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Abstract—Mathematical and computer modeling of thermal processes, applied presently in ther-
mal design of electronic systems, is based on the assumption that the factors determining the
thermal processes are completely known and uniquely determined, that is, they are deterministic.
Meanwhile, practice shows that the determining factors are of indeterminate interval-stochastic
character. Moreover, thermal processes in electronic systems are nonstationary and nonlinearly
depend on both the stochastic determining factors and the temperatures of electronics elements
and environment. At present, the literature does not present methods of mathematical modeling
of nonstationary, stochastic, nonlinear, interval-stochastic thermal processes in electronic systems
to model thermal processes, which satisfy all the above-listed requirements to modeling adequacy.
The present paper develops a method of mathematical and computer modeling of the nonstationary
interval-stochastic nonlinear thermal processes in electronic systems. The method is based on
obtaining equations describing the dynamics of time variation of statistical measures (expectations,
variances, covariances) of temperature of electronic system elements with given statistical measures
of the initial interval-stochastic determining factors. A practical example of applying the developed
approach to a the real electronic system is given.
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1. INTRODUCTION

The author, in his summarized paper [2], has shown that the methods of mathematical and computer
modeling applied nowadays in thermal design of electronic systems (ESs) are based on the assumption
on the deterministic character of thermal processes in ES and, hence, they are not adequate to the real
thermal processes in ES, which in practice leads to errors in designing and to undesirables consequences
[3, 5]. This is caused by the fact that in practice the determining factors in ES are ambiguous, interval,
and liable to significant spread. The interval ambiguity of the determining factors causes interval
uncertainty of temperature distributions in the ES and its elements. This means that temperature value
of each element in the real ESs is not exact and unique, but represents an interval of possible temperature
values that may occur in ES functioning in practice. In [2, 7] it has been analyzed in detail that the causes
of the ambiguous interval character of the determining factors are, first, statistical technological spread of
ES parameters and elements in ES fabrication and assembling; second, random factors arising during
ES functioning; and third, random environment parameters. The interval-stochastic ambiguity of the
factors determining the thermal processes in the ES and its elements is fundamental and unavoidable
regardless of the technologies used and output control.

In the present paper we demonstrate application of the methods developed in [2] for modeling the
interval-stochastic temperature distributions in the real ESs (note, in this paper we use the same
notations as in [2]).
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2. STOCHASTIC MATHEMATICAL MODEL OF THERMAL PROCESSES IN ES

As is known [1, 4], the stochastic processes are characterized by laws of distribution of all orders.
They can be determined only in some pathologic cases that are not interesting for practice in thermal
design of real ESs. At the same time, for modeling of thermal processes in ES it is unnecessary to know
the distribution laws since the most important, for engineering practice, thermal process characteristics
are statistical measures of stochastic temperatures Ti(t, ω), i = 1, 2, . . . , N + 1, of elements of the
thermal ES model [2, Fig. 1], namely, expectations, variances, standard deviations, and covariances
between different stochastic temperatures. For analyzing the stochastic thermal processes in ES it is,
therefore, necessary to have equations for determining the mentioned statistical measures. Solving these
equations, one will be able to find the desired temperatures of ES elements, determine the boundaries of
intervals containing the real temperature values of ES elements.

The initial nonstationary stochastic equations of the thermal processes in ES are nonlinear, hence,
direct determination of statistical measures of stochastic temperature distributions in ES is impossible.
Meanwhile, random deviations of random functions involved in the equations from their means are
quite small compared to their expected values. This makes it possible to apply methods of linearization
with respect to centered random functions [4] to the initial nonlinear stochastic equations of thermal
processes in ES [2]. As a result of linearization, one obtains equations that remain nonlinear with respect
to mathematical expectations of nonstationary temperatures of the elements, but become linear with
respect to the centered random functions. Such an approach enables one to find adequate finite equations
that directly describe the nonstationary statistical measures of random temperatures of elements in the
thermal ES model [2].

In the method developed in [2] the heat flows both between the elements and the elements and the
environment, and also the rate of the fluid flow through the ES package (shell) are linearized with
respect to the centered stochastic functions of ES element temperatures Ti(t, ω), i = 1, 2, . . . , N + 1,
environment temperature Te(t, ω), conductive heat conductivities gij(ω), and fluid flow rate Ga(t, ω):

◦
T i =

◦
T i(t, ω) = Ti(t, ω) − T i(t),

◦
T e(t, ω) = Te(t, ω) − T e(t),

◦
gij =

◦
gij(ω) = gij(ω) − gij,

◦
Ga =

◦
Ga(t, ω) = Ga(t, ω) − Ga(t),

where T i(t), T e(t), gij , and Ga(t) are mathematical expectations of the corresponding stochastic
functions.

Since for the centered random functions in the working range of ES temperatures, bounded from

above by 125◦C, the conditions |
◦
T i/T i| < 1, |

◦
T e/T e| < 1, |◦gij/gij | < 1, and |

◦
Ga/Ga| < 1 hold, the

heat flows between the elements, the elements and the environment, and the flow rate are continuous
functions without discontinuities and angular points and have continuous derivatives of different orders,
then the heat flows and the fluid flow rate can be linearized by the Taylor expansion method with retaining
terms of order not higher than one [2, 4].

The error estimate ε = |Δ
◦
T/ΔT | arising as a result of linearizing the heat flows of natural convection

satisfies the inequality [2] ε ≤
√

2δ0/n(n + 1), where δ0

is the relative error of replacing the convective flow by its approximate value, retaining the first-order
infinitesimal terms in the Taylor expansion; 0 < n ≤ 1 is the degree of temperature difference ΔT n+1 to
which the convective heat flow is proportional; for different convection laws n = 1/4, 1/3, 1/8, etc. For
instance, for δ0 ≤ 5% the admissible deviation is: ε ≤ 84%, for natural convection obeying the law of
1/8 power, ε ≤ 57%, for the law of 1/4 power, and ε ≤ 47% for the law of 1/3 power. In absolute units,
e.g., for the 1/4 convection law and ΔT = 40◦C, this means that the admissible variation of the centered

temperature difference will be Δ
◦
T ≤ 23◦C. The linearization error estimate for the radiation heat flows

shows [2] that the relative deviation ε = |
◦
T , /T | of the centered temperature

◦
T = T − T will satisfy the

condition ε ≤
√

δ0/6. For example, for the linearization error δ0 ≤ 5% the admissible relative deviation
ε is 9%. That is, if the absolute element temperature is T = 400 K (the limiting value for ES), then the
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admissible range of the random temperature deviation of the element in absolute units should not exceed
36◦C. Analysis of the values of errors of heat flows, linearized by Taylor series with retention of terms
only of the first infinitesimal order, evidences that the employed linearization method allows modeling of
thermal processes in ES with accuracy sufficient for engineering practice.

Using the method developed in [2] we obtained a matrix system of stochastic equations with respect to
the sought-for stochastic temperature vector T (t, ω) = (T1(t, ω), T2(t, ω), . . . , TN+1(t, ω))′ of elements
of the thermal ES model ((t, ω) ∈ [0, τ ] × Ω):

H
dT (t, ω)

dt
+ A(T , t)T (t) + B(T , t)

◦
T (t, ω) +

◦
D(ω)T (t)

=
◦
T e(t, ω)C(T , t) + T e(t)R(T , t) + Φ(t, ω), T (t = 0, ω) = T0(ω), (1)

where T (t) = (T 1(t), T 2(t), . . . , TN+1(t))′ is the N + 1-vector of mean temperatures of the thermal

model elements;
◦
T (t, ω) = T (t, ω) − T (t) is the stochastic N + 1-vector of element temperatures,

centered with respect to the vector T (t); T0(ω) is the N + 1-vector of stochastic initial conditions of
element temperatures; H is the deterministic diagonal (N + 1) × (N + 1) matrix with elements hi =
ρiciVi in which Vi is the volume, ρi is density, and ci is specific heat capacity of the ES element material;
A(T , t), B(T , t) are deterministic square (N + 1) × (N + 1) matrices that are nonlinearly dependent on

the mathematical expectations T (t);
◦
D(ω) is the stochastic square symmetric (N + 1)× (N + 1) matrix

with elements
◦
dij(ω) that are equal to linear functions of random heat conductive conductivities

◦
gij(ω);

Φ(t, ω) is stochastic N + 1-vector of powers of internal heat sources in the ES elements; C(T , t), R(T , t)
are deterministic N + 1-vectors that are nonlinearly dependent on the vector T (t); ( · )′ is transpose
operation.

3. EQUATIONS FOR STATISTICAL MEASURES OF STOCHASTIC
TEMPERATURES OF ES ELEMENTS

In the practice of modeling and thermal design of the electronic systems the main and most
informative characteristics of stochastic element temperatures Ti(t, ω), i = 1, 2, . . . , N + 1, are the
following statistical measures (E{ · } is an expectation operator):

—the mean vector T (t) = (T 1(t), T 2(t), . . . , TN+1(t))′, where T i(t) = E{Ti(t, ω)};
—covariance (N + 1) × (N + 1)-matrix KTT (t) with (i, j)-elements equal to covariances

KT i,T j(t) = E{
◦
T i(t, ω)

◦
T j(t, ω)}

between temperatures of different elements i, j = 1, 2, . . . , N + 1;
—vector of variances

V ar(t) = (V arT1(t), V arT2(t), . . . , V arT,N+1(t))t,

where V arT i(t) = E{(
◦
T i(t, ω))2}, which are equal to diagonal elements of the covariance matrix

KTT (t), and also the vector of mean square deviations σ(t) = (σT1(t), σT2(t), . . . , σT,N+1(t))t, where
σT i(t) =

√
V arT i(t).

Having determined the mentioned statistical measures, we can find the variation intervals of stochas-
tic temperatures of the ES elements with the real values of their temperatures. Knowing the found
mathematical expectations T i(t) and the mean square deviations σT i(t) of stochastic temperatures of
each element in the thermal model Ti(t, ω), i = 1, 2, . . . , N + 1, one can find lower TBot,i(t) and upper
TUp,i(t) boundaries of temperature intervals [TBot,i(t), TUp,i(t)], which vary with time in the evolving
thermal process in ES, namely, TBot,i(t) = T i(t)− χ · σT i(t), TUp,i(t) = T i(t) + χ · σT i(t), where χ is a
coefficient determining the width of the interval of possible values of stochastic ES element temperature,
and depending on the adopted value of the probability P with which the real temperature values of the
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elements will be bounded by the found interval. The estimate χ is determined by the Chebyshev inequality

[4]: P{
◦
T i(t, ω) ≤ χ · σT i(t)} ≥ 1 − 1/χ2.

The initial data for the numerical calculations of the statistical measures, which have to be a
priori known, are statistical measures of the following stochastic factors that completely determine the
stochastic thermal process in ES:

—mathematical expectation T e(t) and variance V arTe(t) of environmental stochastic temperature
Te(t, ω);

—mathematical expectations Φi(t) and variances V arΦi(t) of stochastic powers of the internal heat
sources of the elements Φi(t, ω), i = 1, 2, . . . , N (ΦN+1 = 0);

—mathematical expectations gij and variances V argij of random values of thermal conduction
conductivities gij(ω), i, j = 1, 2, . . . , N (gi,N+1 = gN+1,j = 0);

—mathematical expectations T 0,i and variances V arT0,i of initial stochastic temperatures of the
elements T0,i(ω), i = 1, 2, . . . , N + 1.

The equations obtained in [2] for determining the statistical measures of stochastic temperatures of
the ES elements have the following form:

• matrix equation for determining the mean vector T (t)

H
dT

dt
+ A(T , t)T (t) = T eR(T , t) + Φ, T (t = 0) = T 0, (2)

in which the mean environmental temperature T e, the powers of internal heat sources Φ = (Φ1,Φ2, . . . ,

ΦN+1)′, and the initial temperatures of the elements T 0 = (T 0,1, T 0,2, . . . , T 0,N+1)′ are a priori known
from the source data;

• equation for covariance matrix KTT (t) = E{
◦
T (t, ω)

◦
T ′(t, ω)}

dKTT (t)
dt

+ H−1B(T , t)KTT (t) − H−1C(T , t)K ′
TTe(t) + H−1F (T , t)

+KTT (t)B′(T , t)H−1 − KTTe(t) · C ′(T , t) · H−1 + F ′(T , t)H−1

= H−1KΦT (t) + K ′
ΦT (t)H−1, KTT (t = 0) = KTT,0, (3)

where F (T , t) = E{
◦
D(ω)T (t)

◦
T ′(t, ω)} is an (N + 1) × (N + 1) matrix defined hereafter;

KT0 = E{
◦
T 0(ω)

◦
T ′

0(ω)}
is the a priori known covariance (N + 1) × (N + 1) matrix of random initial temperatures T0(ω) of the
thermal model elements;

• equations for the covariance vector KTTe(t) = E{
◦
T (t, ω)

◦
T e(ω)} and covariance matrix KΦT (t) =

E{
◦
Φ(ω)

◦
T ′(t, ω)} involved in (3):

H
dKTTe(t)

dt
+ B(T , t) · KTTe(t) = C(T , t) · V arTe, KTTe(t = 0) = 0, (4)

dKΦT (t)
dt

H + KΦT (t)B′(T , t) = KΦ, KΦT (t = 0) = 0, (5)

where KΦ is a diagonal matrix with elements equal to variances of powers of the internal heat sources
V arΦi(t), i = 1, 2, . . . , N + 1;

JOURNAL OF ENGINEERING THERMOPHYSICS Vol. 26 No. 1 2017



INTERVAL-STOCHASTIC THERMAL PROCESSES IN ELECTRONIC SYSTEMS 33

• equation for the matrix Mk(t) = E{
◦
dk(ω)

◦
T ′

k(t, ω)} defining the matrix F (T , t) =
N+1∑

k=1

T k(t) ·

Mk(t) involved in (3):

dMk(t)
dt

H + Mk(t)B′(T , t) = Lk(T , t), Mk(t = 0) = 0, (6)

where Lk(T , t) = E{
◦
dk(ω)T (t)

◦
D(ω)} is an (N + 1) × (N + 1) matrix with elements equal to linear

functions of variances V argij of random quantities
◦
gij(ω), i, j = 1, 2, . . . , N , and sought-for temper-

ature expectations T 1(t), T 2(t), . . . , TN+1(t). Elements of the matrix L
(
kT , t) are determined from the

known initial data for the random quantities
◦
gij(ω) and are calculated for each particular ES design.

Thus, the statistical measures of stochastic temperatures of the elements Ti(t, ω), i = 1, 2, . . . , N +
1, of the thermal ES model, namely, the mean vector T (t) and the covariance matrix KTT (t), are
determined via solving differential matrix equations (2)–(6). At that, to obtain the solution with respect
to the covariance matrix KTT (t), one has to solve also differential matrix equations for the covariance
vector KTTe(t) (4), covariance matrix KΦT (t) (5), and matrix Mk(t) (6) to find from it the matrix F (T , t).
The numerical solution to the obtained equations can be obtained by any sufficiently accurate method
(e.g., by Runge–Kutta method). Determination of the desired statistical measures for all ES elements
at each time is easily programmable and does not require much computer time and RAM.

4. A PRACTICAL MODELING EXAMPLE

We will consider the developed mathematical methods and models using, as an example, ES (Fig. 1a)
as an example, which represents an integrated microcircuit (IC) in a TQFP-32 package, the IC being
soldered to a multilayer printed circuit board (PCB). The power consumed by the IC is dissipated in heat
that is transported by conduction into the multilayer PCB structure via the IC package leads soldered
to the PCB, and through the air gap between the IC and the PCB, and then spreads over the multilayer
PCB structure. There occurs heat transfer from the surfaces of PCB and IC package to the environment
as a result of convection (natural) and radiation. Parameters of the thermal process in the ES, such
as thickness of the air gap between the IC and the PCB, IC power consumption, and temperature of

Fig. 1. Electronic system: (a) the integrated microcircuit (IC) welded to the printed circuit board (PCB); (b) its
equivalent thermal circuit.
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ES environment, vary from sample to sample (in a batch of “identical” ESs) and may take any values
within their variation intervals whose width is caused by statistical spread of the adopted technology
of IC production and mounting. The interval uncertainty of the input factors determines the interval
character of the thermal processes in ES. Dynamics of development of the interval thermal processes and
the values of boundaries of their variation at each time instant is determined by the obtained equations
(2)–(6).

The interval-stochastic determining parameters of the thermal processes in ES are IC consumption
power P (ω), thickness δ(ω) of the air gap between IC and PCB, and ES environment temperature
Ta(ω). The stochastic mathematical model describing the nonstationary interval-stochastic thermal
processes in the thermal model of ES (Fig. 1b), namely, the nonstationary interval-stochastic temper-
atures of the IC package Tc(t, ω), PCB pad under the IC package Ts(t, ω), and PCB Tp(t, ω), has the
following form ((t, ω) ∈ [0, τ ] × Ω):

hc
dTc(t, ω)

dt
+ Jca(Tc, Ta, t, ω) + Jcs(Tc, Ts, g, t, ω) = P (ω),

hs
dTs(t, ω)

dt
+ Jsp(Ts, Tp, t, ω) − Jcs(Tc, Ts, g, t, ω) = 0,

hp
dTp(t, ω)

dt
+ Jpa(Tp, Ta, t, ω) − Jsp(Ts, Tp, t, ω) = 0,

where hc = ρcccVc is the total heat capacity of the IC package of volume Vc, density ρc, and specific
heat capacity cc; hs = ρscsVs is the total heat capacity of the board pad under the IC of volume Vs,
density ρs, and specific heat capacity cs; hp = ρpcpVp is the total heat capacity of the board of volume
Vp, density ρp, and specific heat capacity cp; g(ω) = λgapSc/δ(ω) is the conduction conductivity of the
IC–PCB gap, δ(ω) is the random value of the gap thickness, λgap is the heat conductivity of the material
in the gap (in our case, air), Sc is the gap area equal to the area of the IC package base turned to the
board; Jsp(Ts, Tp, t, ω) is the heat flow of spread over the PCB; Jc(p)a(Tc(p), Ta, t, ω) = Jconv

c(p)a + Jrad
c(p)a

is the summarized heat flow of convection (natural) and radiation from the IC (PCB) package into the
environment; Jcs(Tc, Ts, t, ω) = Jcond

cs,lead + Jcond
cs,gap is the summarized heat flow of convective heat transfer

from the IC to the PCB via the package leads and the air gap.
The heat flows of natural convection, radiation, and conduction have the following form [6]:

Jconv
c(p)a = a1(Tc(p) − Ta)5/4, Jrad

c(p)a = a2(T 4
c(p) − J4

a),

Jcond
cs,lead = λleadSleadNlead(Tc − Ts)/llead, Jcond

cs,gap = g(ω)(Tc − Ts),

where a1 is a coefficient proportional to area of the heat-transferring surface of the IC (PCB) package
and the coefficient of natural convection heat transfer to the medium (by the 1/4 law); a2 is a coefficient
proportional to area of the heat-transferring surface of the IC (PCB) package, emissivity, and angular
irradiance coefficient; llead, λlead, Slead, and Nlead are length, thermal conduction, section area, and the
number of IC package leads, respectively.

By virtue of the nonlinear dependence of the heat flows on temperature of the ES elements and the
environment, and also the stochastic gap conductivity g(ω), these dependences have to be linearized

with respect to the centered stochastic temperatures
◦
T c(t, ω),

◦
T s(t, ω),

◦
T p(t, ω),

◦
T a(ω), and the heat

conductive conductivity
◦
g(ω) according to the method [2]. As a result, instead of the initial equations of

the mathematical model we obtain the following linear stochastic equations with respect to the centered
stochastic temperatures Tc(t, ω), Ts(t, ω), and Tp(t, ω):

hc
dTc(t, ω)

dt
+ Jca + Jcs + f1

◦
T c(t, ω) + f2

◦
T s(t, ω) + f3

◦
T a(ω) + f4

◦
g(ω) = P (ω),
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hs
dTs(t, ω)

dt
+ Jsp − Jcs + f5

◦
T c(t, ω) + f6

◦
T s(t, ω) + f7

◦
T p(t, ω) + f8

◦
T a(ω) + f9

◦
g(ω) = 0,

hp
dTp(t, ω)

dt
+ Jpa − Jsp + f10

◦
T s(t, ω) + f11

◦
T p(t, ω) + f12

◦
T a(ω) = 0,

where fk = φ(T c(t), T s(t), T p(t), g, t) and J ca(cs,sp) = ϕ(T c(t), T s(t), T p(t), g, t) are functions of mean
temperatures T c(t), T s(t), T p(t) and heat conduction of the gap g.

The latter equations can be written in the form of matrix equation:

H
dT (t, ω)

dt
+ F (T , t) + A(T , t)

◦
T (t, ω) + D(T , t)

◦
g(ω) + B(T , t)

◦
T a(ω) = P (ω)I1,

with the initial condition

T (0, ω) = Ta(ω)I4,

where T (t, ω) = (Tc(t, ω), Ts(t, ω), Tp(t, ω))′ is a stochastic temperature vector; T (t) = (T c(t), T s(t),

T p(t))′ is a vector of mean stochastic temperatures;
◦
T (t, ω) = T (t, ω) − T (t) = (

◦
T c(t, ω),

◦
T s(t, ω),

◦
T p(t, ω))′ is a vector of centered temperatures; H is a diagonal matrix with elements arranged along
diagonal hc, hs, hp; F (t) = (Jca + J cs, Jsp − Jcs, Jpa + Jsp)′ is a heat flow vector; A(T , t) is a square
matrix equal to

A(T , t) =

⎛

⎜
⎜⎜
⎝

f1 f2 0

f5 f6 f7

0 f10 f11

⎞

⎟
⎟⎟
⎠

;

D(T , t) = (f4, f9, 0)′, D(T , t) = (f3, f8, f12)′, I1 = (100)′, I4 = (111)′ are vectors; ( · )′ denotes trans-
pose operation.

Applying to the obtained matrix equation the expectation operator, obtain equations for finding the
expectation temperatures T c(t), T s(t), T p(t) (P is mathematical expectation of the IC consumption
power):

H
dT (t)

dt
+ F (T , t) = PI1, T (0) = T aI4.

The matrix equation for the covariance matrix KTT (t) whose diagonal elements are equal to
temperature variances V arTc(t), V arTs(t), V arTp(t) has the form:

dKTT (t)
dt

+ H−1AKTT (t) + KTT (t)A′H−1 = −H−1DK1(t) − H−1BK2(t) + H−1I1K3(t)

−K ′
1(t)D

′H−1 − K ′
2(t)B

′H−1 + K ′
3(t)I

′
1H

−1, KTT (0) = V arTaI4I
′
4,

where V arTa is the given variance of stochastic environmental temperature; K1(t), K2(t), and
K3(t) are vectors being, respectively, the first, second and third rows of the covariance matrix

KTG(t) = E{
◦
G(ω)

◦
T ′(t, ω)} between stochastic vectors of the input determining factors

◦
G(ω) =

(
◦
g(ω),

◦
T a(ω),

◦
P (ω))′ of the thermal process in the ES, and centered temperatures

◦
T (t, ω) = (

◦
T c(t, ω),

◦
T s(t, ω),

◦
T p(t, ω))′ of the ES elements.
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The covariance matrix KTG(t) = (K1(t),K2(t),K3(t))′ is determined from the following matrix
equation:

dKTG(t)
dt

+ KTG(t)A′H−1

= −V argI1D
′H−1 − V arTaI2B

′H−1 + V arP I3I
′
1H

−1, KTG(0) = V arTaI2I
′
4,

where V arg, V arTa, and V arP , are the known variances of the input interval-stochastic parameters,
namely, heat conductivity of the gap, environment temperature, and IC power, respectively; I2 = (010)′,
I3 = (001)′.

The obtained matrix equations with the corresponding initial conditions completely define the
sought-for statistical measures of stochastic temperatures Tc(t, ω), Ts(t, ω), Tp(t, ω): the mathematical
expectations T c(t), T s(t), T p(t), the variances V arTc(t), V arTs(t), V arTp(t), the mean square devia-
tions σTc(t), σTs(t), σTp(t), and also the covariances between different stochastic temperatures. Having
found from the solution of these equations the statistical measures of stochastic temperatures, we will
find the lower TBot,i(t) and upper TUp,i(t) boundaries of intervals [TBot,i(t), TUp,i(t)], which will include
the real values of temperatures Ti(t, ω) of the ES elements (i = c, s, p), i.e., TBot,i(t) = T i(t)−χ · σT i(t)
and TUp,i(t) = T i(t) + χ · σT i(t).

The calculations of the nonstationary statistical measures by the given equations were performed
by Runge–Kutta method on PC (Core 2, CPU 3.2 GHz) and the computation time for the ES under
consideration was less than several seconds. The initial data for variations of the interval-stochastic
parameters were: σP /P = 4% for the IC consumption power, σδ/δ = 29% for thickness of the air gap
between IC package and the PCB, and ΔTa/T a = 2.5% for the environment temperature.

The calculated results that refer to the nonstationary statistical measures of temperature of the
IC package, Tc(t, ω), are shown in Fig. 2 (mathematical expectation), Fig. 3 (variance), and Fig. 4
real temperature variation interval). Dynamics of the thermal process evolution in the ES under
consideration (Figs. 2, 3, and 4) is shown for the first 20 s; at that the thermal process proper reaches the
steady regime during about 2.5 min. The boundaries of the real temperature variation intervals (Fig. 4)
were calculated with χ = 3 for which the probability of detecting values of temperature Tc(t, ω) beyond
the interval [TBot,c(t), TUp,c(t)], according to Chebyshev inequality, is less than 1/9.

Fig. 2. Nonstationary mathematical expectation (◦C) of stochastic temperature of the IC package.
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Fig. 3. Nonstationary variance (◦C2) of stochastic IC package temperature.

Fig. 4. Nonstationary variation interval of real IC package temperature (◦C).

It follows from the obtained dependences that in the steady regime the mathematical expectation
if IC package temperature will be 75.5◦C, whereas the real steady temperature of the package will be
within the interval [101.7◦C, 125.7◦C] whose width is 24◦C (Fig. 4). In other words, steady temperature
of the IC package Tc(ω) for functioning of the real ESs may have any value from the interval Tc(ω) ∈
[62.6◦C, 83.1◦C]; at that, the probability to observe in real ESs temperature values beyond (higher or
lower) this interval will be less than 0.1. The steady value of the variance of MC package temperature
(Fig. 3) is V arTc = 12.1◦C2 and sets during about 2.5 min.

The found interval temperature values are significant for thermal ES design because they allow one
to predict (at the stage of design) the range of temperature between its highest and least values that will
occur in practice in during real ES functioning; moreover, they allow more reliable evaluation of electrical
and reliability characteristics of the designed ES.
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5. CONCLUSIONS

The method of mathematical modeling the interval-stochastic thermal processes in ES, which has
been developed in the present paper and in [2], allows calculations of time variations of intervals of real
temperature values of the ES elements. The method has no analogs in the foreign and domestic practice
of thermal ES design. It considers the nonstationary, nonlinear and interval-stochastic character of
thermal processes in ESs. For modeling the stochastic thermal processes in ESs we have developed
a method that enables one to find equations for nonstationary statistical measures of stochastic
temperature distributions of ES elements, namely, mathematical expectations, variances, covariances
between ES element temperatures. The finite equations for statistical measures of temperatures of the
ES elements are nonstationary, nonlinear differential equations in ordinary first-order derivatives, which
can easily be solved on current-technology computers. The method developed in this paper is applied in
practice for modeling and thermal design of electronic systems. It has proved its adequacy in creation of
state-of-the-art competitive electronic systems.
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