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5-Lipoxygenase Inhibitor Zileuton Inhibits Ca2+-Responses 
Induced by Glutoxim and Molixan in Macrophages
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Abstract—Using Fura-2AM microfluorimetry, we have shown for the first time that 5-lipoxygenase specific
inhibitor antiasthmatic agent zileuton significantly inhibits Ca2+-responses induced by glutoxim and molixan
in macrophages. The results support 5-lipoxygenase involvement in the effect of glutoxim and molixan on
intracellular Ca2+ concentration in macrophages and indicate the inadvisability of a combined use of drugs
glutoxim and molixan and antiasthmatic agent zileuton.
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Disulfide-containing drugs Glutoxim® (G, diso-
dium salt of oxidized glutathione (GSSG) with d-
metal at a nanoconcentration; PHARMA-VAM, Rus-
sia) and Molixan® (M, complex of glutoxim with
nucleoside inosine, PHARMA-VAM) are used as
broad-spectrum immunomodulators and hemostimu-
lants in complex therapy of bacterial and viral diseases
and psoriasis as well as in radiation and chemotherapy
in oncology [1].

Previously we have first discovered that G and M
increase the intracellular concentration of Ca2+

([Ca2+]i), causing Ca2+ mobilization from the
thapsigargin-sensitive Ca2+ stores and subsequent
store-dependent Ca2+ entry into rat peritoneal macro-
phages [2, 3]. In addition, we have previously shown
that the complex signaling cascade triggered by G or
M in macrophages involves phospholipase A2 (the key
enzyme of arachidonic acid (AA) metabolism) [4] as
well as the enzymes and/or products of the cyclooxy-
genase and lipoxygenase [5] and epoxygenase [6]
pathways of AA oxidation.

The enzymes involved in the AA metabolism are
the targets of a wide range of natural and synthetic
pharmaceuticals. Such compounds are an important
tool to study the role of AA itself and its enzymatic oxi-
dation products in intracellular signaling processes. In
addition, many pharmaceuticals that inhibit AA
metabolism are currently widely used in medical prac-
tice for treatment of many inflammatory, allergic, and
infectious diseases [7]. For example, it is long known
that the products of the 5-lipoxygenase pathway of AA
oxidation (leukotrienes) play an important role in the

pathogenesis of asthma [8]. The first specific 5-lipoxy-
genase inhibitor used for chronic asthma therapy was
the drug zileuton (N-[1-(1-benzothien-2-yl)ethyl]-
N-hydroxyurea, Zyflo®) [9]. Zileuton reduces the
formation of sulfodipeptide leukotrienes and leuko-
triene B4, has a bronchodilator effect, and prevents the
development of bronchospasms caused by cold air and
aspirin [10]. In addition, there is evidence of the effec-
tiveness of this antileukotriene drug in the treatment of
acne [11].

Since the triggering of the lipoxygenase pathway of
AA oxidation plays an important role in macrophage
activation, it seemed relevant to study the effect of the
specific 5-lipoxygenase inhibitor zileuton on the
Ca2+-response induced by G and M in macrophages.
This was the subject of this paper.

Experiments were performed on cultured resident
peritoneal macrophages of Wistar rats at room tem-
perature (20–22°C) 1–2 days after the beginning of
cell culturing. The macrophage cultivation procedure
and the automated device for measuring [Ca2+]i on the
basis of Leica DM 4000B fluorescent microscope
(Leica Microsystems, Germany) were described in
detail previously [6]. To measure [Ca2+]i we used the
fluorescent probe Fura-2AM (Sigma-Aldrich, United
States). Fluorescence of the object was exited at wave-
lengths of 340 and 380 nm, and emission was detected
at 510 nm. To prevent photobleaching, measurements
were performed every 20 s, irradiating the objects
for 2 s. The [Ca2+]i values were calculated from the
Grynkiewicz equation [12]. Data were statistically
processed using Student’s t test. The figures show the
results of typical experiments. Data are presented as
the plots showing the changes in the ratio of Fura-
2AM fluorescence intensities at excitation wave-
lengths of 340 and 380 nm (F340/F380 ratio) over time,
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reflecting the dynamics of changes in [Ca2+]i in cells
depending on the measurement time [13].

In the control experiments, it was shown that the
incubation of macrophages for 25 min in the pres-

ence of 100 μg/mL of G (Fig. 1a) or 100 μg /mL of M
(Fig. 2a) in a calcium-free medium caused a slow
increase in [Ca2+]i, reflecting the mobilization of Ca2+

from the intracellular stores. On average, judging by

Fig. 1. Effect of zileuton on the glutoxim-induced [Ca2+]i increase in rat macrophages. Here and in Fig. 2, the ordinate axis shows
the ratio of the f luorescence intensities of Fura-2AM F340/F380 at excitation wavelengths of 340 and 380 nm, respectively (arb.
units). The abscissa axis shows time. (a) Cells were incubated for 25 min in the presence of 100 μg/mL glutoxim in nominally
calcium-free medium, after which Ca2+ entry was initiated by adding 2 mM Ca2+ to the incubation medium; zileuton (4 μM)
was added against the background of developing Ca2+ entry. (b) Macrophages were preincubated for 5 min with 1 μM zileuton
in a calcium-free medium, after which 100 μm/mL glutoxim was added, and 20 min later Ca2+ entry was initiated by adding
2 mM Ca2+ to the incubation medium. Each recording was obtained for a group of 40–50 cells and is a typical variant of six or
seven independent experiments.
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Fig. 2. Effect of zileuton on the molixan-induced [Ca2+]i increase in rat macrophages. (a) Macrophages were incubated for
25 min in the presence of 100 μg/mL molixan in a calcium-free medium, after which Ca2+ entry was initiated by adding 2 mM
Ca2+ to the culture medium; zileuton (4 μM) was added against the background of developing Ca2+ entry. (b) Cells were prein-
cubated for 5 min with 1 μM zileuton in a calcium-free medium, after which 100 μg/mL molixan was added, and 20 min later
Ca2+ entry was initiated by adding 2 mM Ca2+ to the incubation medium.
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the results of six experiments for each drug, 20 min
after the addition of agents, [Ca2+]i increased from the
basal level (92 ± 15 nM) to 142 ± 18 nM for G and
138 ± 19 nM for M. The addition of 2 mM Ca2+ to the
incubation medium caused a further increase in
[Ca2+]i, reflecting the entry of Ca2+ into the cytosol
(Figs. 1a, 2a). On average (according to the results of
six experiments for each drug), the increase in [Ca2+]i
during the Ca2+ entry was 228 ± 23 and 229 ± 21 nM
for G and M, respectively.

In our experiments, it was shown for the first time
that preincubation of macrophages with 1 µM zileuton
for 5 min before the addition of 100 µg/mL G caused
an almost complete (on average, according to the
results of seven experiments, by 79.2 ± 9.1%) inhi-
bition of Ca2+ mobilization from the stores and a
significant (on average, according to the results of
seven experiments, by 63.4 ±8.7%) inhibition of
subsequent Ca2+ entry into the cell induced by G
(Fig. 1b). Similar results were obtained in experi-
ments on the effect of 1 µM zileuton on Ca2+

responses induced by 100 µg/mL M (Fig. 2b). On
average, according to the results of seven experiments,
zileuton suppressed Ca2+ mobilization from the stores
by 67.5% and inhibited Ca2+ entry into the cell by
70.81%.

We also showed that the addition of 4 µM zileuton
against the background of developing Ca2+ entry
induced by G (Fig. 1a) or M (Fig. 2a) caused a signi-
ficant (on average, according to the results of 11 expe-
riments, by 45.9 ± 9.7%) inhibition of Ca2+ entry into
macrophages.

Thus, we have shown for the first time that zileuton
inhibits both phases of Ca2+-response induced by G or
M in macrophages. This is consistent with the sup-
pression of Ca2+-response in rat mast cells by 1 µM
zileuton [14, 15].

The results presented in this study confirm our ear-
lier data on the involvement of 5-lipoxygenase in the
complex signaling cascade triggered by G or M and
leading to an increase in [Ca2+]i in macrophages. Data
on the inhibition of developing Ca2+ entry by zileuton
indicate that 5-lipoxygenase is involved not only in

generation but also in maintaining the store-depen-
dent Ca2+ entry in macrophages.

The results also point to the inadvisability of com-
bined use of drugs G or M and the antiasthmatic agent
zileuton in clinical practice.
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