliminate the dependence of c on x, i.e., hf = ex−(1−n)/2, where e is a
constant.

The quantities of physical interest in this problem are the local skin friction coefficient and the local
Nusselt number, which are, respectively, defined as

Cf =
2τw

ρU2
, Nux =

qx

κ(Tf − T∞)
, (14)

where the local wall shear stress τw and the heat transfer from the plate q are given by

τw = −
[
(μ + S)

∂u

∂y
+ SN

]
y=0

, q = −κ

(
∂T

∂y

)
y=0

. (15)

Using the similarity transformations given in (7), we obtain

Cf (Rex)
1/2 = −

√
(n + 1)

2
(2 + K) f ′′ (0) and

Nux√
Rex

= −
√

(n + 1)
2

θ′ (0) . (16)

3. FINITE ELEMENT METHOD (FEM) SOLUTION

The finite element method has been implemented to obtain the numerical solution of the system
of nonlinear ordinary differential equations (9)–(11) subject to boundary conditions (12)–(13). This
method is extremely efficient and has been applied to study different problems in fluid mechanics, heat
transfer, chemical processing, solid mechanics, and other fields also. The general details of the finite
element method can be found in Reddy [43]. Further recent studies using the variational FEM approach
include Gupta et al. [44, 45], Rana et al. [46], Kumar [47], and Bég et al. [48].

In order to apply the finite element method first we assume

f ′ = h. (17)
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Then Eqs. (9)–(11) take the form

(1 + K)h′′ + fh′ − 2n
(n + 1)

h2 − 2
(n + 1)

Mh + Kg′ +
2

(n + 1)
σθ = 0, (18)

(1 +
K

2
)g′′ + fg′ −

(
3n − 1
n + 1

)
hg − 2K

(n + 1)
(
2g + h′) = 0, (19)

θ′′ + Pr fθ′ = 0, (20)

and the corresponding boundary conditions now become

f = −λ, h = −1, g = −0.5h′, θ′ = −c [1 − θ (0)] at η = 0, (21)

h → 0, g → 0, θ → 0 as η → ∞. (22)

For the computational purposes, infinity has been fixed at 8. It is observed that the value greater than
8 does not result in any significant change in the numerical results.

3.1. Variational Formulation

The variational form associated with Eqs. (17)–(20) over a typical two-noded element (ηe, ηe+1) is
given by

ηe+1∫
ηe

w1

{
f ′ − h

}
dη = 0, (23)

ηe+1∫
ηe

w2

{
(1 + K)h′′ + fh′ − 2n

(n + 1)
h2 − 2

(n + 1)
Mh + Kg′ +

2
(n + 1)

σθ

}
dη = 0, (24)

ηe+1∫
ηe

w3

{
(1 +

K

2
)g′′ + fg′ −

(
3n − 1
n + 1

)
hg − 2K

(n + 1)
(
2g + h′)} dη = 0, (25)

ηe+1∫
ηe

w4

{
θ′′ + Pr fθ′

}
dη = 0, (26)

where w1, w2, w3, and w4 are weight functions, which may be viewed as the variation in f , h, g, and θ,
respectively.
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3.2. Finite Element Formulation

The finite element model may be obtained from Eqs. (23)–(26) by substituting finite element
approximation of the form

f =
2∑

j=1

fjψj, h =
2∑

j=1

hjψj , g =
2∑

j=1

gjψj , θ =
2∑

j=1

θjψj , (27)

with w1 = w2 = w3 = w4 = ψi (i = 1, 2), where the shape functions ψi for a typical line element
(ηe, ηe+1) are given by:

ψ1 =
ηe+1 − η

ηe+1 − ηe
, ψ2 =

η − ηe

ηe+1 − ηe
, ηe ≤ η ≤ ηe+1. (28)

The finite element equations are, therefore, given by

⎡
⎢⎢⎢⎢⎢⎢⎣

[K11][K12][K13][K14]

[K21][K22][K23][K24]

[K31][K32][K33][K34]

[K41][K42][K43][K44]

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

{f}

{h}

{g}

{θ}

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

{b1}

{b2}

{b3}

{b4}

⎤
⎥⎥⎥⎥⎥⎥⎦

, (29)

[Kmn] and [bm] (m,n = 1, 2, 3, 4) are the matrices of order 2 × 2 and 2 × 1, respectively, and are given
by

K11
ij =

ηe+1∫
ηe

ψi
dψj

dη
dη,K12

ij = −
ηe+1∫
ηe

ψiψjdη, K13
ij = K14

ij = 0, K21
ij = 0,

K22
ij = −(1 + K)

ηe+1∫
ηe

dψi

dη

dψj

dη
dη +

ηe+1∫
ηe

f̄ψi
dψj

dη
dη − 2n

(n + 1)

ηe+1∫
ηe

h̄ψiψjdη − 2M
(n + 1)

ηe+1∫
ηe

ψiψjdη,

K23
ij = K

ηe+1∫
ηe

ψi
dψj

dη
dη, K24

ij =
2σ

(n + 1)

ηe+1∫
ηe

ψiψjdη, K31
ij = 0, K32

ij = − 2K
(n + 1)

ηe+1∫
ηe

ψi
dψj

dη
dη,

K33
ij = −

(
1 +

K

2

) ηe+1∫
ηe

dψi

dη

dψj

dη
dη +

ηe+1∫
ηe

f̄ψi
dψj

dη
dη −

(
3n − 1
n + 1

) ηe+1∫
ηe

h̄ψiψjdη

− 4K
(n + 1)

ηe+1∫
ηe

ψiψjdη,

K34
ij = 0, K41

ij = K42
ij = K43

ij = 0, K44
ij = −

ηe+1∫
ηe

dψi

dη

dψj

dη
dη + Pr

ηe+1∫
ηe

f̄ψi
dψj

dη
dη, (30)

and
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b1
i = 0, b2

i = −(1 + K)
(

ψi
dh

dη

)ηe+1

ηe

,

b3
i = −

(
1 +

K

2

)(
ψi

dg

dη

)ηe+1

ηe

, b4
i = −

(
ψi

dθ

dη

)ηe+1

ηe

, (31)

where f̄ =
2∑

i=1
f̄iψi and h̄ =

2∑
i=1

h̄iψi are assumed to be known.

The resulting system of equations obtained after the assembly of element equations is nonlinear.
Therefore, an iterative scheme is used for solving it. The system is linearized by incorporating the
function f̄ and h̄ known at a lower iteration level. Computations for the functions f , g, h, and θ are then
carried out for a higher level. This process is repeated till the desired accuracy of 0.00005 is obtained.
In order to check the convergence of the results, calculations are carried out for increasing number of
elements, as shown in Table 1. It is clear from the table that as the number of elements increases beyond
160, no significant variation in the values of f , g, and θ is observed. Thus, the final results are reported
for 160 elements in all other tables. Mesh independence is therefore clearly demonstrated.

When the buoyancy force is absent (σ = 0), the fluid is Newtonian (K = 0) and the sheet is shrinking
linearly (n = 1), the exact solution for f (η), as obtained by Fang and Zhang [24], is given by

f (η) = λ −
(
1 − e−ηz

)/
z, (32)

where z = 0.5[λ + (λ2 + 4M − 4)1/2.

Table 2 shows the comparison of the flow velocity f ′ (η) obtained by us using finite element method
and the above by analytical method. Inspection of the table shows that numerical results obtained are in
complete agreement with each other confirming the validity and accuracy of the FEM. Confidence in the
present variational FEM code is therefore high.

Table 1. Convergence of results with the variation of number of elements (K = 1, Pr = 0.733, σ = 5, λ = 3.5,
c = 1, M = 3, n = 0.5)

Number of elements f(0.8) g(0.8) θ(0.8)

20 3.2516 −0.1712 0.0355

40 3.2427 −0.2084 0.0411

60 3.2416 −0.2181 0.0421

80 3.2414 −0.2220 0.0424

100 3.2413 −0.2240 0.0426

120 3.2413 −0.2251 0.0427

140 3.2413 −0.2258 0.0427

160 3.2413 −0.2263 0.0427

180 3.2413 −0.2263 0.0428

200 3.2413 −0.2263 0.0428
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Table 2. Comparison of the flow velocity f ′ (η) obtained by analytical method (Ref. [24]) and FEM (this paper)
(K = 0, Pr = 0.733, σ = 0, λ = 3, c = 1, M = 1, n = 1) in the special case

η
f ′ (η)

Ref. [24] FEM (ours)

0 −1 −1

1 −0.04979 −0.04915

2 −0.00248 −0.00243

3 −0.00012 −0.00012

4 −0.00001 −0.00001

5, 6, 7, 8 0.00000 0.00000

Table 3. The skin friction coefficient f ′′(0) for different values of λ, c, M , and n (K = 1, Pr = 0.733, σ = 5)

c = 1, M = 3, n = 0.5 λ = 3.5, M = 3, n = 0.5 λ = 3.5, c = 1, n = 0.5 λ = 3.5, c = 1, M = 3

λ f ′′(0) c f ′′(0) M f ′′(0) n f ′′(0)

2.0 2.98754 0.25 3.10723 0 2.67811 0.5 3.36981

2.5 3.06345 0.5 3.21020 1 2.95198 1 3.09404

3.0 3.19543 1.0 3.36981 3 3.36981 2 2.77977

3.5 3.36981 1.5 3.48795 6 3.85042 3 2.60160

4.0 3.57500 2.0 3.57900 9 4.24196 5 2.40258

Table 4. The heat transfer rate −θ′ (0) for different values of λ, c, M , and n (K = 1, Pr = 0.733, σ = 5)

c = 1, M = 3, n = 0.5 λ = 3.5, M = 3, n = 0.5 λ = 3.5, c = 1, n = 0.5 λ = 3.5, c = 1, M = 3

λ −θ′(0) c −θ′(0) M −θ′(0) n −θ′(0)

2.0 0.56947 0.25 0.22581 0 0.70508 0.5 0.70680

2.5 0.62728 0.5 0.41326 1 0.70583 1 0.70617

3.0 0.67192 1.0 0.70680 3 0.70680 2 0.70538

3.5 0.70680 1.5 0.92634 6 0.70771 3 0.70489

4.0 0.73453 2.0 1.09686 9 0.70833 5 0.70429

4. RESULTS AND DISCUSSION

Numerical computations have been performed for velocity, microrotation and temperature functions
for various values of important physical parameters such as suction parameter λ, convective heat transfer
parameter c, magnetic parameter M , and power index n. The micropolar coupling constant parameter
K, buoyancy parameter σ and Prandtl number Pr are kept fixed at 1, 5, and 0.733 respectively. These
results are shown graphically in Figs. 2–13. The skin friction coefficient and local Nusselt number have
also been computed for these parameters and are tabulated in Tables 3 and 4. Higher values of suction
parameter are taken so as to sustain steady flow near the sheet by confining the generated vorticity inside
the boundary layer.

The influence of the suction parameter λ on the velocity is examined in Fig. 2. Velocity decreases
with increase in suction parameter. Negative values of the velocity near the sheet indicate that the flow
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Fig. 2. Velocity distribution for different λ (c = 1, M = 3, n = 0.5).

Fig. 3. Microrotation distribution for different λ (c = 1, M = 3, n = 0.5).

reversal is induced by the suction. Figure 3 shows the effect of λ on the microrotation. In the vicinity
of the sheet microrotation decreases with increase in the suction parameter λ; after covering a small
distance from the sheet the converse behavior is observed. Negative values of microrotation indicate the
reverse gyratory motions (spin) of micro-elements. The effect of suction parameter λ on the temperature
is presented in Fig. 4. It is clear from the figure that the temperature decreases as suction increases
and, consequently, the thermal boundary layer thickness decreases. A similar observation has been
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Fig. 4. Temperature distribution for different λ (c = 1, M = 3, n = 0.5).

Fig. 5. Velocity distribution for different c (λ = 3.5, M = 3, n = 0.5).

reported by Bhattacharyya and Layek [20] and Muhaimin et al. [23]. Thus, suction parameter can be
used effectively for controlling both the flow and heat transfer characteristics.

Figure 5 illustrates the velocity distribution for different values of convective parameter, c. It is
apparent that velocity increases with rising convective parameter. As the convective parameter in-
creases, boundary layer thickness therefore decreases. The velocity profile is found to be in qualitative
agreement with those obtained by Makinde and Aziz [35]. The influence of the convective parameter
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Fig. 6. Microrotation distribution for different c (λ = 3.5, M = 3, n = 0.5).

Fig. 7. Temperature distribution for different c (λ = 3.5, M = 3, n = 0.5).

c on the microrotation is depicted in Fig. 6. It is evident that as the convective parameter c increases,
microrotation decreases initially, but after covering a certain distance from the sheet all profiles converge
and finally satisfy the far field boundary condition. Greater intensity in the convective boundary parameter
is therefore observed to stifle gyratory motions of the micro-elements. This will serve to substantially
alter the microstructure of the manufactured material. Figure 7 demonstrates that the temperature
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Fig. 8. Velocity distribution for different M (λ = 3.5, c = 1, n = 0.5).

Fig. 9. Microrotation distribution for different M (λ = 3.5, c = 1, n = 0.5).

increases with elevation in convective parameter. It is also observed that the temperature attains a
maximum at the surface and decreases gradually to the free stream temperature. Large values of c result
in lower thermal resistance of the sheet and higher convective heat transfer to the right side of the sheet.
As a consequence of this, the heat transfer rate at the surface increases and this will exert a substantial
effect on material characteristics. A similar observation has been reported by Aziz [33].
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Fig. 10. Temperature distribution for different M (λ = 3.5, c = 1, n = 0.5).

Fig. 11. Velocity distribution for different n (λ = 3.5, c = 1, M = 3).

From Fig. 8 some interesting observations can be made for velocity with the effect of magnetic pa-
rameter, M . Velocity magnitude decreases with an increase in the magnetic parameter, M . Accordingly,
the boundary layer thickness decreases. In the presence of magnetic field a drag force called Lorentz
force arises during the motion of electrically conducting fluid, which inhibits momentum development,
i.e., retards the fluid. We note that the velocities generally have a negative value in Fig. 8, which is
attributable more to the dominance of the shrinking sheet on the fluid physics. Figure 9 represents
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Fig. 12. Microrotation distribution for different n (λ = 3.5, c = 1, M = 3).

Fig. 13. Temperature distribution for different n (λ = 3.5, c = 1, M = 3).

the microrotation distribution with the variation of the magnetic parameter M . It is noticed that the
magnetic parameter M causes a significant decrease in the microrotation for 0 ≤ η < 1, but for η > 1 all
profiles merge indistinguishably and finally decay to zero. In all cases microrotation is negative, which
shows the reverse rotation of microelements. Gyratory motions are therefore also inhibited with stronger
magnetic field imposition. The impact of the magnetic parameter M over the temperature distribution is
shown in Fig. 10. Temperature of the fluid decreases slightly with increase in magnetic parameter. This
is opposite to the effect generated in a stretching sheet flow, where temperature will be accentuated with
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dissipation of thermal energy as a result of supplementary work done in dragging the magnetic field.
Again the shrinking sheet physics has a major influence on the potency of magnetic field in the regime.

Figure 11 displays the variations of velocity within the boundary layer for different values of power
index, n. As n is enhanced, the shrinking sheet will contract faster. This will destroy momentum in the
surrounding fluid and will cause a decrease in velocity, i.e., deceleration in the boundary layer flow, with
increase in power index n. It is also noticed from the figure that velocity increases continuously from
its initial value and approaches zero in the free stream, for any value of power-law index. Figure 12
depicts the effect of power index n on the microrotation distribution. It is clear from the figure that
microrotation increases initially with increase in n. For η ≈ 0.7 all profiles intersect and thereafter micro-
rotation decreases with increasing n. The effect of power index on the temperature is depicted in Fig. 13,
from which we observe that no tangible influence in temperatures is caused with variation in n. This
is understandable since n is primarily a parameter influencing the momentum and angular momentum
(mechanical variables) fields.

Table 3 demonstrates that skin friction (dimensionless surface shear stress function) decreases with
increase in power index while it increases with an increase in suction, convective heat transfer and
magnetic parameters. Thus the skin friction can be reduced effectively by introducing power index. It is
evident from Table 4 that the rate of heat transfer increases with increase in suction parameter, convective
heat transfer parameter, magnetic parameter, whereas decreases with increase in power index. It is also
apparent that the rate of heat transfer is higher for larger values of convective heat transfer parameter.
This is due to the fact that the left side of the sheet is heated by convection from hot fluid, and, therefore,
the surface of the sheet becomes hotter and heat flows from the surface to the cool fluid on the right side.
Thus effective cooling of the sheet can be achieved by implementing higher values of the convective heat
transfer parameter. Generally the finite element solutions demonstrate good stability and convergence
characteristics and the present code is being implemented to explore more complex geometries in the
near future.

5. CONCLUSIONS

In the present paper we have investigated the influence of magnetic field on the steady mixed
convection flow and heat transfer of an incompressible magneto-micropolar fluid over a nonlinear porous
shrinking sheet. Using similarity transformations, the governing partial differential equations have been
transformed into a set of nonlinear ordinary differential equations, which have been solved with an
efficient, validated variational finite element method (FEM). It has been observed that the velocity
and microrotation are affected significantly by suction parameter, convective heat transfer parameter,
magnetic parameter, as well as with power index, whereas temperature is affected considerably by
suction and convective heat transfer parameters. Numerical computations have shown that the drag can
be reduced effectively with power index. It has also been noticed that at the surface the heat transfer rate
is influenced more with a rise in the convective heat transfer parameter than all other parameters. Thus,
the fast cooling of the surface can be achieved by the intelligent selection of the convective heat transfer
parameter, which is desirable in industrial materials processing (e.g., electro-conductive polymers). The
present study is restricted to the steady state flow and neglects the slip effects at the sheet. For future
study, transient flow with slip effects at the sheet will be examined.

NOTATIONS

a, e—constants
B0—uniform magnetic field
c—convective heat transfer parameter
cp—specific heat at constant pressure
Cf —skin friction coefficient
f—dimensionless velocity
g—dimensionless microrotation
ge—gravitational acceleration
hf —heat transfer coefficient
Grx—local Grashof number
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j—microinertia density

K—coupling constant parameter

M—magnetic parameter

n—power index

N—microrotation component

Nux—local Nusselt number

Pr—Prandtl number

q—heat flux

Rex—local Reynolds number

S—constant characteristic of the fluid

T —temperature of the fluid

Tf —temperature of the hot fluid

Tw—temperature of the surface

T∞—temperature of the ambient fluid

u—velocity in the x direction

U—velocity of the sheet

v—velocity in the y direction

Vw—velocity at the wall

x—distance along the surface

y—distance normal to the surface

Greek Symbols

β—coefficient of thermal expansion

γ—spin gradient viscosity

η—similarity variables

μ—dynamic viscosity

ρ—density of the fluid

κ—thermal conductivity

ν—kinematic viscosity

θ—dimensionless temperature

σ—buoyancy parameter

σ0—electrical conductivity

λ—suction parameter

φ—stream function

τw—wall shear stress

Subscripts

w—surface condition

∞—conditions far away from the surface
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