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Abstract—A hydrodynamic theory of two-velocity fluid with surfactant is constructed in the present
paper. The model takes into account both surface effects and impact of the concentration gradient
on relative velocity of the components. The dependence of the nonstationary two-phase flow regimes
on the surface tension gradient and the dependence of the relative drop velocity on the gradient of
the surfactant concentration are investigated numerically on the base of volume control method.
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INTRODUCTION

A hydrodynamic system is considered, where two nonmiscible fluids are represented locally (e.g., oil
drops and water containing them), with surfactant dissolved in them. In such systems, an additional local
thermodynamic degree of freedom is the total surface area of the interface between the components. In
the process of hydrodynamic evolution, the system performs work when the surface area of the interface
changes.

In natural flows of water–oil mixtures, surfactants are always present. The fraction of alphaltenes,
naphthenic acids, resins, etc. in flows of water–oil mixtures is negligible. However, in technological
processes, interaction between alkalis and oil acids yields surfactants easily dissolvable in water, and
they cause surface tension at the interface between oil droplets and the surrounding water to drop. These
surfactants are adsorbed on the surface of oil droplets and affect the motion of nonmiscible fluids. As
shown below, it is essential to analyze the impact surfactants have on dynamics of the mixture when
computing phase fluxes. This analysis is described in the present article.

In [1], we can find the analysis of a select particle surrounded by a surfactant. It is shown that
the gradient of surface tension creates additional drag for the moving particle, far exceeding viscous
friction and Stokes friction. The present article demonstrates that, in the two-velocity medium, with
the continual approach, there is always an additional characteristic reactive force in the presence of
surfactants in the reversible hydrodynamic approximation. This force is proportional to the gradient of the
concentration of surfactant dissolved in water. The hydrodynamic velocity determines the concentration
of the surfactant distributed in space. In turn, the gradient of the surfactant generates the reaction
forces in moving subsystems, which affect velocity of hydrodynamic transfer. As a result, hydrodynamic
interaction appears, which results in a self-regulated velocity profile of subsystem motion. As shown
below, the surfactant’s influence at fairly low fluid flow rates is significant and affects phase velocities,
which is key for analyzing mass phase fluxes through the cross section of the pipe.

The hydrodynamic theory of solutions in two-phase media differs from hydrodynamic theories
reported in the literature [2–14]. The two-velocity equations are obtained based exclusively on fun-
damental physical principles (the first and second principles of thermodynamics, conservation laws).
Specific particularities of the system under study are not taken into account. For example, the motion
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equations obtained hold true for an arbitrary class of equations of state of a two-velocity system. The
equations of state have no influence on the form of the hydrodynamic motion equations. This situation is
the same as when the classical Euler set of equations was obtained, where the equation of state was an
external condition with respect to hydrodynamic equations and does not affect the character of motion
equations. It is shown that the equations of hydrodynamic evolution of the two-velocity system depend
only on the structure of the first principle of thermodynamics. The latter result is found in accordance
with the logic of development of the one-velocity Euler set of hydrodynamic equations.

THERMODYNAMICS OF TWO-PHASE MEDIUM WITH SURFACTANT

Let us consider a two-phase medium with thermodynamic equilibrium in volume V , which is a
fluid with droplets in it, and these droplets may be, for example, oil. Let us denote the water mass
within the indicated volume as M1, oil mass as M2, and surfactant mass as Mc. The first principle of
thermodynamics shown below introduces a version of the hydrodynamic system analyzed here:

dẼ0 = TdS̃ − pdV + μ1dM1 + μ2dM2 + μc dMc + σdΣ. (1)

Here Ẽ0, S̃ are internal energy and entropy of the system within volume V ; T is temperature; p is
pressure; σ is surface tension at the interface between water and oil; Σ = ςJ is total surface area of
the interface between water and oil droplets; J is the number of droplets in the volume; μ1, μ2, μc are
chemical potentials of components 1, 2 and surfactant. The pressure drop in “fluidic subsystems” may
be neglected in further considerations. Equation (1) introduces chemical potentials [15].

For hydrodynamic description, we need to introduce physical densities:

(
Ẽ0, S̃,M1,M2,Mc,Σ

)
= (E0, S, ρ1, ρ2, ρc, ςJ)V, (2)

Substituting relationships from (2) into (1), we arrive at the first principle of thermodynamics for a unit
volume of the medium:

dE0 = TdS + μ1dρ1 + μ2dρ2 + μcdρc + ςσdJ. (3)

Pressure can be found via the thermodynamic formula [16]

p = −E0 + TS + μ1ρ1 + μ2ρ2 + μcρc + ςσJ. (4)

Let us introduce density of the medium containing water, oil, and surfactant:

ρ = ρ1 + ρ2 + ρc. (5)

In terms of new variables, formula (3) takes the following form:

dE0 = TdS + μ1dρ + (μ2 − μ1) dρ2 + (μc − μ1) dρc + ςσdJ. (6)

Because the relationship ρ2 = M2/V = m N/V = m J holds true, we arrive at the local form of the first
principle of thermodynamics of a four-parameter thermodynamic system [17]

dE0 = TdS + μ1dρ + ςσ̄dJ + (μc − μ1) dρc = TdS + μ1dρ +
ςσ̄

m
dρ2 + (μc − μ1) dρc, (7)

σ̄ = σ +
m

ς
(μ2 − μ1) , (8)

p = −E0 + TS + μ1ρ + (μc − μ1) ρc + ςσ̄J, (9)
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dp = SdT + ρdμ1 + ρcd (μc − μ1) + ςJdσ̄. (10)

Here, m is mass of a droplet, μ2 �= μ1.
Formula (7) describes a local thermodynamic equilibrium. For relative mutual motion of two compo-

nents, we need to generalize the theory [18] for the case with no local equilibrium. The velocity difference
w = u − v of the water–oil continuum may be considered a relaxing degree of freedom [19]:

dE0 = TdS + μ1dρ + ςσ̄dJ + (μc − μ1) dρc + (u− v) dj0

= TdS + μ1dρ +
ςσ̄

m
dρ2 + (μc − μ1) dρc + (u − v) dj0, (11)

p = −E0 + TS + μ1ρ + (μc − μ1) ρc + ςσ̄J + (u− v) j0, (12)

dp = SdT + ρdμ1 + ρcd (μc − μ1) + ςJdσ̄ + j0d (u − v) . (13)

Here, j0 is density of the relative momentum of two components; u is the velocity of the droplet
continuum; v is the velocity of the water continuum. The kinetic term for the two-velocity medium was
introduced as recommended by Landau [16].

If the system is in the constant gravity field with potential ϕ, it is necessary to adjust the chemical
potentials in formula (3) for all components [19]:

dE0 = TdS + (μ1 + ϕ) dρ1 +
(
μ2 + ϕ +

ς

m
σ
)

dρ2 + (μc + ϕ) dρc. (14)

The latter statement is due to additional energy of the system in the gravity field ρϕ = (ρ1 + ρ2 + ρc) ϕ.
Analyzing the state of thermodynamic equilibrium as per [18], we arrive at the following conditions:

∇T = 0, u = v = 0, ∇ (μ1 + ϕ) = 0,

∇
(
μ2 +

ς

m
σ + ϕ

)
≡ ∇ (ςσ̄) = 0, ∇ (μc + ϕ) = 0. (15)

REVERSIBLE HYDRODYNAMIC EQUATIONS OF TWO-PHASE
FLOW WITH SURFACTANT

Before developing a hydrodynamic model of the two-velocity medium, one need to develop reversible
approximation [20], based on conservation laws of: mass, surfactant mass, number of droplets, entropy,
momentum, energy

∂ρ

∂t
+ div (ρv + j0) = 0, (16)

∂ρc

∂t
+ div (ρcv + D0) = 0, (17)

∂J

∂t
+ div (Jv + G0) = 0, (18)

∂S

∂t
+ div (Sv + F0) = 0, (19)

∂ji

∂t
+ ∂k (ρvivk + vij0,k + vkj0,i + Π0,ik) = ρg, (20)
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∂E

∂t
+ ∂i

(
Q0,i +

(
E0 + (v, j0) + ρv2

/
2 + ρϕ

)
vi + v2j0,i/2 + Π0,kivk

)
= 0. (21)

Here, J = ρ2/m; g = −∇ϕ is free-fall acceleration. The flows denoted with the divergence sign are
presented with accuracy of up to j0, F0, D0, G0, Q0, E0 invariant parts of the Galileo transform [16];
j = j0 + ρv is momentum density of the system; E = E0 + (v, j0) + ρv2/2 + ρϕ is energy density [16].
These equations lack physical meaning because the flows are not defined.

The flow of the two-phase medium is characterized by two velocities, for this reason, to define
these velocities, one needs two equations. The momentum conservation law (20) can be one of them.
As the second equation, which would describe the motion of the carrier fluid, we selected the semi-
linear motion equation whose right-hand side contains motion forces determined by gradients of
thermodynamic variables from the first principle of thermodynamics (11) and becoming constants if
there is thermodynamic equilibrium [21, 17, 18]:

∇T = 0, u = v = 0, ∇ (μ1 + ϕ) = 0, ∇ (μc − μ1) = 0, ∇ (ςσ̄) = 0. (22)

It should be noted that this is how the Euler equation is structured:

∂v
∂t

+ (v, ∇)v = −∇p

ρ
= −∇μ − S

ρ
∇T, p = −E0 + TS + μρ. (23)

It is a motion equation of ideal fluid. The conditions of thermodynamic equilibrium for the Euler set of
equations can be reduced to absence of chemical potential gradient, temperature, and velocity: ∇μ = 0,
∇T = 0, v = 0. Here, p is pressure; μ is chemical potential from the first principle of thermodynamics
dE0 = TdS + μdρ for fluid. When there is thermodynamic equilibrium, it becomes a constant, just as
temperature T .

The Euler equation may be obtained from the consistency conditions for conservation laws for mass,
momentum, energy, entropy, and the first principle of thermodynamics. Such an approach leads to
generalization of the motion equations for a wider class of hydrodynamic systems. Thus, according to
the alternative idea of developing the Euler equation, the motion equation of the carrier fluid in the two-
velocity continuum may be presented as [16, 17, 21]:

∂v
∂t

+ (v, ∇)v = ξμ ∇ (μ1 + ϕ) + ξT ∇T + ξc ∇ (μc − μ1) + ξσ ∇ (ςσ̄) . (24)

Equations (16)–(21), (24) should be consistent with each other and the first principle of thermody-
namics (11), i.e., conservation laws should guarantee satisfaction of the first principle of thermodynam-
ics. To this end, we differentiate the energy equation with respect to time. Taking into account (11), we
have:

∂E

∂t
= T

∂S

∂t
+

(
μ1 + ϕ +

v2

2
− (u,v)

)
∂ρ

∂t
+ (μc − μ1)

∂ρc

∂t

+
(
j − ρu,

∂v
∂t

)
+

(
u,

∂j
∂t

)
+ ςσ̄

∂J

∂t
. (25)

When conservation laws (16)–(21) are satisfied identically, the motion equation (24) and formula
(25) become identities. Substituting time derivatives from (16)–(21), (24) into (25), we arrive at the
following equation:

∂i (Q0,i − TF0,i − (μ1 + ϕ) j0,i − ςσ̄G0,i − (μc − μ1) D0,i − (Π0,ki − pδki − j0,kwi) wk − (j0,w)wi)

= − (F0 + ξT (j − ρu) − Sw)∇T − (1 + ξμ) (j − ρu)∇ (μ1 + ϕ) − (Π0,ik − pδik − j0,iwk) ∂kui

− (J0 + ξσ(j − ρu) − J w)∇ (ςσ̄) − (D0 + ξc (j − ρu) − ρ1w)∇ (μc − μ1) . (26)
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Relationship (27) ties together the Galileo invariants and should be satisfied identically. Therefore,
summand (Π0,ik − pδik − j0,iwk) ∂kui should disappear as it breaks the Galileo invariance. The latter
condition determines the invariant part of the tensor of momentum flow density Π0,ik = pδik + j0,iwk.
As a result, Eq. (26) takes the following form:

∂i (Q0,i − TF0,i − (μ1 + ϕ) j0,i − ςσ̄G0,i − (μc − μ1)D0,i − (j0,w)wi)

= − [F0 + ξT (j − ρu) − Sw]∇T − (1 + ξμ) (j − ρu)∇ (μ1 + ϕ)

− (G0 + ξσ(j − ρu) − Jw)∇ (ςσ̄) − (D0 + ξc (j − ρu) − ρcw)∇ (μc − μ1) . (27)

Further extraction of total derivatives in the right-hand side of (27) yields spatial derivatives of velocities,
which should not be present in reversible flows. Therefore,

Q0 = T F0 + (μ1 + ϕ) j0 + ςσ̄ G0 + (μc − μ1)D0 + (j0,w)w. (28)

The sum of four differentials of independent thermodynamic variables identically equals zero only if
the following coefficients identically equal zero:

F0 + ξT (j − ρu) − Sw = 0, G0 + ξσ (j − ρu) − Jw = 0, (29)

D0 + ξc (j − ρu) − ρcw = 0, 1 + ξμ = 0. (30)

To find the flux G0, it is necessary to make assumptions regarding oil droplets transport with velocity
u (ξσ = 0, G0 = J w):

∂J

∂t
+ div (J u) = 0. (31)

The parameter ξT defines the flow in the entropy conservation law, (19), and F0 + ξT (j − ρu)−Sw =
0 must be an identity. If entropy transport is performed by both subsystems, then there is the only
possibility to satisfy the identity by selecting ξT = −S/ρ. Repeating the same steps for the flux D0 in
the mass conservation law for surfactant, (17), we arrive at this condition: ξc = −ρc/ρ.

Using (13), we can rewrite Eq. (24) as follows:

∂v
∂t

+ (v, ∇)v = −∇p

ρ
+

(
ξT +

S

ρ

)
∇T +

(
ξc +

ρc

ρ

)
∇ (μc − μ1)

+ς

(
ξσ +

J

ρ

)
∇σ̄ +

1
ρ

(j0,∇w) −∇ϕ. (32)

Knowing ξμ, ξT , ξc, ξσ, we arrive at the equation for the carrier component motion:

∂v
∂t

+ (v, ∇)v = −∇p

ρ
+ ς

J

ρ
∇σ̄ +

1
ρ

(j0,∇w) + g. (33)

With reversible flows determined, the conservation laws in the continual theory of the two-velocity
medium’s hydrodynamics in reversible approximation acquire physical meaning:

∂J

∂t
+ div (Ju) = 0 (J = ρ2/m) , (34)

∂ρ

∂t
+ div j = 0, (35)
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∂ρc

∂t
+ div

(
ρc

ρ
j
)

= 0, (36)

∂S

∂t
+ div

(
S

ρ
j
)

= 0, (37)

∂ji

∂t
+ ∂k (ρvivk + vij0,k + ukj0,i + pδik) = ρgi, (38)

∂v
∂t

+ (v, ∇)v = −∇p

ρ
+ ς

J

ρ
∇σ̄ +

1
ρ

(j0,∇w) + g, (39)

∂E

∂t
+ div

(
(E + p)

j
ρ
− (ςσ̄J + (j − ρv, u))

(
j
ρ
− u

))
= 0, (40)

∂ (ρϕ)
∂t

+ div (jϕ) = − (j,g) . (41)

The latter equality holds true when gravity is constant in time. To close the set of equations, one needs
to present the equation of state and find the relationship between the relative velocity u− v and relative
momentum j0. The relative momentum is invariant, and at the same time, the only invariant present in
the system is u− v, related to velocities of the medium. When the relative momentum is expanded into
a series in terms of the relative velocity, just the first expansion term j0 = ρs (u− v) would suffice. The
proportionality coefficient ρs is partial density of the suspended (carried) phase: j = j0 + ρv = ρsu+ ρlv.
Partial densities ρs, ρl are not affected by the velocity difference. In this case, the equations of the system
may take the following form:

∂J

∂t
+ div (J u) = 0 (J = ρ2/m) , (42)

∂ρ

∂t
+ div j = 0, j = ρsu + ρlv, ρ = ρs + ρl, (43)

∂ρc

∂t
+ div

(
ρc

ρ
j
)

= 0, (44)

∂S

∂t
+ div

(
S

ρ
j
)

= 0, (45)

∂ji

∂t
+ ∂k (ρlvivk + ρsuiuk + pδik) = ρgi, (46)

∂v
∂t

+ (v, ∇)v = −∇p

ρ
+ ς

J

ρ
∇σ̄ +

ρs

2ρ
∇w2 + g, (47)

∂E

∂t
+ div

(
(E + p)

j
ρ

+
ρl

ρ
(u − v)(ςσ̄J + ρs(u− v, u))

)
= 0. (48)

Equations (46), (47) yield the motion equation for droplets:

∂u
∂t

+ (u, ∇)u = −∇p

ρ
− ρl

ρs
ς
J

ρ
∇σ̄ − ρl

2ρ
∇w2 + g, (49)

and this equation for the velocity difference:
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∂w
∂t

+ (w, ∇)w +
1
2
∇w2 + (w, ∇)v + (v, ∇)w = −ς

J

ρs
∇σ. (50)

Reversible motion Eq. (50) demonstrates that the gradient of surface tension ensures the relative
phase velocity. It should be noted that this statement follows from the general procedure of hydrodynamic
modeling based in the thermodynamic consistency condition. It may be beneficial to compare the latter
equation with the way the corresponding formula is obtained in [1]. When obtaining (49), (50), the
conservation law was taken into account:

∂ρs

∂t
+ div (ρsu) = 0. (51)

Equations (42)–(48) represent ideal hydrodynamics of the two-velocity medium and are a consistent
basis for real dissipative motion equations for the two-phase medium with surfactant. Equations (42)–
(48) follow from the first principle of thermodynamics and from consistency conditions: these equations
agree with the first principle of thermodynamics, (11), and identically satisfy the energy conservation law,
(48). When obtaining these equations, assumptions regarding interactions within the system were not
made. The most general thermodynamically consistent equations were obtained. Adding surfactant to
the first principle of thermodynamics, which affected surface tension at the interface between water and
oil, yields reversible hydrodynamic approximation of the force ρl (ςJ∇σ̄/ρ) acting on the unit volume of
water in a certain medium. The force acting on the unit volume of oil in a certain element of the medium
is ρl (ςJ∇σ/ρ). This force is proportional to the gradient of surface tension due to oil droplets transport
with the velocity u. In a particular case, on the microscopic scales, this force was first calculated in [1].
The present paper showed that the nature of this force is more general. In [1], it is noted that extremely
low concentrations of surfactant in the system may radically change the drag forces in the hydrodynamic
flow, when flow rates are moderate. An important feature of these equations is the presence of reactive
forces in the right-hand sides of equations:ρl∇w2/2ρ and −ρs∇w2/2ρ. It is due to these forces we can
ensure stability of reversible hydrodynamic approximation [18].

IRREVERSIBLE EQUATIONS OF TWO-VELOCITY FLOW
WITH SURFACTANT

The complete set of equations taking into account dissipative effects can be obtained from set (42)–
(48) by adding irreversible flows to corresponding reversible parts [20]:

∂J

∂t
+ div (J u) = 0 (J = ρ2/m) , (52)

∂ρ

∂t
+ div j = 0, j = ρsu + ρlv, ρ = ρs + ρl, (53)

∂ (cρ)
∂t

+ div
(

cj − λ1

T
(j − ρu) + L

)
= 0, ρc = cρ, (54)

∂S

∂t
+ div

(
S

ρ
j − λ

T
(j − ρu) +

λ1 (μc − μ1)
T 2

(j − ρu) +
q
T

− (μc − μ1)L
T

)
=

R

T
, (55)

∂ji

∂t
+ ∂k

(
ρsuiuk + ρlvivk + p δik + πs

ik + πl
ik

)
= ρgi, (56)

∂v
∂t

+ (v,∇)v = −∇p

ρ
+ ς

J

ρ
∇σ̄ +

ρs

2ρ
∇w2 + λ1∇

(
(μc − μ1)

T

)
+ λ

∇T

T
+ g + f , (57)
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∂E

∂t
+ div (Q + W) = 0. (58)

In Eqs. (52)–(58): R is a dissipative function; heat flow q, surfactant mass flow L1, energy flow
W; irreversible densities of momentum flows are πl

ik, πs
ik; friction is f . The equations should satisfy

differential form (11) identically. The latter requirement enables us to find irreversible flows. To satisfy
differential form (11), let us substitute time derivatives with respect to time from (52)–(58) into (25).
After some minor simplifications, we obtain an equation whose right-hand side contains coupled
products of unknown flows and thermodynamic forces that generate them:

∂i

(
Wi − qi + λ (ji − ρui) − πl

ikvi − πs
ikui

)
= −R − q

T
∇T − T L∇

(
μc − μ1

T

)

−πl
ik

2
(∂kvi + ∂ivk) −

πs
ik

2
(∂kui + ∂iuk) − (ji − ρui)

(
fi +

∂kπ
l
ik

ρl

)
. (59)

The left-hand side of the equation determines the irreversible flow of energy:

Wi = qi − λ (ji − ρui) + πl
ikvi + πs

ikui, (60)

and the right-hand side, the dissipative function:

R = − (ji − ρui)
(

fi +
∂kπ

l
ik

ρl

)
− q

T
∇T − T L∇

(
μc − μ1

T

)

−πl
ik

2
(∂kvi + ∂ivk) −

πs
ik

2
(∂kui + ∂iuk) . (61)

The latter equation can be brought to the standard form: it is necessary to identify the diagonal in the
flows of tensor dimension [22]:

R = −
(

fi +
∂kπ

l
ik

ρl

)
(ji − ρui) − q

∇T

T
− LT∇

(
μc − μ1

T

)

−al div v − as div u − 1
2
Al

ikvik − 1
2
As

ikuik. (62)

Here, πl,s
ik = Al,s

ik + al,sδik,
(
Al,s

ii = 0
)

, vik = ∂kvi + ∂ivk − 2
3δikdiv v, uik = ∂kui + ∂iuk − 2

3δikdiv u.

The kinetic coefficients introduce the relationship between thermodynamic forces and thermody-
namic flows of the same tensor nature:

fi +
∂kπ

l
ik

ρl
= −B11(ji − ρui) − λ

∂iT

T
− λ1∂i

(
μc − μ1

T

)
, (63)

q = −λ (j − ρu) − B22
∇T

T
− B23∂i

(
μc − μ1

T

)
, (64)

T L = −λ1 (j − ρu) − B32
∇T

T
− B33∂i

(
μc − μ1

T

)
, (65)

Al
ik = −ηlvik − η12uik, (66)
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As
ik = −η12vik − ηsuik, (67)

al = −ζldiv v − ζ12div u, (68)

as = −ζ21div v − ζsdiv u, (69)

where ζl, ζs, ζ12 are scalar kinetic coefficients; λ, λ1, B11, B22, B33, B23 are vector kinetic coefficients,
and ηl, ηs, η12 are tensor kinetic coefficients.

All kinetic coefficients are, generally, functions of S, ρ, c, J , u− v, that is, of the thermodynamic
nonequilibrium state. The dissipative function is a quadratic form defined positively:

R = B11 (j − ρu)2 + 2λ
∇T

T
(j − ρu) + 2λ1∇

(
μc − μ1

T

)
(j − ρu) + B22

(
∇T

T

)2

+B23∇
(

μc − μ1

T

)
∇T

T
+ B33

(
∇(μc − μ1)

T

)2

+ ζl (div v)2 + ζs (div u)2

+2ζ12 (div v) (div u) +
1
2
ηlv

2
ik +

1
2
ηsu

2
ik + η12uikvik, (70)

which is guaranteed by the following conditions:

ζl ≥ 0, ζlζs ≥ ζ2
12, (71)

B11 ≥ 0, B11B22 ≥ λ2, (B11B33 − λ2
1)(B11B22 − λ2) ≥ (B11B23 − λλ1)2, (72)

ηl ≥ 0, ηlηs ≥ η2
12. (73)

Irreversible flows (63)–(69) in (52)–(58) enable us to close the initial set of equations:

∂J

∂t
+ div (J u) = 0 (J = ρ2/m) , (74)

∂ρ

∂t
+ div j = 0, j = ρsu + ρlv, ρ = ρs + ρl, (75)

∂ (cρ)
∂t

+ div
(
csρsu + clρlv + L̃

)
= 0, (76)

∂S

∂t
+ div

(
Ssu + Slv +

q̃
T

− (μc − μ1) L̃
T

)
=

R

T
, (77)

∂ji

∂t
+ ∂k (ρsuiuk + ρlvivk + pδik − (ζs + ζ12) δikdiv u− (ζl + ζ12) δikdiv v

− (ηs + η12) uik − (ηl + η12) vik) = ρg, (78)

∂vi

∂t
+ (v,∇) vi = −1

ρ
∂ip + ς

J

ρ
∂iσ +

ρs

2ρ
∂iw2 − B11 (ji − ρui)

+
1
ρl

∂k (ηlvik + η12uik) +
1
ρl

∂i (ζl div v + ζ12 div u) + gi, (79)
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∂E

∂t
+ ∂i

(
(E + p)

ji

ρ
+

ρl

ρs
(ςσ̄J + (j0, u))

j0,i

ρ
− 2λ(ji − ρui) + πl

ikvk + πs
ikuk + q̃i

)
= 0. (80)

As indicated above,

csρs = cρs + 2
λ1

T
ρl, Ss =

ρs

ρ
S + 2

(
λ − λ1

ρ (μc − μ1)
T 2

)
ρl

ρ
, (81)

clρl = cρl − 2
λ1

T
ρl, Sl =

ρl

ρ
S − 2

(
λ − λ1

ρ (μc − μ1)
T 2

)
ρl

ρ
, (82)

L̃ = −B32
∇T

T 2
− B33

T
∇

(
μc − μ1

T

)
, (83)

q̃ = −B22
∇T

T
− B23∇

(
μc − μ1

T

)
. (84)

As a result, Eqs. (81), (82) yield a relationship between surfactant concentrations for each phase and
surfactant concentration in the local element of the two-velocity medium csρs + clρl = cρ, and dynamic
equations as well:

∂ui

∂t
+ (u,∇)ui = −∂ip

ρ
− ρl

ρs
ς
J

ρ
∂iσ̄ − ρl

2ρ
∂iw2 +

ρl

ρs
B11 (ji − ρui)

+
1
ρs

∂k (η12vik + ηsuik) +
1
ρs

∂i (ζ12 div v + ζs div u) + gi, (85)

∂vi

∂t
+ (v,∇) vi = −∂ip

ρ
+ ς

J

ρ
∂iσ̄ +

ρs

2ρ
∂iw2 − B11 (ji − ρui)

+
1
ρl

∂i (ζl div v + ζ12 div u) +
1
ρl

∂k (ηlvik + η12uik) + gi (86)

and the equation for velocity w of relative motion:

∂wi

∂t
+ (w, ∇) wi + (w, ∇) vi + (v, ∇)wi +

1
2
∂iw2 = −ς

J

ρs
∂iσ̄ − ρl

ρs
ρB11wi

+
1
ρs

∂i (ζ12 div v + ζs div u) − 1
ρl

∂i (ζl div v + ζ12 div u)

+
1
ρs

∂k (η12vik + ηsuik) −
1
ρl

∂k (ηlvik + η12uik) . (87)

Let us omit viscous and nonlinear effects from consideration. Equation (87) is now simplified:

∂w
∂t

+
ρl

ρs
ρB11w = −ς

J

ρs
∇σ̄ (88)

and it shows that it is the gradient of surface tension and interphase friction (and viscous friction, in
the general case) determine the relative velocity of phases in the two-velocity system, under stationary
conditions.

In the absence of hydrodynamic velocities and time derivatives, the set of Eqs. (74)–(80) can be
reduced to:
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∇σ̄ = 0, ∇p = ρg, div q̃ = 0, div L̃ = 0. (89)

Taking into account the Gibbs–Duhem relationship, (13), as well as (83), (84), we can transform the
set (88), (89) as follows:

S∇T + ρ∇ (μ1 + ϕ) + ρc∇ (μc − μ1) = 0, ∇σ̄ = 0, (90)

div
(

B22
∇T

T
+ B23∇

(
μc − μ1

T

))
= 0, div

(
B32

∇T

T 2
+ B33

1
T
∇

(
μc − μ1

T

))
= 0. (91)

The set of four equations for the four thermodynamic variables has the following solution:

∇T = 0, ∇ (μ1 + ϕ) = 0, ∇ (μc − μ1) = 0, ∇σ̄ = 0 (92)

with no entropy production:

R = B22

(
∇T

T

)2

+ B23∇
(

μc − μ1

T

)
∇T

T
+ B33

(
∇(μc − μ1)

T

)2

. (93)

Conditions (92) coincide with conditions of thermodynamic equilibrium (15).
Thus, Eqs. (74)–(80) follow from the first principle of thermodynamics, consistency conditions,

and second principle of thermodynamics for irreversible flows. When obtaining these equations, no
assumptions are made regarding interaction within the system. The motion equations obtained are
consistent with thermodynamics and as general as possible for the continual approximation. The
maximal value of kinetic coefficients and their functional dependence are shown.

EQUATION OF STATE FOR SOLUTION IN TWO-COMPONENT MEDIUM

Motion Eqs. (74)–(80) obtained above are determined by the first principle of thermodynamics,
unambiguously:

dE0 = TdS + μ1dρ + (μc − μ1) dρc +
(
μ2 − μ1 +

ςσ

m

)
dρ2 (94)

and do not depend on the form of the equation of state E0 = E0 (S, ρ, ρc, ρ2). Here, equations for the
two-velocity medium are obtained in a way similar to that of obtaining the set of Euler equations [17, 18,
23].

With introduction of mass concentration c = ρc/ρ, the first principle of thermodynamics takes this
form:

dE0 = TdS + μdρ +
(
μ2 − μ1 +

ςσ

m

)
dρ2 + Z dc, (95)

Z = (μc − μ1) ρ, μ = μ1 + c (μc − μ1) . (96)

Our next goal is to express the chemical potentials (95) of the two-component system via the
chemical potentials of its homogeneous thermodynamic subsystems.

Let us consider the first principle of thermodynamics for each of the three-parameter thermodynamic
subsystem, introducing physical densities ρf

1 , ρf
2 . For the carrier water component with surfactant (mass

concentration of surfactant being c1) we have:

dEf
1 = TdSf

1 + μf
1dρp

1 + μf
1cdρp

1c = dSf
1 + μf

1d
(
ρf
1 − ρp

1c

)
+ μf

1cdρp
1c
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= TdSf
1 + μf

1dρf
1 +

(
μf

1c − μf
1

)
dρp

1c = TdSf
1 + μ̄1dρf

1 + Z1dc1, (97)

μ̄1 = μf
1 +

(
μf

1c − μf
1

)
c1, Z1 =

(
μf

1c − μf
1

)
ρf
1 , ρf

1 = ρp
1 + ρp

1c. (98)

For the fragmented oil component with surfactant (concentration being c2), we have:

dEf
2 = TdSf

2 + μ̄2dρf
2 + Z2dc2,

μ̄2 = μf
2 +

(
μf

2c − μf
2

)
c2, Z2 =

(
μf

2c − μf
2

)
ρf
2 , ρf

2 = ρp
2 + ρp

2c. (99)

Here, index f denotes physical components of infinite homogeneous media with surfactant of which
the hydrodynamic composite system is comprised; index p denotes partial density of the homogeneous
phase. Physical chemical potentials μf

1 , μf
2 in thermodynamics are found via the first principle of

thermodynamics with partial densities and are used in the so-called Gibbs phase rule.
Let us find the parameters representing the total of partial densities for homogeneous components:

internal energy, entropy, and mass:

E0 = Ef
1 (1 − φ) + Ef

2 φ, S = Sf
1 (1 − φ) + Sf

2 φ, ρ = ρf
1 (1 − φ) + ρf

2φ. (100)

Here, φ is bulk fraction of oil droplets.
Let us calculate the differential for energy (100), using differentials of total entropy and density of the

composite system. The result may be presented in the following form:

dE0 = (1 − φ)
(
TdSf

1 + μ̄1dρf
1 + Z1dc1

)
+ φ

(
TdSf

2 + μ̄2dρf
2 + Z2dc2

)
+

(
Ef

2 − Ef
1

)
dφ

= TdS + μ̄1dρ +
(
μ̄2 − μ̄1 +

ςσ

m

)
(1 + c2) dρ2 + (p1 − p2) dφ

+
(
μf

1c − μf
1

)
ρ1 (1 + c1) dc1 +

[
μ̄2 − μ̄1 +

(
μf

2c − μf
2

)
(1 + c2)

]
ρ2dc2, (101)

ρ2 (1 + c2) = φρf
2 , ρ1 (1 + c1) = (1 − φ) ρf

1 , ρ = ρ1 + ρ2 + ρc, (102)

p1 = −Ef
1 + TSf

1 + μ̄1dρf
1 , p2 = −Ef

2 + TSf
2 + μ̄2dρf

2 . (103)

Combining the two subsystems together, we find concentration no longer arbitrary but part of the
combined system at certain proportions determined either by the Gibbs rule or by Langmuir condition (if
the surfactant is concentrated on the surface of the oil droplets). However, pressure in (40) is determined
for arbitrary concentrations for each identified subsystem. In the composite system, components’
pressure will be p1 = p2, but neither will coincide with pressure p of the composite system. For low
concentrations, Eq. (101) may be rewritten as follows:

dE0 = TdS + μ̄1dρ +
(
μ̄2 − μ̄1 +

ςσ

m

)
dρ2 + λρ1dc1 + νρ2dc2, (104)

ρ2 = ρs = φρf
2 , ρ1 = ρl = (1 − φ) ρf

1 , ρ = ρ1 + ρ2 + ρc, (105)

λ = μf
1c − μf

1 , ν = μf
2c − μf

2 . (106)

To connect composite variables with those of the thermodynamic system under study, let us use the
following relationship:
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ρc = c1ρ1 + c2ρ2, (107)

c1

c2
=

c01

c02
+ θ (T ) , θ (T ) = Φc (T − T0) , Φc = const, μf

1c �= μf
2c. (108)

The second formula from (108) represents the Langmuir isotherm, that is, the curve of equilibrium
adsorption, which holds true in the low concentration domain. Concentrations c10, c20 characterize the
initial distribution of concentrations at temperature T0. It is assumed that the time needed for local
equilibrium adsorption to establish is small. The term linear with respect to temperature describes the
temperature shift for the equilibrium curve. The pressure shift for the equilibrium adsorption curve is not
taken into account. Generally, one needs to consider kinetics of local adsorption.

Formula (104) must be identical to (11):

dE0 = TdS + μdρ +
(
μ2 − μ1 +

ςσ

m

)
dρ2 + Zdc, (109)

μ = μ1 + (μc − μ1) c, Z = (μc − μ1) ρ, (110)

p = −E0 + TdS + μρ +
(
μ2 − μ1 +

ςσ

m

)
dρ2. (111)

Bringing (104) to the same form as (109), we arrive at the relationship between parameters μ, μ1, μ2,
Z and the corresponding thermodynamic variables related to the subsystem. To this end, it is necessary
to transform expression λρ1dc1 + νρ2dc2 from (104) in terms of variables used in the first principle of
thermodynamics (109). Taking into account (107), (108), we have two equations for finding differentials
of concentrations in components:

ρ1dc1 + ρ2dc2 = ρdc + (c − c1) dρ + (c1 − c2) dρ2, (112)

c2dc1 − c1dc2 = Φc c2
2dT. (113)

The essence of the procedure performed is identifying the dependence of concentration differentials on
differentials of thermodynamic variables in (109). Let us introduce this parameter:

μr = μf
1c −

(
μf

1

ρ1c1

ρc
+ μf

2

ρ2c2

ρc

)
. (114)

As a result, the solution to the set of Eqs. (112), (113) determines this sum:

λρ1dc1 + νρ2dc2 = μrρdc + μr (c − c1) dρ + μr (c1 − c2) dρ2 + (λ − ν)
ρ1ρ2

ρ

c2
2

c
ΦcdT. (115)

Using (108), we can bring (101) to the following form:

dĒ0 = TdS̄ + (μ̄1 + μr (c − c1)) dρ +
(
μ̄2 − μ̄1 + μr (c1 − c2) +

ςσ

m

)
dρ2 + μrρdc. (116)

This equation corresponds to pressure as per its thermodynamic definition:

p = −Ē0 + T S̄ + (μ̄1 + μr (c − c1)) ρ +
(
μ̄2 − μ̄1 + μr (c1 − c2) +

ςσ

m

)
ρ2. (117)

On the other hand, we have a combined definition of pressure based on the relationship below:
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E0 = (1 − φ) E1 + φE2 = (1 − φ)
(
−p1 + TS1 + μ̄1ρ

f
1

)
+ φ

(
−p2 + TS2 + μ̄2ρ

f
2

)

= − ((1 − φ) p1 + φp2) + TS + μ̄1ρ + (μ̄2 − μ̄1) ρ2 (1 + c2) , (118)

which is definitely true. We find pressure form the latter equation (p1 = p2):

p1 = p2 = ((1 − φ) p1 + φp2) = −E0 + TS + μ̄1ρ + (μ̄2 − μ̄1) ρ2 + (μ̄2 − μ̄1) ρ2c2. (119)

This expression is invariant with respect to this transform:

Ē0 = E0 + (ν − λ)
ρ1ρ2c

2
2

ρc
Φc T, S̄ = S + (ν − λ)

ρ1ρ2c
2
2

ρc
Φc. (120)

Let us demonstrate that pressure p1 and pressure p2 differ from pressure p by the same value. Indeed,

p1 = p − (μ̄2 − μ̄1) ρ2c2 + μrc1ρc, p2 = p − (μ̄2 − μ̄1) ρ2c2 + μrc1ρc. (121)

The difference between p1 or p2 and p of the composite system is based on dependence of concentrations
c1, c2 on phase equilibrium condition or Langmuir equilibrium adsorption curve, while p1 and p2

characterize the homogeneous system with arbitrary concentrations of surfactants in it.

Equation (116) represents the first principle of thermodynamics for the composite system. We assume
that internal energy and entropy are determined by (120). Only in this case will the first principle of
thermodynamics (116) hold true.

Thus, for the medium representing the two-component system with surfactant, densities of internal
energy and entropy are not additive functions as per (116). Evidently, when these equations hold true:

μ1 = μ̄1 − μrc1, μ2 = μ̄2 − μrc2, μc = μ̄1 + μr (1 − c1) (122)

Eq. (116) becomes (109). Therefore, the first principle of thermodynamics of the two-component system
has this form:

dE0 = TdS + μdρ +
(
μ2 − μ1 +

ςσ

m

)
dρ2 + Zdc, (123)

where chemical potentials are related with chemical potentials of homogenous subsystems as per (122).
To identify the link between concentrations c1, c2, concentration c, and densities ρ, ρ2, one should use
the following formulas:

c2 =
ρc

ρθ + ρ2 (1 − θ)
, c1 =

ρc θ

ρθ + ρ2 (1 − θ)
, (124)

μf
1 = μf

1 (p, T, c1) , μf
1c = μf

1c (p, T, c1) , μf
2c = μf

2c (p, T, c2) . (125)

The kinetic correction (quadratic with respect to velocities) to the equation of state (123) is calculated
based on (11) [18]:

E0 = E0|u−v=0 +
ρs

2
(u− v)2 . (126)
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DIFFERENTIAL SCHEME FOR TWO-VELOCITY EQUATIONS

The computational algorithm for numerical analysis of the two-velocity continual hydrodynamic
system is based on the method of controlled volume [24, 25]. Discretization of the key equations for
this model is performed using a uniform rectangular grid (Fig. 1), where the computational nodes for
the vector components of velocities (grids s1, s2) are shifted with respect to the computational nodes for
other variables of the model (grid s0).

The scheme used is entirely implicit with respect to time. When approximating convective summands
to compute the flows via the faces of control volumes, the HLPA (Hybrid Linear/Parabolic Approxima-
tion) scheme of the second order [26] is realized, which satisfied the quantitative accuracy requirement
and the convection boundedness criterion (CBC). When approximating diffusive summands, the central
difference scheme is used. To compute the pressure field coordinated with the flow field, a scheme
similar to the IPSA (Inter-Phase Slip Algorithm) procedure [27] is realized. When approximating the
summands determining the forces between interacting phases, an entirely implicit scheme is used.
Within the framework of the computational algorithm developed, the continuity equation is not solved
explicitly. Its discrete counterpart:

(
ρn+1

l,i,j − ρn
r,i,j

) ΔxΔy

Δt
+

(
(ρlvx)n+1

i+1/2,j − (ρlvx)
n+1
i−1/2,j

)
Δy

+
(
(ρlvy)

n+1
i,j+1/2 − (ρlvy)

n+1
i,j−1/2

)
Δx = 0 (127)

is used when obtaining discrete counterparts for all other equations and when obtaining the correction
equation for pressure.

As a result of this approach and using the selected approximation scheme, the discrete counterpart of
the motion equation for the component vx of the velocity vector of the carrier component takes this form:

av,i+1/2,jv
n+1
x,i+1/2,j = av,i+3/2,jv

n+1
x,i+3/2,j + av,i−1/2,jv

n+1
x,i−1/2,j

+av,i+1/2,j+1v
n+1
x,i+1/2,j+1 + av,i+1/2,j−1v

n+1
x,i+1/2,j−1 +

ρn+1
l,i+1/2,j

ρn+1
i+1/2,j

(
Pn+1

i,j − Pn+1
i+1,j

)
Δy

Fig. 1. The computational grid.
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+πr2
bJ

n+1
i+1/2,j

ρn+1
l, i+1/2,j

ρn+1
i+1/2,j

(
σn+1

i+1,j − σn+1
i,j

)
Δy + bv, i+1/2,j , (128)

al, i+1/2±1,j =
(
ρlv

∓
x

)n+1

i+1/2±1/2,j
Δy +

4
3

1
Rel

Δy

Δx
ηn+1

l, i+1/2±1/2,j ,

al, i+1/2,j±1 =
(
ρlv

∓
y

)n+1

i+1/2,j±1/2
Δx +

1
Rel

Δx

Δy
ηn+1

l, i+1/2,j±1/2,

al , i+1/2,j = an
l + al, i+3/2,j + al, i−1/2,j + al, i+1/2,j+1 + al, i+1/2,j−1 + bρn+1

l, i+1/2,jΔxΔy,

an
l = ρn

l, i+1/2,j

ΔxΔy

Δt
,

bl, i+1/2,j = an
l vn

x, i+1/2,j + bρn+1
l, i+1/2,ju

n+1
x, i+1/2,jΔxΔy + ωn+1

l, i+1/2,j + τn+1
l, i+1/2,j .

In Eqs. (127), (128), the superscript index denotes the time step number,

v∓x,i+1/2±1/2,j = max
(
∓vx, i+1/2±1/2,j , 0

)
, v∓y,i+1/2,j±1/2 = max

(
∓vy,i+1/2,j±1/2, 0

)
,

ωn+1
l, i+1/2,j includes nonlinear antidiffusion corrections in accordance with the HLPA scheme, while

τn+1
l, i+1/2,j is a result of integrating diffusive summands. Discrete counterparts for all other equations in

this model are found in a similar way. We have studied hydrodynamic problems involving different types
of boundary condition. For example, for the motion equation at the boundary Γ, we either set pressure
p|Γ = const, or velocity vectors u|Γ = const, v|Γ = const, or we approximate the infinity (∂u/∂y)|Γ =
0, (∂v/∂y)|Γ = 0, (∂u/∂x)|Γ = 0, (∂v/∂x)|Γ = 0. Differential approximation of boundary conditions
in both cases is done similarly and is based on the scheme of the second order [28].

To compute the velocity field, which would satisfy the continuity equation and the pressure field
coordinated with it, a version of iterative procedure SIMPLE [24] was realized, which is similar to
IPSA. When passing to the next time step, the initial assumption regarding an approximate value of
the pressure field P ∗ is made, and the true value is found via correction P ′:

P = P ∗ + P ′. (129)

Similarly, corrections for velocity vector components are introduced:

vx = v∗x + v′x, vy = v∗y + v′y, ux = u∗
x + u′

x, uy = u∗
y + u′

y. (130)

Further on, by subtracting the exact and the approximate discrete counterparts for motion equations
and eliminating several summands as allowed by the basic version of the SIMPLE procedure, the
following corrections are introduced:

v′x, i+1/2,j =
Δy

al, i+1/2,j

ρl, i+1/2,j

ρi+1/2,j

(
P ′

i,j − P ′
i+1,j

)
, (131)

v′y, i,j+1/2 =
Δx

al, i,j+1/2

ρl, i,j+1/2

ρi,j+1/2

(
P ′

i,j − P ′
i,j+1

)
, (132)

u′
x, i+1/2,j =

Δy

as, i+1/2,j

ρs, i+1/2,j

ρi+1/2,j

(
P ′

i,j − P ′
i+1,j

)
, (133)
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u′
y, i,j+1/2 =

Δx

as, i,j+1/2

ρs, i,j+1/2

ρi,j+1/2

(
P ′

i,j − P ′
i,j+1

)
. (134)

A special feature of the IPSA is using a discrete counterpart for the continuity equation, which would
be general with respect to the phases, to obtain the pressure correction equation:

(
ρi,j − ρn

i,j

) ΔxΔy

Δt
+

(
(ρsux)i+1/2,j − (ρsux)i−1/2,j

)
Δy +

(
(ρlvx)i+1/2,j − (ρlvx)i−1/2,j

)
Δy

+
(
(ρsuy)i,j+1/2 − (ρsuy)i,j−1/2

)
Δx +

(
(ρlvy)i,j+1/2 − (ρlvy)i,j−1/2

)
Δx = 0. (135)

Substituting (130)–(134) in (135), we arrive at the set of equations for computing the pressure field
(linear coefficients are not listed here due to being cumbersome and also not informative):

Ai,jP
′
i,j = Ai+1,jP

′
i+1,j + Ai−1,jP

′
i−1,j + Ai,j+1P

′
i,j+1 + Ai,j−1P

′
i,j−1 + Bi,j , (136)

where Bi,j contains residuals of the continuity equations and is a necessary indicator of convergence for
the iterative process. The step-by-step application scheme for this procedure is as follows: 1) Initial
assumption regarding the approximate pressure field P ∗; 2) solving discrete counterparts (128) in
order to find the velocity vector components for the approximate field

(
u∗

x, u∗
y

)
and

(
v∗x, v∗y

)
; 3) finding

pressure correction P ′ by solving correction Eq. (135); 4) computing the new pressure field P from
(130); 5) computing the new fields for velocity vector components (ux, uy) and (vx, vy) via (131)–
(134); 6) solving discrete counterparts for other equations of the model; recalculating the density and
temperature fields using the equation of state, expressions for surface tension and chemical potential of
surfactant; 7) presenting the corrected pressure field P as new P ∗, returning to Step 2 and repeating the
procedure until the iterative process converges.

To solve numerically the systems of linear algebraic equations for discrete counterparts of core
equations and correction equation for pressure, the method of alternating direction and the PARDISO
solver parallel to the line are used, the latter realized as part of the mathematical library Intel MKL [29].

COMPUTATION RESULTS: CHARACTERISTICS OF FORCED TWO-PHASE FLOW

Computational domain is set as a rectangular annulus of characteristic dimensions Lx = 0.5 m,
Ly = 0.2 m, limited from above and below by nonmoving horizontal planes. Gravity has components
g = (0, g) (see Fig. 2).

Formulation of the problem: On the top and bottom surfaces, there are no orthogonal or vertical
velocity components. These planes serve as adiabatic insulation. Between the inlet and outlet bound-
aries, the pressure drop Δp is set. At the inlet boundary of the computational domain, the Dirichlet
conditions for surfactant concentration and temperature of the medium are set. At the outlet boundary
of the computational domain, the Neumann conditions for surfactant concentration and temperature of
the medium are set. Computations are performed for a dispersed mix of viscous, barely compressible

Fig. 2. Computational domain for a flat annulus. The water–oil mix with surfactant is flowing through its sides, left to
right.
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Fig. 3. The linear interval of the curve representing dependence of surface tension on surfactant concentration for
different surface activity.

Fig. 4. The velocity profile for oil motion at Δp = 50 Pa and different surface activity for the moment of time t = 2.2 s.

fluids. Physical parameters of the dispersed phase (oil droplets, flow rate u) correspond to the technical
data for oils: ρf

s = 880 kg/m3, αs = 1.2 · 10−10 Pa−1, ηs = 0.1 kg/(m s). For the carrier phase (water,
flow rate v), physical parameters correspond to the technical data for water: ρf

l = 998 kg/m3, αl =
4.7 · 10−9 Pa−1, ηl = 0.001 kg/(m s). The bulk fraction of water at the initial moment of time is φ = 0.5.
Thermodynamic parameters are linked as follows:

δρ = ρα δp − ρβ δT, δs = cpδT /T − βδp/ρ. (137)
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Fig. 5. The velocity profile for water motion at Δp = 50 Pa and different surface activity for the moment of time t = 2.2 s.

Fig. 6. The velocity profile for water–oil relative motion at Δp = 50 Pa and different surface activity for the moment of
time t = 2.2 s.

The chemical potential of surfactant was described with this dependence:

μ1 = d1 P + d2 T + R∗T ln c, (138)

where d1 = 0.1 m3/kg, d2 = 0.001 m2/(K s2), R∗ is the gas constant. Surface tension was found via

σ = a1(Tc − T )/(Tc − Tref ) − a2 ln (1 + a3c) , (139)

where Tc = 513 K, Tref = 293 K, a1 = 7 · 10−2 N/m, a2 = 0.1, 0.5, 1, 2 N/m, a3 = 1.
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Fig. 7. The velocity profile for oil motion at Δp = 50 Pa and different surface activity for the moment of time t = 2.2 s.

Fig. 8. The velocity profile for water motion at Δp = 50 Pa and different surface activity for the moment of time t = 2.2 s.

In the computations, dissipative parameters were used: λ1 = 10−6, λ2 = 10−2 kg/(m·s2). The
diffusion coefficient for surfactant in water is set at D = 2 · 10−9 m2/s. Thermal conductivity is typically
defined as κ = B22/T . Because χ = κ/ρcp, we have χ = B22/ρcpT : χ = 1.34 · 10−7 m2/s. Computa-
tions were performed using a 80 × 60 grid with the time step Δt = 10−3 s. When performing numerical
analysis in the full set of equations, we did not take into account: mutual (η12 = 0) and bulk (ζ12,s,l = 0)
viscosities of the components, and thermodiffusion (B23 = 0).

Oil components, which include various compounds, affect physics and chemistry of oil. Of special
interest are organic compounds whose presence can be assumed when oil contains oxygen, sulfur,
and other elements. The amount of these compounds (naphthenic acids, asphaltenes, and resins) in
natural oil is negligible. However, oxygen and sulfur-containing compounds have significant influence
on properties of interfaces between layers within the formation, on distribution of fluids and gases in the
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Fig. 9. The velocity profile for water–oil relative motion at Δp = 50 Pa and different surface activity for the moment of
time t = 2.2 s.

borehole flow, and motion patterns of components. Sulfur content in oil may reach 6%. Sulfur is present
in the free state or as hydrogen sulfide, but more often it may be part of the sulfur compounds or resins.
Oxygenated oil components include naphthenic and fatty acids, phenols, ketones, and other compounds.
The contents of naphthenic and fatty acids vary from hundredth fractions of percent to 2%. Because oil
contains naphthenic and fatty acids, alkalis can be used to increase oil recovery. Later, these compounds
enter the borehole shaft and affect subsequent dynamics of the multiphase mix. Interaction between
alkalis and oil acid yields water-soluble surfactants, which decrease surface tension at the interface
between oil and water. Macromolecular oil compounds containing nitrogen, sulfur, oxygen, and metals
are resins and asphaltenes. Their special feature is the ability to adsorb on the phase surface and affect
fluid and gas motion when the water–oil system travels along pipes. For this reason, it is essential to
analyze the impact surfactants have on dynamics of the mixture.

Below, it is assumed that dependence of surface tension on surfactant concentration is (139). As
we consider only the linear interval of the curve, we can set a1 = 1 without violating the generality of
discussion (Fig. 3).

The parameter a2 characterizes the derivative of surface tension as a function of surfactant concentra-
tion and determines its surface activity. Surface tension at the interface between water and oil is between
50 mJ/m2 and 10 mJ/m2. These boundaries are, obviously, tentative because solvable surfactants are
always present in natural oil at different concentrations. The parameter a2 for specialized surfactants
may be 100 mJ/m2 and up, and can reach tens of thousands. As we had in mind natural surfactants, we
intentionally set very low a2 when studying surfactant’s role in the two-phase flow. The results obtained
are likely the estimates of the lower limit of this effect. There are no exact data reported for dependence
σ (c, T ) for surfactants like resins and asphaltenes, which contain sulfur and oxygen. Also, there are no
such data for soluble paraffins, silica gels, and other natural surfactants found in water–oil mixtures.
Information of this kind is kept as a trade secret.

A strong impact of a2 on the motion of water and oil motion is due to low flow rates. As one can see
from dynamic equations (106), (107):

ρs
∂u
∂t

+ ρs (u,∇)u = −ρs

ρ
∇p − ρlς

J

ρ
∇σ + . . . , (140)

ρl
∂v
∂t

+ ρl (v,∇)v = −ρl

ρ
∇p + ρlς

J

ρ
∇σ + . . . , (141)
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Fig. 10. The velocity profile for surfactant distribution at Δp = 50 Pa and different surface activity for the moment of
time t = 2.2 s.

it is the pressure gradient ∇p ≤ 0 and surface tension gradient ∇σ ≥ 0 that act as the moving forces
in the system. These two forces accelerate water and decelerate oil. Below, Figs. 4–6 demonstrate
longitudinal profiles for corresponding velocities where the pressure drop Δp = 50 Pa is applied to the
system. The profiles cross the center of the flat cannel. The bends on the curve are due to the bends on
the spatial distribution curve for the surfactant concentration.

When surface activity is low and varies within the neighborhood of 0.1–2.0 H/m, one can observe
a strong influence on velocities of components (oil and water) and on their difference; see the figure
showing the changes in velocity to the left from the front. The greatest impact on the dynamic process is
observed when surface activity reaches a2 = 2.

Figures 7–9 show cross-section profiles for corresponding velocities at Δp = 50 Pa. The profiles
cross the center of the computational domain.

The profiles are shown for the moment of time t = 2.2 s for the cross section going through the center
of the computational domain. When surface activity changes from 0.1 N/m to 2.0 N/m, oil velocity
drops by almost half while water velocity almost doubles. Of special interest are cross-section profiles of
surfactant distribution shown in Fig. 10. The profile crosses the center of the computational domain.

CONCLUSIONS

Thus, with the two-component model whose carrier component contains dissolved surfactant,
we were able to demonstrate the impact of surfactant on fluid dynamics. The surfactant accelerates
the carrier component and considerably decelerates the motion of the oil droplets continuum in the
nonstationary fluid flow. This fact requires considerable adjustments to phase flow rates computed taking
into account hydrodynamics of multiphase flows. If we do not take into account the above, significant
errors will be introduced to measurements of the mass phase ratios via the cross section of the pipe.

The hydrodynamic analysis of the system is based on the physical two-velocity model of the medium
whose equations were obtained exclusively from the conditions of satisfying the conservation laws and
the first principle of thermodynamics for the two-velocity system.
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