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Abstract—Characteristics of the incompressible flow of Herschel–Bulkley fluid over a sphere were
studied via systematic numerical modeling. A steady isothermal laminar flow mode was considered
within a wide range of flow parameters: the Reynolds number 0 < Re ≤ 200, the Bingham number
0 ≤ Bn ≤ 100, and the power index 0.3 ≤ n ≤ 1. The numerical solution to the hydrodynamic
equations was obtained using the finite volume method in the axisymmetric case. The changes in
flow structures, pressure and viscous friction distribution, and integral drag as a function of the flow
rate and fluid rheology are shown. Depending on whether plastic or inertial effects dominate in the
flow, the limiting cases were identified. The power law and Bingham fluid flows were studied in detail
as particular cases of the Herschel–Bulkley rheological model. Based on the modeling results, a
new correlation was developed that approximates the calculated data with an accuracy of about 5%
across the entire range of the input parameters. This correlation is also applicable in the particular
cases of the power law and Bingham fluids.
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1. INTRODUCTION

The flow of an incompressible fluid over a sphere is a classic problem of hydrodynamics that has, on
one hand, its own fundamental importance and, on the other hand, numerous practical applications. For
example, the data regarding the parameters of these flows and hydrodynamic reactions on the sphere find
direct application, for example, in a falling ball viscometer. Furthermore, these data can serve as the basis
for description of more complex multiphase hydrodynamic processes such as sedimentation, fluidization,
fluid transport, distribution of liquid and solid phases, etc. These processes find practical applications
in various fields of technology, such as oilfield drilling, the chemical industry, food engineering and
mineralogy. In these fields engineers need to know how flow carries a particle and the perturbations that
result. There is an abundance of reported data on Newtonian fluid flows over a sphere [1, 2]. The drag
coefficient dependence on the Reynolds number is of the greatest practical interest, and it is typically
approximated by analytical expressions (correlations).

Knowledge of spherical particle movement in more complex rheological systems also has practical
applications. Many of these systems fall into the general category of the so-called generalized Newtonian
fluids. In this category the effective viscosity of the isothermal flows is determined by the local instant
value of the second invariant of the strain rate tensor. The greatest proportion of these fluids can
be categorized as pseudoplastic, where effective viscosity decreases when the shear rate increases,
or viscoplastic, where yield stress must be exceeded to create a flow. Among the rheological models
describing these fluids, the most common are the power law and Bingham plastic rheological models. It
is no coincidence that most theoretical and experimental research related to non-Newtonian fluid flow
over a sphere focuses on these rheological models.

At the same time, fluids exhibiting both pseudoplastic and viscoplastic properties are widely used,
for example, in the oilfield drilling industry [4, 5]. One of the most common rheological models for these
fluids is the Herschel–Bulkley rheological model, where the effective viscosity is expressed as follows:
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η =
(
kγ̇n−1 + τ0/γ̇

)
, τ ≥ τ0,

η = ∞ (γ̇ = 0), τ < τ0.
(1)

Here, γ̇ =
√

1/2γ̇ij γ̇ij , τ =
√

1/2τijτij are second invariants of the strain rate tensor and the stress
tensor, respectively; n, k, τ0 are the rheological parameters of the Herschel–Bulkley model: power
index, consistency index and yield stress. This rheological model is a combination of the power law
and Bingham rheological models and coincides with them in particular cases where τ0 = 0 or n = 1,
respectively.

When performing experimental studies of non-Newtonian fluids, it is necessary to measure the
velocities of the sphere and fluid accurately, and to find the fluid rheological properties with high
accuracy. In addition, there is the question of how accurately any rheological model can describe real
fluids. Inaccurate representation of the fluid rheological behavior may cause poor agreement between
theoretical and experimental results. The Herschel–Bulkley rheological model, as well as its particular
cases, the power law and Bingham rheologies, is sometimes criticized in scientific literature for that very
reason [5, 6]. However, these models are fairly simple and attractive. Consequently, they are widely used
for practical applications and engineering studies. Within the framework of this theoretical research,
we will not dwell on the aspects related to compatibility between the real fluid and its description by a
selected rheological model. Instead, we focus on studying properties of the Herschel–Bulkley fluid flow.
For the same reason, the results obtained will be compared with similar theoretical research.

In the case of the creeping flow of the power law fluid, there have been numerous attempts to solve
this problem analytically. A vast survey of these studies is presented in a book by Chhabra [6], where it
is noted that the results reported by different authors contradict each other and often do not agree with
the experiment. The greatest discrepancy is observed for slow flows. In part, this may be due to the fact
that the power law rheological model predicts infinite effective viscosity in the limit of the zero shear rate,
which does not work well for slow flows of real fluids.

For Bingham fluids, the problem of slow flow over a sphere involves finding the critical force holding
the sphere “fixed in” in the Bingham medium, i.e., finding the carrier properties of the fluids. Such a
problem may have wide practical applications. The first attempts to solve this challenge used theoretical
methods that were based on approximate analytical solutions. A detailed survey of these studies is also
presented by Chhabra [6]. One of the first attempts to solve the equations for the Bingham fluid flow over
a sphere with high accuracy and to obtain a flow field at low Reynolds numbers was made by Beris et al.
[7]. Later, similar results were obtained using numerical modeling and reported in [8, 9].

Development of computational technologies in the end of the last century made it possible to study
behavior of the power law and Bingham fluids at higher Reynolds numbers by solving hydrodynamic
equations numerically. Systematic results for the drag obtained using numerical modeling are reported
in [10–14] for the power index n = 0.4 ÷ 2 and Reynolds numbers up to Re = 500. In [15] the effect of
finite boundaries on the drag experienced by a sphere settling in quiescent power law fluids in cylindrical
vessels has been investigated numerically. In papers [16, 17] concerning the heat transfer from heated
sphere in Bingham [16] and Herschel–Bulkley fluid [17] the data for the drag coefficient are provided for
selected flow regimes. At the same time to date, engineering application requires systematic data for the
drag in a wide range of the flow parameters in Herschel–Bulkley fluid.

Our study has been motivated by the needs in accurate data for the drag coefficient within a wide
range of Reynolds numbers and fluid parameters for a vast class of generalized Newtonian fluids. Our
goal is the systematic modeling of the Herschel–Bulkley fluid flow over a sphere and the development of
a universal and accurate correlation for finding the drag, based on the modeling results. A steady laminar
flow within a wide range of Reynolds numbers and fluid parameters was considered. The statement of
the problem is presented in detail in the next section. We used our own numerical algorithm for solving
the hydrodynamic equations, based on the finite volume method [18, 19]. A brief description of the
algorithm and verification of the computation method is provided in the second and third sections of
this paper. Based on the modeling results obtained, an attempt was made to explain the formation of
the flow structure and dependence of the flow parameters on the input data; see the fourth section. New
correlations for the power law, Bingham, and Herschel–Bulkley fluids are presented in the fifth section.
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2. STATEMENT OF PROBLEM AND NUMERICAL METHOD

The fluid flow is considered in the reference system associated with a sphere of the diameter d (radius
r), located in an unbounded uniform fluid flow, whose velocity at a far distance from the sphere is U . The
fluid has the density ρ and is a generalized Newtonian fluid with effective viscosity η (γ̇) and Herschel–
Bulkley rheological model (1). The steady isothermal flow of this fluid over a sphere is described by the
hydrodynamic equations:

∇ · u = 0,

ρu · ∇u = −∇p + ∇ · τ , τ = η (γ̇) · γ̇. (2)

Here, u is the velocity vector, τ is the strain rate tensor, γ̇ij = ∂ui/∂xj + ∂uj/∂xi, τ is the stress tensor.
In the general case for the problem of the flow over a sphere, it may be convenient to use the

computational domain comprised of the space between two concentric spheres. The steady flow field is
axisymmetric with respect to the axis parallel to the far field and passing through the center of the sphere.
In addition, the computational domain is limited, with two planes crossing at this axis and creating a
small angle. Thus, the computational domain is like a spherical slice with a sphere cut out in the center
(see Fig. 1). The origin of the coordinates is in the center of the spheres, the axis x is directed along the
flow, and the axis y is in the midsection, directed perpendicular to the far field flow.

The boundary conditions at the limiting planes are set as follows. On the surface of the outer sphere
upstream of the sphere, x < 0 (1 in Fig. 1), the velocity of the unperturbed flow u = Uex is set, the
velocity vector being directed along the axis x. On the surface of the outer sphere downstream from the
sphere, x > 0 (2 in Fig. 1), the homogeneity condition is set for the flow along the axis x: ∂u/∂x = 0.
On the surface of the solid sphere, the no-slip condition is set: u = 0. At the sides of the computational
domain, 4 in Fig. 1, the slip conditions are set for the flow: ∂uτ/∂n = 0, un = 0.

The character of the flow is determined in its entirety by three dimensionless parameters: the power

index n, the Reynolds number Re = ρUd
/

kΓ̇n−1, where Γ̇ = U/d is the characteristic shear rate, and

the Bingham number Bn = τ0

/
kΓ̇n. During the course of systematic modeling, these parameters have

been varied within the following ranges:
• Power index, 0.3 ≤ n ≤ 1;
• Reynolds number, 0 < Re ≤ 200;
• Bingham number, 0 ≤ Bn ≤ 100.
By computing the flow, the velocity and pressure fields are found, and the force acting on the sphere in

the flow is calculated. This force has two components: F = FP + FV, where the integral pressure force
and viscous friction force are calculated via summation of pressure distributions FP = −

∫

surface

pndS,

FV =
∫

surface

τdS and viscous stresses τ on the surface of the sphere:

Fig. 1. The computational domain and grid.
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FP = −
∫

surface

pndS, FV =
∫

surface

τdS.

The dimensionless drag coefficient is obtained dividing the corresponding integral force by the
dynamic pressure of the unperturbed flow and the midsection area Sm = πd2

/
4:

CD =
1

Sm

F
ρU2

/
2
, CD,P =

1
Sm

FP

ρU2
/
2
, CD,V =

1
Sm

FV

ρU2
/
2

. (3)

Thus, as a result of systematic modeling, we obtained the dependence of the drag coefficient on the
flow parameters CD (n,Re, Bn). Along with the drag (3), it is often convenient to present the results
using a Y coefficient, thereby showing the difference from the Stokes formula:

Y (n,Bn,Re) = CD (n,Bn,Re)/(24/Re),

YP (n,Bn,Re) = CD,P (n,Bn,Re)/(24/Re), YV (n,Bn,Re) = CD,V (n,Bn,Re)/(24/Re). (4)

The numerical algorithm is based on the finite volume method on unstructured grids. The details
of its realization are described in [18, 19]. Its main features are listed below. The convective terms of
the momentum equation are discretized using the second-order upwind scheme QUICK. The diffusive
fluxes are discretized using a central differencing scheme with second-order accuracy. The relationship
between the velocity and pressure fields that determine the continuity equations is realized using the
SIMPLE-C procedure on collocated grids. This algorithm effectively couples the velocity and pressure
fields by converting a discrete form of the continuity equation to an equation for the pressure correction.
Oscillations of the pressure field are eliminated using the Rhie–Chow approach, which involves a special
interpolation of the velocity at the faces of the control volumes. The linearized algebraic equations for
transport equations are solved by preconditioned conjugate residuals methods. The system of algebraic
equations obtained by discretization of the pressure correction equation is solved by an algebraic
multigrid solver.

One of the difficulties with computing the viscoplastic medium flows via solving hydrodynamic
equations with a variable effective viscosity is due to the infinitively high value of the effective viscosity
in domains where the shear rate is zero. To overcome this difficulty, various regularization schemes have
been developed for the original rheological models. The present paper uses the approach suggested by
Papanastasiou [20], where approximating the smooth expression for effective viscosity in the case of the
Bingham fluid flow is set by the following equation:

η (γ̇) =
[
kγ̇n−1 + τ0

(
1 − exp(−mγ̇

/
Γ̇)

)]/
γ̇, (5)

where m is nondimensional regularization parameter.

The selected computational domain allows for a fairly simple, structured C-type orthogonal grid
(Fig. 1). The coordinate lines become denser toward the sphere, as well as in the circumferential direction
downstream behind the sphere.

JOURNAL OF ENGINEERING THERMOPHYSICS Vol. 26 No. 2 2017



MODELING OF STEADY HERSCHEL–BULKLEY FLUID 201

3. METHODICAL COMPUTATIONS AND VERIFICATION
OF NUMERICAL METHOD

Systematic modeling was performed with the numerical algorithm parameters set as the same for all
scenarios and with the same grid. For this reason, to find the values of these parameters with acceptable
accuracy, several series of methodical precomputations were performed.

The calculated drag force acting on the sphere in the unbounded flow should be independent of the
size of the computational domain. To find the size of the outer boundary that would have no significant
influence on computation results, a series of methodical computations was performed for the outer
boundary diameters of 25d, 50d, and 100d. The computations were performed for Newtonian, power law
(n = 0.5, n = 0.3), and Bingham fluids at Re = 0.01, 10, and 100. The fluid that was the most sensitive
to the computational domain size was the Newtonian fluid flow at low Reynolds numbers. In this case,
the results may be compared not only with each other, but also with the analytical solution based on
Stokes or Oseen. This comparison showed that the size of the computational domain with the outer
boundary diameter 25d was insufficient. At the same time, for all fluids and flow modes, the differences
with respect to the drag coefficient CD calculated for the computational domains with diameters 50d and
100d did not exceed 1%. Consequently, the computational domain with the diameter 50d was selected
for the systematic computations.

To check if the grid is sufficiently fine, computations on grids of different resolutions were performed.
These computations showed that a grid with 110 nodes radially and 72 nodes circumferentially was
acceptable. Computations on grids with higher numbers of nodes (doubled in each direction) did not
have any significant effect on the result; the drag coefficient changed by no more than 1%.

Next, it was necessary to find a value of the regularization parameter m in Eq. (5) that would be
acceptable for accuracy and speed. The higher the value, the closer the regularized model to the original.
However, high values of this parameter slow down iterative convergence and inflate computation times.
The test computations showed that m = 1000 is the optimal value of the regularization parameter. The
drag coefficients obtained at a higher m did not differ by more than 1% in all modes.

To verify the results obtained, they were compared with the Schiller–Nauman correlation [21] for
Newtonian fluids:

CD = 24/Re
(
1 + 0.15Re0.687

)
. (6)

This correlation, a classic in experimental research, has been confirmed to be accurate many times. The
modeling results agreed well with this correlation; the discrepancy did not exceed 5%. Furthermore,

Fig. 2. Comparison of the results for coefficient Y (4) with the data from [11].
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the computation results for the drag coefficient were compared with the data reported [11, 13, 15]. The
comparison shows a good agreement for the drag coefficient. The discrepancy did not exceed 5% (see
Fig. 2) across the entire range of Reynolds numbers and power indices, except for the slow flows where
it reached 7%.

4. RESULTS AND DISCUSSION

4.1. Power Law Fluid

In the creeping flow mode (Re < 1), trajectories of the fluid particles before and behind the plane
x = 0 are symmetrical for Newtonian and power law media. The symmetry of the velocity field is reflected
in the distribution of effective viscosity of the power law medium (Fig. 3a). With the exception of local
singularities, the greatest shear rate and the smallest effective viscosity are observed on the surface of the
sphere. As the distance from the sphere increases, the shear rate drops and effective viscosity increases.
The domains of minimal shear rate values and maximal viscosity values next to the sphere are localized
in the neighborhood of critical points (next to the points of the axis Ox intersecting the sphere). The
local viscosity maximum is in the ring-like domain around the sphere, slightly apart from it, where the
low shear rate regions are formed.

As the power index decreases in the creeping flow mode, the shear rate increases on the surface
of the sphere and decreases on the periphery (with the exception of local singularities in the critical
points). At the same time, variations in the effective viscosity increase: the difference between its values
at the sphere and on the periphery increases. Thus, the domain of the sphere’s influence onto the flow
decreases. At small power indices n <∼ 0.4, a high effective viscosity on the periphery could lead to
a flow constraining. Its local velocity becomes higher than the velocity of the far field flow U (see
Fig. 4b, dotted line), just like in the constrained flow over the particle (e.g., inside the pipe) [8]. This
constraint boosts the difference between pressure values before and behind the sphere (see Fig. 5a) and
increases the corresponding force component (see Fig. 6c). The input of the viscous forces behaves
nonmonotonously with the increase of the power index n (see Figs. 5b and 6d): it is maximal at the
power index close to n = 0.7. However, there is a force related to the nonuniformity of the pressure
distribution over the sphere, and its relative contribution into the resulting drag force always increases
with the decrease of the power index (see Fig. 6).

At moderate Reynolds numbers in power law and Newtonian fluid flows, inertial effects emerge. The
symmetry of the streamlines with respect to the plane x = 0 disappears (see Figs. 3b and 3c), while the

Fig. 3. Effective viscosity distribution for the medium with n = 3: (a) Re = 0.1; (b) Re = 10; (c) Re = 100. Isolines
correspond to the gradual transition between two fixed values of effective viscosity kΓ̇n−1 ≤ η ≤ 10kΓ̇n−1. The
domains where the effective viscosity exceeds this range are shown white, the darker the lower the viscosity.
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Fig. 4. Profiles of velocity components along Ox ((a), (c)), Oy ((b), (d)) for the power law medium at Re = 0.1 ((a),
(b)) and Re = 100 ((c), (d)).

dependence of the drag on the Reynolds number deviates from CD ∼ 1/Re, which is typical for creeping
flows. The drag coefficient increases more slowly in the power law fluid than in the Newtonian fluid, see
Fig. 6a. Dependence of the ratio of the drag coefficient for power law fluids to that of Newtonian fluid
Cn

D(Re)/Cn=1
D (Re) decreases monotonously at all n < 1, see Fig. 6b. It should be noted that all curved

Y n(Re) for different power indices n < 1 with the computational accuracy intersect close to Re = 4
(see Fig. 6b). However, dependences of the drag coefficient due to pressure CD,P (n,Re) and viscous
components CD,V (n,Re), for different n have no notable features close to this value (see Figs. 6c, 6d).
Furthermore, the nonmonotonous dependence of the drag component CD,V (n,Re), related to viscous
stress upon n at low Reynolds numbers increases monotonously at high Reynolds numbers (see Fig. 6d).
Viscous friction in fluids whose rheology is considerably non-Newtonian (n ∼ 0.3) only weakly depends
on Reynolds numbers (see Fig. 6d, dotted line). This situation is not typical of Newtonian fluids, where
viscous friction increases with the increase of Re. The main contribution is due to the component related
to pressure distribution over the sphere; this component increases monotonically, but more slowly than
in the case of Newtonian fluids.

Just as in the case of Newtonian fluids, an axisymmetric toroidal vortex forms behind the sphere
at high Reynolds numbers (see Fig. 4c). However, in the case of power law fluids, the streamlines
become denser toward the sphere with the decrease of n due to high viscosity on the periphery that
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Fig. 5. Distributions of pressure ((a), (c), (e)) and tangent stress ((b, (d), (f)) on the surface of the sphere for the power
law fluid: (a), (c) Re = 0.1; (b), (d) Re = 10; (e), (f) Re = 100.

effectively constrains the flow. As a result, the detaching point on the surface of the sphere shifts slightly
upstream, and the toroidal vortex changes shape. With the decrease of the power index n, the length of
the recirculation region behind the sphere increases, but homogeneity in the wake behind the toroidal
vortex restores in a shorter distance (see Figs. 3c and 4c). This behavior is due to the difference in
effective viscosity in the toroidal vortex, where it is relatively low due to a high shear rate, as opposed to
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Fig. 6. Dependence of the coefficient Y (a), ratio of the drag coefficient for power law to that of Newtonian fluid (b), and
the components of the drag coefficient YP , due to viscous pressure (c) and viscous friction YV (d) dependence on the
Reynolds number in the power law fluid.

the wake behind the sphere on the axis of symmetry, where it is relatively high due to a low shear rate.
Therefore, the disturbed region introduced by the sphere shrinks with the decrease of power index.

4.2. Bingham Fluid

A feature of fluids with yield is the formation of rigid-like areas within the flow, where the flow has
no strain rate and the medium behaves like a solid body. When the uniform flow meets a sphere, a liquid
region forms around it, while on the periphery the medium translates with no shear rate. In the creeping
flow mode, the liquid region is symmetrical with respect to the plane x = 0 (see Fig. 7a). Generally, the
flow structure and some of its features for the creeping flow mode are described in [7, 8].

With the increase of the Bingham number, which characterizes the influence of plastic effects, the
size of the liquid region around the sphere decreases while the streamlines become denser toward the
sphere (see Figs. 8a and 8b). At the same time, just as in the power law medium at low n, the flow is
restricted by the boundaries of the rigid area on the periphery, and as a result, local velocity of the flow
next to the sphere increases, i.e., the flow around the sphere is locally faster than the undisturbed flow
(see Fig. 8b). With the increase of the yield stress and Bingham number, not only the size of the liquid
region decreases, but also the viscous stress increases, if the shear rate inside the liquid region remains
the same (τ = kγ̇ + τ0). It may be obvious that this enhances the carrier properties of the fluid and the
drag (see Fig. 9). Dependence of the drag on the Bingham number CD (Bn) is almost linear at high Bn.
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Fig. 7. Effective viscosity distribution for Bingham fluid: (a) Re = 0.1, Bn = 1; (b) Re = 100, Bn = 10; (c) Re = 100,
Bn = 1. Isolines correspond to gradual transition between two fixed values of effective viscosity k(1 + Bn) ≤ η ≤
10k(1 + Bn). The domains where the effective viscosity exceeds this range are shown white, the darker the lower the
viscosity.

The Bingham fluid flow at moderate Reynolds numbers is defined by the ratio between the Bingham
number Bn and the Reynolds number Re. Two limiting cases may be identified here: (1) plastic effects
in the flow are weak (Re/Bn >∼ 100); (2) plastic effects in the flow dominate (Re/Bn <∼ 10).

In the first case, the liquid flow region over the sphere is fairly large, and the flow field is generally
similar to the one observed in the case of the Newtonian fluid. With the increase of the Reynolds number
at a fixed Bn, the difference between the Bingham fluid flow and the Newtonian fluid flow becomes
negligible. This is evident from the velocity profiles (Fig. 8). At high Re and low Bn, they basically
coincide with the Newtonian case, see dashed and solid lines in Figs. 8c and 8d, even though they differ
significantly at low Re for the same Bn, see dashed and solid Figs. 8a and 8b. Velocity distributions, see
Fig. 8, clearly demonstrate that evolution of inertial effects in the flow due to an increase in the Reynolds
number, even at a fixed Bingham number, in Newtonian and Bingham fluids occurs similarly: first, the
symmetry of the streamlines with respect to the plane x = 0 breaks, and when Re increases further, a
toroidal vortex is formed in the wake behind the sphere.

The kinematic picture of the flow over the sphere for the case of Re/Bn >∼ 100 is similar to
Newtonian, while the effective viscosity η (γ̇) = [kγ̇ + τ0]/γ̇ seems to remain basically unchanged next
to the sphere. Hence, the distributions of pressure and viscous stress over the sphere in the cases
of Newtonian and Bingham fluids are also similar (see Figs. 10e and 10f, the lines corresponding to
Bn ≤ 1). However, the drag is higher than in the case of Newtonian fluid (see Fig. 9) because the
effective viscosity in Bingham fluid is higher in the liquid regions due to nonzero yield stress. It should
be noted that, for a real Bingham fluid, an increase in the flow velocity not only boosts the Reynolds
number, but also diminishes the Bingham number. This is due to dependence on the velocity U . Thus,
unlike dependences Y (Re) shown in Figs. 9a, 9b for fixed Bingham numbers, an increase in the flow
velocity causes the drag in Bingham fluid approach the drag in Newtonian fluid with the same viscosity
μ (whereas its dependences on the Reynolds number at different Bn shown in Figs. 9a, 9b are basically
parallel).

In the second limiting case (Re/Bn <∼ 10), the flow field is determined by plastic effects that
intensify with the increase of Bn at a fixed Re. The liquid region shrinks in this case, but the effective
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Fig. 8. Profiles of velocity components along Ox ((a), (c)), Oy ((b), (d)) for Bingham fluid Re = 0.1 ((a), (b)) and
Re = 100 ((c), (d)).

viscosity inside this region increases. This suppresses inertial effects in the fluid flow. For this reason,
with the increase of the Bingham number, the flow field around the sphere becomes close to the creeping
flow without the flow detaching, even at high Re. For fluids with Bn > 10, even at Re = 100, the toroidal
vortex behind the sphere does not form, see Fig. 7b, the dotted line in Fig. 8c. The lower the ratio Re/Bn,
the closer the kinematic pattern of the flow over the sphere to that of a creeping flow. For this reason,
distributions of pressure and viscous friction on the surface of the sphere become practically symmetrical,
even at relatively high Reynolds numbers (cf. two-dot-dashed line in Figs. 10c, 10d with the lines in
Figs. 10a, 10b, respectively). Thus, the drag coefficient Y (Re, Bn) is determined almost exclusively by
the Bingham number and basically does not depend on the Reynolds number (see Fig. 9a). In this mode,
the drag force is proportional to the far field flow velocity. It should be noted that, in the classical creeping
mode, the viscous forces dominate over the pressure forces, while in the cases of flows with high Bn, the
pressure forces dominate over the viscous forces.

The modeling results for Bingham fluid show that, for Bn � Re, the following limit is realized:

Y =
Re
24

CD → const · Bn, (7)
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Fig. 9. Dependence of Y (log scale: (a) normal scale: (b)) and drag (pressure components YP : (c), and friction
components YV : (d)) on the Reynolds number at different Bingham numbers.

which matches perfectly the plastic flow over the sphere. At Bn = 100 the calculated constant in (7)
is 1.24, whereas at Bn = 500 the value of this constant reported in [7] is 1.17. Asymptotic dependence
(7) reflects the finite nonzero value of the drag force in the limit of the zero velocity of the particle with
respect to the flow.

Between the two described limiting cases, there is a range of Bingham numbers and Reynolds
numbers where the role of plastic, viscous, and inertial forces is comparable. Here, an increase of the
Bingham number leads to an increase in plastic effects, the size of the liquid regions decreases, the
vortex formation behind the sphere is suppressed, and as a result, the drag increases. On the other hand,
an increase in the Reynolds number at a fixed Bingham number, leads, first, to the flow detaching on the
sphere and to formation of a toroidal vortex in the wake behind the sphere. This scenario develops the
vortex and increases the size of the liquid domain in the wake behind the sphere. Unlike in a Newtonian
fluid, a rigid-like region is formed behind the sphere on the axis of symmetry, right next to the sphere.
The flow over the sphere now looks like a flow over an oblong body, whose longer side is oriented along
the flow (see Fig. 7c). Compared to Newtonian fluid, the detaching point on the sphere is shifted slightly
downstream, and the size of the vortex is smaller. In the recirculation domain, effective viscosity is higher
than in the shear flow over it, while the length of the perturbation wake in the flow is shorter. With the
increase of Re at fixed Bn, the contribution of the pressure forces increases, while the ratio of viscous
forces to pressure forces tends to the value for Newtonian fluids.
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Fig. 10. Distributions of pressure ((a), (c), (e)) and tangent stress ((b), (d), (f)) over the surface of the sphere in the
Bingham fluid flow at different Reynolds numbers.

4.3. Herschel–Bulkley Fluid

The Herschel–Bulkley fluid model incorporates the power law and Bingham models, combining their
behavior. Thus, features of the power law and Bingham fluids flow are shared by the Herschel–Bulkley
fluid flow. The influence of the power index and the Bingham number on the flow parameter is similar.
For this reason, we will discuss only those features of the flow over the sphere for this case that were not
described above.
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Fig. 11. Dependence of Y on the Bingham number for different Reynolds numbers in Herschel–Bulkley fluid: (a)
n = 0.9; (b) n = 0.3.

As in the case of the Bingham fluid, when there is a flow over the sphere, a liquid region is formed
around the sphere, whereas on the periphery the medium behaves as a rigid substance. The size of the
liquid region is determined primarily by the Bingham number: the higher the Bingham number, the
smaller the liquid region. At the same time, its size also depends on the power index: the lower the power
index, the smaller the liquid region. Therefore, one could conclude that the perturbations introduced to
the flow by a sphere diminish when the fluid rheology becomes more non-Newtonian, if the Bingham
number is higher and/or the power index is lower. In highly non-Newtonian fluids, dependence of the
drag and kinematic characteristics of the flow on the Reynolds number is weaker than in Newtonian
fluids. Sensitivity of the flow properties to changes in the relative velocity weakens with the increase of
non-Newtonian fluid properties (see Fig. 11).

Just as in the case of Bingham fluids, at high Bingham numbers and moderate Reynolds numbers,
the so-called plastic limit is realized, where dependence of kinematic and dynamic flow properties on the
Reynolds number is practically nonexistent (see Fig. 11). In this case, the viscous stress in the fluid is
much lower than plastic, and the flow properties are practically the same in the fluids with any power
index.

5. CORRELATIONS FOR DRAG COEFFICIENT

The development of an approximate analytical correlation for finding the drag coefficient is one of the
goals of our study. Such a formula may be used in engineering applications for finding the drag force
at a given relative particle velocity with respect to the fluid. Here we present the correlation for power
law fluid. Next, involving analysis of the flow behavior a formula describing drag in plastic flow regime
is derived. Then these expressions are combined and corrected to obtain the correlation for the drag
coefficient in Herschel–Bulkley fluid.

A correlation for the drag coefficient in the power law fluid was derived by generalizing the well-known
Schiller–Nauman correlation [21] for the drag in Newtonian fluid (6). For this purpose we replaced the
constants in this formula with the polynomic functions of the second degree of the reverse power index
parameter ñ = 1 − n:

CD = 24YPL (Re, n)/Re;

YPL (Re, n) = 1 + CPL1ñ + CPL2ñ
2 +

(
0.15 + CPL3ñ + CPL4ñ

2
)
Re0.687+CPL5ñ+CPL6ñ2

. (8)

The coefficients CPL1, . . . , CPL6 were found by minimization of the functional of deviation between
calculated values, Y calc and their approximation (8), Y app:
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Φ =
∑

i

{
ln

[
Y calc (Rei, ni)

]
− ln [Y app (Rei, ni)]

}2
. (9)

Here, summation is performed over all the modeled flow scenarios. This form of the functional was
selected to enable minimization of the mean relative deviation of the approximation from the computation
results using Levenberg–Marquardt algorithm [22]. As a result of minimization of (9), the following
values for the coefficients in dependence (8) were obtained:

CPL1 = 1.375, CPL2 = −1.11, CPL3 = −0.309, CPL4 = 0.17, CPL5 = 0.131, CPL6 = 0.193. (10)

With these coefficients, the maximal relative deviation of (8) from calculated results is 3.9%. Formula
(8) with values (10) is the correlation for the drag coefficient in power law fluids and can be used for
determination of the drag force on a sphere.

To extend correlation (8) for the case of yield stress fluids drag behavior in the plastic flow regime is
required to be described. Analysis of Bingham fluid flow over sphere performed by Beris et al. [7] yields
the following form of asymptotic dependence of Y in the limit of high Bingham numbers:

Y =
Re
24

CD = const1 · Bn + const2 ·
√

Bn. (11)

Such form of dependence is more accurate than (7) at moderate Bingham numbers. Dependence
(11) can be generalized for the case of Hershel–Bulkley taking into account the following mechanical
reasoning. When there is a force slightly greater than critical acting on the particle, the fluid begins
to flow in the region where the shear stress is higher than the yield. The shear stress caused by the
force acting on the particle decreases with the distance from the particle surface, and at the distance of
approximately one particle diameter the stress loses much of its value. Consequently, the characteristic
thickness of the layer next to the particle, where the shear stress is higher than the yield, is as follows:

h ∼ d

(
F

F0
− 1

)

,

where F0 is the yielding drag force. When drag force is close to yielding F/F0 − 1 � 1 and h � d, the
law of shear stress decrease is close to linear, which can be written as

τ (x) − τ0 ∼ F − F0

d2

(
1 − x

h

)
,

where x is the distance from the sphere. The velocity of the particle is estimated as integral of shear rate
over the distance from sphere:

u ∼
h∫

0

γ (τ (x)) dx ∼ (F − F0)
n+1

n k−1/nF−1
0 d1−2/n.

Thus, we have the following expression for the Stokes coefficient:

Y =
F

ρU2πd2/8
ρU2−ndn

k
= const1 · Bn + const2 · Bn

n
n+1 . (12)

In the case of Bingham fluid, n = 1, this dependence coincides with (11). With the properly chosen
constants this dependence reproduces asymptotic behavior of drag with a high accuracy. Approximation
error in our tests does not exceed 3% within the range 0.3 ≤ n ≤ 1, Re < 1, Bn > 10.
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The correlation for the drag in Herschel–Bulkley fluid as a function of Re, Bn, and n can be obtained
by combination of dependence describing plastic flow regime (12) with the correlation for power law fluid
(8), (10)

CD = 24YHB/Re; YHB = YPL (Re, n) + const1 · Bn + const2 · Bn
n

n+1 .

This expression accurately approximates the drag coefficient in the limiting cases of high and very low
Bingham numbers. However, for an accurate approximation in the intermediate range of Bingham
numbers it should be modified, taking into account the effects of the toroidal vortex suppression
behind the sphere in the yield stress fluids. An approach to describing this effect while developing
correlations was proposed in [23] and further advanced in numerous subsequent publications; it is based
on introducing the so-called dynamic parameter

Q =
Re

1 + Bn
(13)

and developing its correlational dependence. This parameter is substituted instead of Reynolds number,
leading to the following drag coefficient approximation:

CD =
24
Re

YHB (Q,Bn, n) ,

YHB (Re, Bn, n) = YPL (Q (Re, Bn) , n) + CHB1(n) · Bn + CHB2(n) · Bn
n

n+1 . (14)

The method of finding coefficients CHB1(n), CHB2(n) in this dependence is the same as in case of
the power law fluid. However, accuracy of approximation of modeling results by expression (14) was
about 11%. Obviously, introduction of dynamic parameter in the form (13) does not allow describing of
coupled influence of Bingham and Reynolds numbers on the Stokes coefficient in the whole parameters
range. To improve the approximation accuracy of (14), a more general form of the dynamic parameter
(13) is required:

Q (Re, Bn, n) =
Re

1 + CHB3(n)BnCHB4(n)ReCHB5(n)
. (15)

With this form of dynamic parameter, the approximation error for the calculated data has been reduced
to 5%. The polynomic functions of second degree CHB1(n), . . . , CHB5(n) were found by minimization
of functional (9):

CHB1 (n) = 1.09 − 0.3ñ + 0.214ñ2,

CHB2 (n) = 1.79 − 2.64ñ + 0.909ñ2,

CHB3 (n) = 28.6 + 18.3ñ − 68.9ñ2,

CHB4 (n) = 0.566 − 0.01ñ − 0.384ñ2,

CHB5 (n) = −0.73 − 0.464ñ + 0.045ñ2,

(16)

where ñ = 1 − n. These values coincides with (10) at n = 1.
Correlation (14), (15) with (16) and (10) is continuous, smooth and universal for Herschel–Bulkley

fluids and can also be applied to Bingham and power law fluids. The approximation error for the
calculated data does not exceed 5% in the range 0.3 ≤ n ≤ 1; 0 < Re ≤ 200; 0 ≤ Bn ≤ 100. One of
the advantages of this formula is the correct approximation of the drag force in plastic flow regime (at
high Bingham numbers). In particular, it yields a value of 1.17 for the constant in (7) at Bn = 500, which
perfectly agrees with the results reported in [7].
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Fig. 12. Comparison of Y (Re, n) = CD(Re, n)/CD(Re, 1) calculated via different correlations for the power law fluid:
(a) n = 0.7; (b) n = 0.5; (c) n = 0.3.

Dependence of the calculated drag on the Reynolds number and power index was compared with
several known dependences obtained via theoretical analysis or experiment [13, 17, 24, 25]. The
comparison results for the power law fluid are shown in Fig. 12 as dependences of Y (Re, n) =
CD (Re, n)/CD (Re, 1) on the Reynolds number. The lines in the figures correspond to existing cor-
relations (only the correlations most similar to our computations are shown in the figures), and points
correspond to the modeling results. Comparison of the modeling results for the power law fluid with
known empirical dependences shows that correlation of Nirmalkar [17] is the closest to our results.
However, coefficients in this correlation are represented as a table, and, therefore, not smooth. Whereas
the correlation derived in this paper seems closer to our data.

6. CONCLUSIONS

This paper describes systematic modeling of the Herschel–Bulkley fluid flow over a sphere in a wide
range of Reynolds numbers, power indices, and Bingham numbers. Modeling results show the influence
of plastic effects on the flow structure around the sphere and the drag at moderate Reynolds numbers.
The drag in plastic fluid is higher than in fluid with no yield and with the same viscosity. However, when
the Reynolds number increases, the difference in the drag force decreases. At the same time, in non-
Newtonian fluid, the influence of the Reynolds number on kinematic and dynamic characteristics of the
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flow is weaker than in Newtonian fluid. This influence weakens with the deviation of rheological fluid
properties from Newtonian, which, in the particular case of the fluids with yield, are related with plastic
effects. In particular, if plastic effects dominate in the flow, which is possible at high values of yield and/or
low flow rate, the drag is practically independent of the Reynolds number.

Based on the numerical results, a correlation for the drag has been developed, which takes into ac-
count the dependence on all parameters characterizing the flow. Numerical parameters of the developed
dependence are such that they ensure good approximation for the general case of the Herschel–Bulkley
fluid and for the particular cases of the power law fluid and Bingham fluid. The maximum deviation of
the developed correlation from the calculated data in the entire range of parameters is about 5%. In spite
of the fact that this correlation works for a wide range of input parameters (power indices 0.3 ≤ n ≤ 1;
Reynolds numbers 0 < Re ≤ 200; Bingham numbers 0 ≤ Bn ≤ 100), it should be noted that there are
some limits to its applicability. First of all, this correlation has been obtained for the model Herschel–
Bulkley fluid, so one must evaluate if it adequately describes the flows of real fluids. In addition, the
correlation provided in this paper is based on the results of modeling laminar flows for the steady 2D
case. In this case, it is impossible to take into account development of the periodic nonsteady flow that
occurs during the laminar-turbulent transition at fairly high Reynolds numbers, as well as the aspects
related to stability of real flows. Finally, in the case under consideration here, the fluid flow is unbounded
and uniform. It does not include flow shearing induced by external factors. However, the presence of the
external shear rate or external stress in the flow of non-Newtonian fluids may lead to changes in effective
viscosity and/or changes in the boundaries of the liquid regions (for fluids with yield).

This correlation could be used in various engineering applications where one needs to find the
established sedimentation rate of the solid phase in non-Newtonian viscous fluids. However, it is
necessary for the concentration of solid particles to remain fairly small, because this correlation does
not take into account perturbations brought to the flow by neighboring particles. Nonetheless, as it was
shown, with the increase of non-Newtonian properties of the fluid, the influence of the particle on the
flow weakens, and thus, the correlation still works at higher concentrations.
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