
ISSN 1810-2328, Journal of Engineering Thermophysics, 2016, Vol. 25, No. 4, pp. 509–519. c© Pleiades Publishing, Ltd., 2016.

Laminar Free Convection Heat Transfer Between Vertical
Isothermal Plates

V. I. Terekhov1, 2*, A. L. Ekaid3, and K. F. Yassin2, 4

1Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences,
pr. Akad. Lavrent’eva 1, Novosibirsk, 630090 Russia

2Novosibirsk State Technical University, pr. K. Marksa 20, Novosibirsk, 630092 Russia
3University of Technology, Baghdad, Iraq

4Technical Institute Hawija, Northern Technical University, Kirkuk, Iraq
Received June 8, 2016

Abstract—The paper represents results on numerical investigation of flow and heat transfer between
two isothermal vertical plates under laminar natural convection. A system of complete Navier–
Stokes equations is solved for a two-dimensional gas flow between the plates along with additional
rectangular regions (connected to inlet and outlet sections), whose characteristic sizes are much
greater than the spacing between the plates. The calculations were performed over very wide
ranges of Rayleigh number Ra = 10÷ 105 and a relative channel length AR = L/w = 1÷ 500. The
influence of the input parameters on the gas-dynamic and thermal structure of thermogravitational
convection, the local and mean heat transfer, and also the gas flow rate between the plates
(convective draft. We determined sizes of the regions and regime parameters when the local heat
flux on the walls tends to zero due to the gas temperature approach to the surface temperature. It
is shown that the mean heat transfer decreases as the relative channel length AR grows, whereas
the integral gas flow rate (convective draft) and Reynolds number in the channel Re = 2wUm/ν
increase. The use of a modified Rayleigh number Ra∗ = Ra · (w/L) (Elenbaas number) leads to
generalization of calculation data on mean heat transfer. These data are in good agreement with the
correlations for heat transfer [1, 2] and gas flow rate [3]. The reasons of variation of the data in the
range of low Rayleigh numbers are discussed in detail.

DOI: 10.1134/S1810232816040081

INTRODUCTION

The study of natural convection in vertical channels is important in many engineering applications,
e.g., in cooling of electric and electronic equipments, in nuclear reactors, ventilation systems of
buildings, and also in various power devices. To increase the efficiency of cooling of equipments and
develop the fundamentals of free convection flows, an important stage is to conduct complex calculation
investigations of new possibilities to intensify heat and mass transfer or increase the gas flow rate
between the plates over a wide range of parameters.

Interest to this problem has aroused long ago. The problem on laminar and turbulent free convection
between two parallel plates has become classical by now and is covered in a great deal of theoretical
and experimental works among which we can mark [1–8]. With a small channel length the boundary
layers develop independently on each wall and the flow is similar to natural convection on a vertical plate
in an infinite volume. On the contrary, for long-length plates the boundary layers finally merge and the
flow becomes fully developed. The use of superposition of these two limiting cases of the flow between
the plates has allowed the authors of [1, 2] to obtain simple engineering formulas for determining the
optimal spacing between the plates to attain the maximal gas flow rate or heat transfer.

However, further investigations [9–13] have shown that such limiting cases are not usually observed
in the real conditions. A rough approximation is also the condition of equality of the pressure difference
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between inlet and outlet to buoyancy forces of temperature stratification without regard to the real
gas density distribution both in height and width of the channel. All that considerably complicates
the problem, hence, solving numerically the Navier–Stokes problem is in this case the most suitable
method for analyzing the flow and heat transfer between the plates for both laminar and turbulent flows.
Recently, interest to this problem is revived. This is caused primarily by requirements of practice for such
significant devices as solar collectors, Trombe walls, ventilated facades of buildings. Understanding of
the flow structure in elements of this equipments can significantly improve their construction and, hence,
their operational characteristics.

STATEMENT OF THE PROBLEM. BOUNDARY CONDITIONS.
SOLUTION PROCEDURE

A schematic of the problem is shown in Fig. 1. Two vertical plates with a height L were spaced at
a distance w from each other. Their stretch parameter varied in the calculations in a wide range AR =
L/w = 1 ÷ 500. Temperatures of the plates was maintained constant and their values coincided TC =
TH = TW , so that the nonisothermality parameter characterizing the ratio of temperature differences on
a hot wall and cold walls RT = (TC − T0)/(TH − T0) was RT = 1. The ambient air temperature in the
neighborhood of the inlet and outlet from the plates was the same and it was always lower than that of the
walls, T0 < TW . Convective motion between the plates was due to thermogravitational forces caused by
heating of the plates. The numerical solution was obtained for the case of free air convection with Prandtl
number Pr = 0.71. The Rayleigh number varied over a wide range Ra = 10 ÷ 105.

The numerical investigations were performed via solving two-dimensional Navier–Stokes equations
and an energy equation in Boussinesq approximation.
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Fig. 1. (a) A schematic of the flow; (b) computation domain.
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The system of equations (1)–(4) was solved in dimensionless form with the following variables:

X,Y =
x, y

w
, U, V =

u, v

uref
, P =

p

u2
ref

, θ =
T − T0

TH − T0
,

uref =
√

gβ(TH − T0)w, Ra =
ρ2gβ(TH − T0)w2Pr

μ2
, Pr =

ν

α
, A =

L

w
.

(5)

The flow field parameters are characterized by Reynolds number

Re =
ρV 2w

μ
= 2Vm

√
Ra
Pr

, (6)

where Vm is the mean velocity between the plates,

Vm =

−1∫
0

V dX. (7)

The local Nusselt number is defined as:

NuH =
∂θ

∂X

∣∣∣∣
X=0

, (8)

and the mean Nusselt number along channel length is defined as:

NuH =
1
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A∫
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NuHdY. (9)

Thermal balance of the flow in the channel yields the following expressions for integral Nusselt
number on both walls:
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The integral heat transfer value on both cold and hot plates was also found by summing up the heat
fluxes by relation (9). At that, the difference between the results of calculation and thermal balance (10)
was under 0.4%.

NUMERICAL METHOD

To discretize the governing equations we use the finite volume method. The system of algebraic
equations is solved by a sweep method implicitly by a linear Gaussian elimination scheme. To ap-
proximate convection terms in the equations of motion and energy we used the reverse flow scheme.
A computer program was designed to obtain numerical results using pressure–velocity conjugation
(SIMPLE algorithm) [14]. Due to this rigid conjugation and nonlinearity of the equations, to provide
convergence a relaxation procedure is needed. The relaxation multipliers are used for components
of velocity, temperature, and pressure, 0.5, 0.8, and 0.7, respectively. To speed up convergence, the
relaxation coefficients have to be chosen for each of the cases [14]. The convergence criterion in
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Table

Boundary conditions U V θ

AB and LK ∂U/∂X = 0.0 V = 0.0 ∂θ/∂X = 0.0

EF and GH ∂U/∂X = 0.0 V = 0.0 θ = 0.0

FG U = 0.0 ∂V/∂Y = 0.0 θ = 0.0

AL U = 0.0 ∂V/∂Y = 0.0 ∂θ/∂Y = 0.0

CD U = 0.0 V = 0.0 θ = 1.0

IJ U = 0.0 V = 0.0 θ = RT

BC, DE, JK and HI U = 0.0 V = 0.0 ∂θ/∂Y = 0.0

each of them was determined as (Φi+1 − Φi)/Φi ≤ 10−5, where Φ is the independent variable under
consideration and i is iteration number. In addition, the normalized remainders for the equations of
mass, momentum, and energy conservation in the complete flow field have to be under 10−3. For our
calculations we developed a structured nonuniform mesh in Cartesian coordinates. To ensure accuracy
of numerical results, we investigated the effect of mesh sizes on the calculated results. The calculation
mesh size at the walls and in the inlet and outlet regions decreased by the power law. Between the
plates in the main series of calculations we used a (30 × 60) mesh that, compared to a (60 × 120) mesh,
yielded an error of less than 3% to provide accurate numerical results, the effect of the mesh sizes on the
calculation results was investigated. The sizes of regions adjacent to inlet and outlet were also tested.
The investigations have revealed that the optimal sizes of these regions are Lx = (L + w) and LY = L.
This issue is represented in more detail in [11, 12].

The boundary-value problem has unknown conditions at the inlet and outlet between the plates.
For this reason, besides the space between the plates the calculation region includes two additional
rectangles at the channel inlet and outlet with soft boundary conditions at the boundaries (Fig. 1b). The
optimal size of the regions and the number of calculation nodes were determined in a series of numerical
experiments and verifications on experimental data obtained in simpler conditions. As a rule, the linear
size of the inlet and outlet regions was not smaller than the height of the plate L. Description of dynamic
and thermal conditions at the boundaries is given in the table. The issue of testing the numeric code is
represented in detail in [12, 15, 16].

RESULTS OF INVESTIGATIONS AND DISCUSSION

Figure 2 illustrates variation of longitudinal velocity and temperature along channel height at fixed
values of Rayleigh number Ra = 1000 and interlayer height AR = 10. We should note that development
of the flow is identical in many ways to a flow in a tube with the initial area being gradually transformed
into a stabilized one. At that, due to formation of the vacuum space over the entire channel cross-section,
in the wall region there is no velocity bend profile that is characteristic for free convection near a single
vertical plate. In this case, already at the inlet section the velocity value near the axis reaches larger
values.

At the channel outlet, as is clearly seen in Fig. 2a, the velocity profile becomes asymmetrical relative
to the vertical axis. A possible reason of this behavior of the velocities is formation of a reverse flow due
to reversal of external heavy liquid mass into the channel, as was noted in experiments and calculations
of [5]. This is supported by results of the numerical investigations [12, 16]; however, this issue requires
special study and does not be considered in the present paper.

Figure 2b illustrates the behavior of the profiles of dimensionless temperatures θ along the channel
height. Development of the thermal field in the channel is demonstrated by computer visualization in
Fig. 2c. For the considered conditions (Ra = 1000 and AR = 10) the temperature boundary layers
merge even to y/w ∼ 2.5 calibres and toward the channel outlet the flow becomes strongly heated and
the temperature on the axis approaches its value on the wall.

JOURNAL OF ENGINEERING THERMOPHYSICS Vol. 25 No. 4 2016



LAMINAR FREE CONVECTION HEAT TRANSFER 513

Fig. 2. Variation of (a) velocity and (b) temperature; (c) thermal visualization in channel height. AR = 10, Ra = 103.

Fig. 3. Variation of bulk temperature for channels of different length. Ra = 1000.

The temperature field between the plates develops differently than the dynamic one. At the channel
inlet its most part, except for wall regions, is occupied by a plateau with temperature of the environment,
where θ = 0. Then the flow is gradually heated so that its temperature becomes close to the value on the
wall and θ → 1. This is illustrated in Fig. 2b. Thus, toward the channel outlet the heat flow from the wall
to gas will decrease not only due to the growing thermal resistance of the boundary layer, but also due to
the decrease in the temperature difference between the channel surface and gas.

Variation of the relative bulk temperature along channels of different length is illustrated in Fig. 3.
For short channels (AR < 50) the ambient air has no time to heat up to the wall temperature, and the
bulk temperature θm < 1. As the channel length is increased, as follows from Fig. 3, increasingly more
and more part of it does not participate in the heat transfer process. Really, at the considered Rayleigh
number (Ra = 1000) the heat balance between the convective flow and the channel walls is attained
approximately in the middle of the channel for AR = 100, at that, its other half is eliminated from the
thermal process due to heating-up of the air. As the channel length is more and more increased, there
occurs growth of the “ballast” part of the channel.

Figure 4 illustrates the distribution of longitudinal velocity at the outlet section of channels of different
height. As the channel length increases more and more, the level of velocities increases due to growing
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Fig. 4. Velocity profiles at the outlet with varying plate length. Ra = 103.

Fig. 5. Variation of the local Nusselt number along channels of different length. Ra = 1000.

buoyancy forces whose value depends directly on the channel size. The calculations have shown that the
flow becomes stable quite quickly and, beginning from AR > 5, the velocity profiles become self-similar.

Figure 5 represents the calculation results as a variation of Nusselt number along channel height
versus different values of the stretch parameter AR. It is seen that in channels of different height
the number Nu changes more significantly; at that, for short channels the heat transfer intensity is
considerably higher than for long ones. It is important that regions adjacent to channel outlet and inlet
have a significant effect on the flow and heat transfer. In these zones, effects of flows around the channel
rib result in detached vortex flows leading to heat transfer intensification.

By integrating the local distributions of the heat transfer coefficient, shown in Fig. 5, we have
studied the behavior of mean heat transfer versus interlayer height and Rayleigh number. Such data
are represented in Fig. 6a. As we should expect, the mean heat transfer grows with increasing Ra
and considerably decreases for long-length channels. This is natural because the greatest part of short
channels is occupied by boundary layers of small thickness; moreover, the gas temperature inside long
channels rapidly reaches the wall temperature, hence the heat fluxes tend to zero. The greatest effect of
the channel geometry (∼ 3 orders of magnitude) is observed at low Rayleigh numbers.
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Fig. 6. Mean heat transfer (a) and Re number in the channel (b) versus Rayleigh number and the parameter AR.

Fig. 7. Mean heat transfer (a) and Reynolds number (b) versus interlayer height.

The reverse situation is observed for gas flow rate inside the channel. This fact can be seen clearly in
Fig. 6b, where the number Re = 2Umw/ν characterizes the gas flow rate in the interlayer and it does not
change in the channel length. At low Rayleigh numbers the gas flow rate through the channel does not
practically depend on its height, and as the parameter AR and the number Ra grow the air draft due to
the buoyancy forces increases, which also corresponds to physics of the process.

The effect of the interlayer geometry on the heat transfer intensity and Reynolds number is most
clearly demonstrated in Fig. 7. As Fig. 7a shows, the integral heat transfer decreases over the whole
range of Rayleigh numbers as the channel length grows. However, the rate of the decrease in the range
of high Rayleigh numbers is not as high as for low Ra. The explanation is the fact that a significant
part of the log-length channels is occupied by the region with an extremely low heat transfer level (for
example, see Fig. 5) while the size of the zone with efficient heat transfer remains practically the same
for channels of different length.

The behavior of Reynolds number in the channel versus channel length is complicated (see Fig. 7b).
At low Rayleigh numbers (Ra < 103) the growth of thermogravitational forces due to increasing heat
transfer surface is compensated for friction losses. For this reason, in this range of Ra numbers the gas
flow rate through the channel does not practically depend on its height. Moreover, for small lengths
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(AR < 10) it is first observed a slightly decreasing gas flow rate, but then it is stabilized. In the range
of large Rayleigh numbers (Ra > 103) the gas flow rate through the channel grows with increasing
channel height, which evidences the predominant effect of the buoyancy forces versus friction. The
mentioned peculiarities in the behavior of the thermal and dynamic characteristics with varying level
of thermogravitational forces are important in optimization analysis of channels with parallel walls of
different length.

MODIFIED RAYLEIGH NUMBER. GENERAL RESULTS

Generalizing the results of the numerical and physical experiments on heat transfer in vertical
channels of different length, Elenbaas [1] was the first to use the modified Rayleigh number that considers
the channel length scale:

Ra∗ = Ra · w/L. (11)

Using the modified Rayleigh number Ra∗, Elenbaas [1] obtained the general expression for integral
Nusselt number for channels of different length:

Nuav = 1/24 · Ra∗[1 − exp(35/Ra)∗]3/4. (12)

Bar-Cohen and Rohsenow [2] using the solution sewing method for free convection on the initial
channel part and for a fully developed flow at a constant wall temperature have obtained the relation for
integral heat dissipation in the function of modified Rayleigh number:

Nuav = [576Ra∗2 + 2.83/
√

Ra∗]−1/2. (13)

Results of the calculations by formulas (12) and (13) are represented in Fig. 8. The both dependences
are sufficiently close to each other in a very wide range of Rayleigh numbers Ra∗ = 10−2 ÷ 105. The
data of numerical calculations of the present work are also in good agreement. The results obtained for
interlayers of all lengths at low Rayleigh numbers are the exception. A possible reason of such behavior of
the heat transfer regularities is transition to asymptotic limit [13], which is observed at Rayleigh numbers
tending to Ra → 0.

Figure 9 demonstrates variation of Reynolds number in channels of different length versus modified
Rayleigh number. Contrary to the integral heat transfer, the use of Elenbaas parameter Ra∗ does not
lead to generalization of the calculation data and all the data are laminated depending on the channel
height. And, as we should expect, in higher channels the air flow rate due to free convection grows.

Fig. 8. Generalization of calculation data on mean heat transfer versus modified Rayleigh number Ra∗.
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Fig. 9. The influence of Rayleigh number on the natural convective draft in channels of different length.

Fig. 10. Mean Nusselt number versus Reynolds number in vertical channels in the natural convection regime.

This fact was noted by Olsson in investigation [3], where the author performed detailed analysis and
based on the method used in [2] for heat transfer obtained calculation relationships for Reynolds number
for free laminar convection in a vertical channel with parallel walls. Under condition of a constant wall
temperature the expression for Reynolds number looks as

Re = 2/Pr · [(4Ra∗ · Pr · AR/fapp)−0.405 + (6.6 · Ra∗ · Pr1/4 · AR0.81)−1]−1/0.81, (14)

where fapp is the effective friction coefficient determined in [3] according to conclusions of the theory of
laminar flow in ducts [17].

The results of calculations by formula (14) for the length parameters AR = 10 and 100 are repre-
sented in Fig. 9 by dashed lines. As it follows from the correlations, these lines absolutely agree with
results of calculations of the present study over the whole range of Rayleigh number; this supports the
possibility of using the approximate methods [3] for describing the hydrodynamics in vertical ducts in
the regime of free convection.
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Fig. 11. Integral heat transfer in vertical channels versus modified Reynolds number. The designation correspond to
Fig. 10.

The calculation data on mean heat transfer versus Reynolds number in the channel are represented in
Fig. 10. Thereby all the obtained data were considered in terms of the forced convection laws regardless
of the causes of convection flow. As is seen, in such processing, the calculation results obtained for
channels of different length are not generalized. This behavior of the mean Nusselt number is explained
by the presence of zones with lower heat transfer and by their different contribution to the integral
heat transfer with varying channel length. Moreover, in Fig. 10, one clearly observes the regularity
Nu ∼ Re0.5 in the region of low Reynolds numbers and Nu ∼ Re0.8 in the region of high ones, though
this behavior of heat transfer has no bearing on the heat transfer.

Further attempts to generalize the data of the numerical investigation were based on using the
modified Reynolds number. By analogy with Rayleigh number, the modified Reynolds number was
calculated with regard to the interlayer stretch parameter Re∗ = Re · (w/L). The use of such a pa-
rameter considerably groups the calculation data. This is seen in Fig. 11 that represents results of
such processing. Here the behavior of the data is similar to that in Fig. 8 where we also observe
adequate generalization of results except for the region of low Rayleigh numbers and with large channel
lengths. This region of thermogravitational convection has some special features and requires special
consideration. This implication is supported by conclusions of [11].

CONCLUSIONS
We have represented results of the numerical investigation of the flow and heat transfer between two

isothermal vertical plates under laminar natural convection. The calculations were performed in a wide
range of Rayleigh number Ra = 10 ÷ 105 and relative channel length AR = L/w = 1 ÷ 500. We have
analyzed the effect of these parameters on the gas-dynamic and thermal structure of thermogravitational
convection, the local and mean heat transfer, and also on the gas flow rate between the plates (convective
draft).

We have found the ranges of the regions and regime parameters when the local heat flux on the walls
tends to zero due approach of the gas temperature to surface temperature. It has been shown that the
mean heat transfer decreases as the relative channel length AR grows whereas the integral gas flow rate
(convective draft) and the Reynolds number in the channel, Re = 2wUm/ν, grow.

The use of the modified Rayleigh number Ra∗ = Ra · (w/L) results in generalization of the calcula-
tion data on mean heat transfer. These data are in good agreement with the correlations for heat transfer
[1, 2] and gas flow rate [3]. The cases of low Rayleigh numbers when the asymptotic behavior of the heat
transfer coefficient is observed are the only exception. Similarly looks the data representation in the form
of integral heat transfer versus modified Reynolds number.
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NOTATIONS

AR = L/w—aspect ratio
L—channel height
w—spacing between plates, mm
Nu = 2αw/λ—Nusselt number
Ra = gβ(T0 − Tw)w3/aν—Rayleigh number
Ra′ = Raw/L—modified Rayleigh number
Re = 2Um · w/ν—Reynolds number
x, y—longitudinal and vertical coordinates, mm
Um—bulk velocity in the channel, m/s
α—heat transfer coefficient, W/(m2·K)
λ—thermal conductivity coefficient, W/(m·K)
ν—kinematic viscosity, m2/s
ρ—density, kg/m3
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