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Abstract—In the work we use integral formulas for calculating the monodromy data for the
Painlevé-2 equation. The perturbation theory for the auxiliary linear system is constructed and
formulas for the variation of the monodromy data are obtained. We also derive a formula for
solving the linearized Painlevé-2 equation based on the Fourier-type integral of the squared
solutions of the auxiliary linear system of equations.
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1. INTRODUCTION

We consider a scheme of the isomonodromic deformation method for the Painlevé-2 equation in
the following form:

u′′ = 2u3 + xu. (1.1)

The approach is based on the method of isomonodromic deformations developed in [1–3]
and [4]. Here we obtain integral formulas which allow us to use the method of the isomonodromic
deformations to study variations in the Stokes coefficients and derive a formula for a solution of
the linearized Panlevé equation:

v′′ = 6u2v + xv. (1.2)

The formulas obtained for solution of (1.2) use integrals of squared solutions to the auxiliary linear
problem. Such formulas for solutions of linearized equations are used widely for perturbations of
(1 + 1)-dimensional integrable equations by the inverse scattering transform method for the first
corrections of perturbation theory [5, 6] and for corrections from the continuous spectrum [7].
For (2 + 1)-dimensional integrable equations the formulas for linearized equations were obtained
in [8, 9]. Here we derive analogously formulas for the theory of integration of the linearized Painlevé-
2 equation. One of the examples for using the Painlevé-2 equation and its perturbation can be found
in [15], and another one, in [16].

The approach developed here allows us to study and to obtain formulas for the variations of the
Stokes constants, which are the parameters of the Painlevé transcendent. These formulas and the
formula for the solution of (1.2) open a way to study the properties of the linearized equation using
the global properties of the Painlevé transcendent.

The general structure of the paper is as follows. In Section 2, we present the Stokes theory for
solutions to the auxiliary system of equations and derive integral formulas for Stokes matrices.
In Section 3, integral formulas for the Painlevé-2 transcendent are obtained using the integral
representation of the solution to the Riemann –Hilbert problem for the auxiliary system of
equations. In Section 4, formulas for the variation of the Stokes multipliers are derived. Section 5
provides a formula for solving the linearized Painlevé-2 equation.
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2. INTEGRAL FORMULAS FOR THE STOKES MULTIPLIERS

In this section the integral formulas for solving the auxiliary system of equations for the
parameter λ are given according to the theory from [1, 2, 4]. These integral formulas are used
to obtain integral formulas for the Stokes multipliers of the auxiliary system of equations.

Consider an auxiliary system of equations that determines the dependence of the function Ψ on
the complex variable λ:

dΨ

dλ
= AΨ, A = −i(4λ2 + x+ 2u2)σ3 + 4uλσ1 − 2u′σ2. (2.1)

Here the notation for Pauli matrices is accepted:

σ1 =

⎛
⎝ 0 1

1 0

⎞
⎠ , σ2 =

⎛
⎝ 0 −i

i 0

⎞
⎠ , σ3 =

⎛
⎝ 1 0

0 −1

⎞
⎠ . (2.2)

In addition to the system of equations (2.1), the function Ψ satisfies the system of differential
equations for the real variable x:

dΨ

dx
= UΨ, U = −iλσ3 + uσ1. (2.3)

The Painlevé-2 equation provides a condition for the existence of a solution of both systems of
equations, (2.1) and (2.3) [10].

The solution of the system of equations (2.1) has the singular point at λ = ∞. The asymptotics
of the solution of this system for λ → ∞ can be constructed using the WKB [11] method in the
form:

Ψ∞ ∼
(
I +

∞∑
n=1

λ−nMn(u, u
′, x)

)
exp

(
− iΩ(λ)σ3

)
. (2.4)

The present formula yields a formal series representation for the matrix Ψ∞. The asymptotic
formula (2.4) uniquely determines the analytic solution within each sector for a single column of the
matrix Ψ. A key aspect of the Stokes phenomenon is the connection between asymptotic expansions
in different sectors. Below, we will discuss the sectors and corresponding asymptotic expansions in
detail.

In (2.4) Mn(u, u
′, x) is a matrix. To obtain the coefficients of Mn, one should substitute the

formula (2.4) into the system (2.1) and eliminate coefficients of power λ−k for any k. An explicit
form of such an asymptotic expansion was given in [1] up to order of λ−1. However, we need the
asymptotic expansion of third order in λ−1:

Ψ∞ ∼

⎛
⎝I +

1

2λ

⎛
⎝i(u2x− (u′)2 + u4) −iu

iu −i(u2 − (u′)2 + u4)

⎞
⎠

+
1

8λ2

⎛
⎝p11 p21

p21 p11

⎞
⎠+

1

48λ3

⎛
⎝q11 −q21

q21 q11

⎞
⎠+O(λ−4)

⎞
⎠

× exp
(
− iΩ(λ)σ3

)
, (2.5)

where Ω(λ) =
(
4λ3/3 + λx

)
and the coefficients p11, p21, q11 and q21 are derived using the computer

algebra system “Maxima”:

p11 = −(u4x2 + (2u6 − 2u2(u′)2)x+ (u′)4 − 2u4(u′)2 + u8 − u2),

p21 = −2(u3x− u(u′)2 − u′ + u5),
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INTEGRAL FORMULAS FOR THE PAINLEVÉ-2 TRANSCENDENT 3

q11 = iu6x3 + (−3iu4 (u′)2 + 3iu8 + 2iu2)x2

+ (3iu2 (u′)4 + (−6iu6 − 2i) (u′)2 + 3iu10 − iu4)x

− i(u′)6 + 3iu4 (u′)4 + (3iu2 − 3iu8) (u′)2

+ 2iu u′ + iu12 − 3iu6,

q21 = −3(iu5 x2 + (−2iu3 (u′)2 − 2iu2 u′ + 2iu7 + 2iu)x

+ iu(u′)4 + 2(u′)3 − 2iu5 (u′)2 − 2u4 u′ + iu9 + iu3).

The main term of this asymptotics oscillates on the lines �(4λ3/3+λx) = 0. In the neighborhood
of an infinity, these lines have asymptotes by the straight lines arg(λ) = π(k − 1)/3, k = 1, . . . , 6.
For each of these six lines in the neighborhood of infinity, one can define a function Ψk by the given
asymptotic direction arg(λ) = π(k − 1)/3:

Ψk ∼ Ψ∞, k = 1, 2, 3, 4, 5, 6.

Since each of the Ψk matrices is a fundamental solution system for (2.1), they can be expressed in
terms of each other:

Ψk+1 = ΨkSk. (2.6)

Here Sk is a matrix consisting of parameters that depend on the solution of the Painlevé-2 equation,
but do not depend on the parameter λ. These Sk matrices are called Stokes matrices. The symbols
correspond to those used in the book [4].

Fig. 1. The Stokes rays at the directions π(k − 1)/3, k = 1, 2, 3, 4, 5, 6 and the curves of integration, which
approach ∞ in the following directions: ∞k,∞k+1.

To derive integral formulas for the Stokes matrix, it is convenient to use the following
substitution:

Ψk = exp
(
− iΩ(λ)σ3

)
Φk. (2.7)

Using the system of equations (2.1), one can derive a similar system of equations for the matrix
Φk:

d

dλ
Φk =

(
exp (iΩσ3)A exp (−iΩσ3) + iΩ′σ3

)
Φk. (2.8)

For the matrix Φk the following condition is true:

Φk → I, λ = Rei(k−1)π/3, R → ∞. (2.9)

It can be verified that the solution to the scattering problem defined by (2.8) and (2.9) satisfies
a system of integral equations:

Φk(λ) = I +

ˆ λ

∞k

(
exp (iΩσ3)A exp (−iΩσ3) + iΩ′σ3

)
Φkdμ. (2.10)
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Here the integral is considered an improper integral, where ∞k = R exp
(
iπ(k − 1)/3

)
, for R → ∞.

The formulas (2.6), (2.7) and the integral equations (2.10) yield the following limit form of the
connection formula (2.6):

Φk+1|∞k
= Φk|∞k

Sk.

The next important step is to use these integral equations to obtain formulas for the coefficients
of the Stokes matrix (2.6). For this one should consider the integral on the right-hand side as
an improper integral for both limits of integration. In this case the initial and final points of the
integration are λ → ∞k and λ → ∞k+1.

If we do not touch the integral convergence, we obtain the following formula:

I +

ˆ ∞k

∞k+1

(
exp (iΩσ3)A exp (−iΩσ3) + iΩ′σ3

)
Φk+1dμ = Sk.

Now Sk can be expressed using Ψk+1. The integrand in the previous formula can be written as two
terms: (

exp (iΩσ3)A exp (−iΩσ3) + iΩ′σ3
)
Φk+1

= exp (iΩσ3)A exp (−iΩσ3) Φk+1 + iΩ′σ3Φk+1.

Now we note that

exp(−iΩσ3)Φk+1 = Ψk+1.

Then

exp (iΩσ3)A exp (−iΩσ3) Φk+1 = exp (iΩσ3)AΨk+1,

and

iΩ′σ3Φk+1 = exp(iΩσ3)iΩ
′σ3 exp(−iΩσ3)Φk+1 = exp(iΩσ3)iΩ

′σ3Ψk+1.

As a result, we obtain

Sk = I +

ˆ ∞k

∞k+1

exp (iΩσ3)
(
A+ iΩ′σ3

)
Ψk+1dμ. (2.11)

Due to the Stokes phenomenon, the integrands have different asymptotic behaviors as μ → ∞k+1

and as μ → ∞k. Therefore, we consider below all components in the integral formula for the
matrix Sk separately and show the convergence of the improper integrals in (2.11). The following
calculations take into account the asymptotic properties of the matrix Ψk+1 from the formula (2.9).

Fig. 2. The integrals over the closed curve γ in the formula (2.11) are equal to zero due to the Cauchy theorem
for analytic functions.

The integrands in the diagonal elements are analytic functions with respect to λ and the
integrands decrease as λ−2 for λ → ∞. Therefore, we use the Cauchy theorem for such functions
and consider the integrals over an arc of a large circle with radius R as R → ∞ (see, Fig. 2).

Let us consider carefully calculations for the matrix S1 as an example. The function Ψ2 oscillates
near the ray Arg(λ) = π/3. The asymptotic behaviors of Ψ2 coincide with the asymptotic behaviors
of Ψ∞ in the sector 0 < Arg(λ) < 2π/3. Therefore, instead of integrals over the path near the Stokes
rays one can use the integrals over an arc of a large circle.
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For other matrices Sk one can use the same calculations in the corresponding sectors of the
complex plane of λ.

Let us consider the integrand on an arc of the large circle. Straightforward calculations yield the
following formulas. The integrands in (S1)11 and (S1)22 have the order O(μ−2). As a result, we get

(Sk)11 = 1 + lim
R→∞

ˆ R exp(iπk/3)

R exp(iπ(k+1)/3)
O(R−2)dμ = 1.

(Sk)22 = 1 + lim
R→∞

ˆ R exp(iπk/3)

R exp(iπ(k+1)/3)
O(R−2)dμ = 1.

In the integrands for (S1)12 and (S1)21 the forms of the exponent are important. We do not
show here such a simple calculation.

The elements of the matrix Sk lying on the off-diagonal have exponents in the integrand for
large values of λ:

(Sk)12 = lim
R→∞

ˆ R exp(iπk/3)

R exp(iπ(k+1)/3)

(
4iuμ +

(
2u3x− 2uw2 − 2w + 2u5

)

+O(1/R)
)
exp

(
2i(4μ3/3 + xμ)

)
dμ (2.12)

(Sk)21 = lim
R→∞

ˆ R exp(iπk/3)

R exp(iπ(k+1)/3)

(
− 4iuμ +

(
2u3x− 2uw2 − 2w + 2u5

)

+O(1/R)
)
exp

(
− 2i(4μ3/3 + xμ)

)
dμ. (2.13)

The values of the integrals in the formulas (2.12) and (2.13) depend on the sign �(iμ3) on the
integration path. Therefore, it is convenient to evaluate the integrals for different values of k.

If k = 1, 3, 5, then on the arc π(k− 1)/3 < arg(μ) < πk/3 we get �(iμ3) = −R sin
(
3 arg(μ)

)
< 0.

In this case, it can be shown that

(Sk)12 = 0.

Similarly, for k = 2, 4, 6 on the arc π(k− 1)/3<arg(μ) < πk/3 we get �(−iμ3)=R sin
(
3 arg(μ)

)
<0,

that is,

(Sk)21 = 0.

As a result, we get

Sk =

⎛
⎝ 1 0

sk 1

⎞
⎠ , k = 1, 3, 5;

Sk =

⎛
⎝1 sk

0 1

⎞
⎠ , k = 2, 4, 6.

In the terms of [1] we rewrite: s1 = a, s2 = b, s3 = c, s4 = d, s5 = e, s6 = f and s1 = s4,
s2 = s5, s3 = s6.

Formulas for sk can be obtained by multiplying the matrix in the integrands in (2.11) and the
formula (2.1):⎛
⎝eiΩ 0

0 e−iΩ

⎞
⎠

⎛
⎝ −2iu2 4uμ + 2iu′

4uμ− 2iu′ 2iu2)

⎞
⎠

⎛
⎝(Ψk)11 (Ψk)12

(Ψk)21 (Ψk)22

⎞
⎠

=

⎛
⎝eiΩ(μ) 0

0 e−iΩ(μ)

⎞
⎠

⎛
⎝−2iu2(Ψk)11 + (4uμ + 2iu′)(Ψk)21 −2iu2(Ψk)12 + (4uμ+ 2iu′)(Ψk)22

(4uμ − 2iu)(Ψk)11 + 2iu2(Ψk)21 (4uμ − 2iu)(Ψk)12 + 2iu2(Ψk)22

⎞
⎠ .

Now one should use Ω = (4/3)μ3 + μx.
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The main result of Section 2 is explicit formulas for monodromy data.

Theorem 1. The monodromy data for solutions of (2.1) can be obtained by the following integral
formulas:

sk = 2

ˆ ∞k

∞k+1

(
(2uμ − iu′)(Ψk)11 + iu2(Ψk)21

)
e−i(4μ3/3+xμ)dμ, k = 1, 3, 5;

sk = 2

ˆ ∞k

∞k+1

(
(2uμ + iu′)(Ψk)22 − iu2(Ψk)12

)
ei(4μ

3/3+xμ)dμ, k = 2, 4, 6.

The formulas for the integrals over λ can be used at any regular point of the solution of the Painlevé-
2 equation.

Solutions of Painlevé equations are meromorphic functions of a complex variable x. A connection
of the Stokes data sk and singularities were considered, for example, in the book [2]. In the formulas
we integrate with respect to λ for defining the Stokes data sk, the values of u(x) and u′(x) can be
used at any regular point.

3. INTEGRAL FORMULA FOR THE PAINLEVÉ TRANSCENDENT

The analytical properties of the functions Ψk allow us to formulate the problem of conjugation of
functions for the analytical continuation of the function Ψk into neighboring sectors of the complex
plane of the parameter λ. To obtain the integral equations, we can conveniently use Sokhotsky’s
formulas [12]. Similar constructions were done in the work [1]. As a result, we obtained a system
of equations for the first and second columns of analytical equations in the complex plane λ:

Ψ(1)eiΩ =

⎛
⎝1

0

⎞
⎠− Resμ=0

Ψ(1)eiΩ

μ− λ
+

s1
2πi

ˆ
C42

Ψ(2)eiΩ

μ− λ
dμ

+
s2
2πi

ˆ
C46

Ψ(2)eiΩ

μ− λ
dμ+

s2s3
2πi

ˆ
C64

Ψ(1)eiΩ

μ− λ
dμ,

Ψ(2)e−iΩ =

⎛
⎝0

1

⎞
⎠− Resμ=0

Ψ(2)e−iΩ

μ− λ
+

s2
2πi

ˆ
C53

Ψ(1)e−iΩ

μ− λ
dμ

+
s3
2πi

ˆ
C51

Ψ(1)e−iΩ

μ− λ
dμ+

s1s2
2πi

ˆ
C53

Ψ(2)e−iΩ

μ− λ
dμ.

The solution of the Painlevé-2 equation is usually represented using the asymptotics as λ → ∞
for the off-diagonal components of the matrix Ψ [1]:

u(x) = lim
λ→∞

λiΨ12e
−iΩ

or

u(x) = − lim
λ→∞

λiΨ21e
iΩ.

If we use the integral equations for the matrix Ψ, then we can obtain an alternative expression
for the second Painlevé transcendent in terms of the components of the functions Ψk.

For this we use the following formula:

1

1− q
= 1 +

q

1− q
.
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Fig. 3. Integration paths in the Riemann problem for the matrix function Ψ and for calculating the Painlevé
transcendent by integral formulas.

If we denote q = μ/λ, then

lim
λ→∞

λ

ˆ b

a

f(μ)

μ− λ
dμ = lim

λ→∞

λ

λ

ˆ b

a

f(μ)
μ
λ − 1

dμ

= −
ˆ b

a
f(μ)dμ− lim

λ→∞

ˆ b

a
f(μ)

μ
λ

μ
λ − 1

dμ

= −
ˆ b

a
f(μ)dμ− lim

λ→∞

1

λ

ˆ b

a

f(μ)μ
μ
λ − 1

dμ.

If ∣∣∣∣
ˆ b

a
f(μ)μdμ

∣∣∣∣ < ∞,

then

lim
λ→∞

λ

ˆ b

a

f(μ)

μ− λ
dμ = −

ˆ b

a
f(μ)dμ.

In our case the interval of the integration is unbounded. The integrals should be considered as
improper. On the Stokes curves, the exponents in the integrands are oscillatory. Therefore, the
leading terms of the asymptotics as μ → ∞ are bounded. Let us consider:

lim
μ→∞k

(Ψk)22μ exp
(
iΩ(μ)

)
∼ μ exp

(
2i
(
(4/3)μ3 + μx

))
.

The improper integral with such integrands exists. It yields the same formulas as on the bounded
interval.

For one more integral we get

λ

ˆ ∞4

0
(Ψ4)21 exp(iΩ)dμ.

The asymptotic behavior of the integrand is

λ
(Ψ4)21 exp(iΩ)

μ− λ
∼ λ

μ− λ

iu

2μ
.

Then the integral can be represented in the following form:

λ

ˆ ∞4

0

(Ψ4)21 exp(iΩ)

μ− λ
dμ+ λ

ˆ 0

∞6

(Ψ4)21 exp(iΩ)

μ− λ
dμ
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= λ

ˆ ∞4

−a

(
(Ψ4)21 exp(iΩ)

μ− λ
− 1

μ− λ

iu

2μ

)
dμ

+ λ

ˆ a exp(5iπ/3)

∞6

(
(Ψ4)21 exp(iΩ)

μ− λ
− 1

μ− λ

iu

2μ

)
dμ

+ λ

ˆ ∞4

−a

(
1

μ− λ

iu

2μ

)
dμ+ λ

ˆ a exp(5iπ/3)

∞6

(
1

μ− λ

iu

2μ

)
dμ

As a result, we get

u(x) = − s1
2π

ˆ ∞4

0
(Ψ4)21e

iΩdμ− s1
2π

ˆ 0

∞2

(Ψ2)21e
iΩdμ

− s2
2π

ˆ ∞4

0
(Ψ4)21e

iΩdμ− s2
2π

ˆ 0

∞6

(Ψ6)21e
iΩdμ

− s2s3
2π

ˆ ∞4

0
(Ψ4)21e

iΩdμ − s2s3
2π

ˆ 0

∞6

(Ψ6)21e
iΩdμ. (3.1)

Another expression can be obtained by using the Ψ12 component:

u(x) =
s2
2π

ˆ ∞5

0
(Ψ5)12e

−iΩdμ+
s2
2π

ˆ 0

∞3

(Ψ3)12e
−iΩdμ

+
s3
2π

ˆ ∞5

0
(Ψ5)12e

−iΩdμ+
s3
2π

ˆ 0

∞1

(Ψ1)12e
−iΩdμ+

+
s1s2
2π

ˆ ∞5

0
(Ψ5)12e

−iΩdμ +
s1s2
2π

ˆ 0

∞3

(Ψ3)12e
−iΩdμ. (3.2)

The formulas in (3.1) and (3.2) are the main results of Section 3.

Note that a limit of small value u(x) and related auxiliary systems were considered, for example,
in the book [4].

4. VARIATION OF THE STOKES MULTIPLIERS

Consider the effect of perturbations on the Stokes multipliers associated with the scattering
problem (2.1). For an infinitesimal perturbation of the coefficients of the system (2.1) u = u+ δu,
we can obtain a system of equations for the variation of δΨ:

d

dλ
δΨ = AδΨ + δAΨ, δA = −i4uδuσ3 + 4δuλσ1 − 2δu′σ2. (4.1)

Below we will use the notation

d

dx
(δu) ≡ δu′.

The general solution to the system of equations (4.1) can be represented as

δΨ = ΨC +Ψ

ˆ
Ψ−1δAΨdμ, (4.2)

where C is a matrix composed of arbitrary constants, which are parameters of the solution of the
system (4.1). This matrix will be used for constructing a special solution of (4.1).

Now consider the matrix in the integrand of (4.2) using the formula detΨ ≡ 1:

(Ψ−1δAΨ)11 = (Ψ2,1Ψ2,2 −Ψ1,1 Ψ1,2) 4λδu

+ (Ψ2,1Ψ2,2 +Ψ1,1Ψ1,2) 2iδu
′

− (Ψ1,1Ψ2,2 +Ψ1,2Ψ2,1) 4iuδu,
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(Ψ−1δAΨ)21 =
(
Ψ2

1,1 −Ψ2
2,1

)
4λδu −

(
Ψ2

2,1 +Ψ2
1,1

)
2iδu′

+ 8iΨ1,1 Ψ2,1uv,

(Ψ−1δAΨ)12 =
(
Ψ2

2,2 −Ψ2
1,2

)
4λδu +

(
Ψ2

2,2 +Ψ2
1,2

)
2iδu′

− 8iΨ1,2 Ψ2,2uδu,

(Ψ−1δAΨ)22 = (Ψ1,1Ψ1,2 −Ψ2,1 Ψ2,2) 4λδu

− (Ψ2,1Ψ2,2 +Ψ1,1Ψ1,2) 2iδu
′

+ (Ψ1,1Ψ2,2 +Ψ1,2Ψ2,1) 4iuδu.

The infinitesimal variation δΨ can be used to calculate variations of the Stokes multipliers.
Specifically, we obtain

δΨk+1 = δΨkSk +ΨkδSk,

as λ → ∞k we obtain the condition

δΨk = 0, λ → ∞k.

Then

δΨk+1 ∼ exp(−iΩσ3)δSk, λ → ∞k. (4.3)

On the other side one obtains

δΨk+1 ∼ Ψk+1

ˆ ∞k

∞k+1

Ψ−1
k+1δAΨk+1dμ, λ → ∞k.

Let us change

Ψk+1 = ΨkSk ∼ exp(−iΩσ3)Sk, λ → ∞k,

then

δΨk+1 ∼ exp(−iΩσ3)Sk

ˆ ∞k

∞k+1

Ψ−1
k+1δAΨk+1dμ, λ → ∞k. (4.4)

Equate (4.3) and (4.4), multiply the left side by exp(iΩσ3). This yields

δSk = Sk

ˆ ∞k

∞k+1

Ψ−1
k+1δAΨk+1dμ. (4.5)

Only one element of the matrix Sk, denoted by sk, depends on u and u′. Therefore,

δSk =

⎛
⎝ 0 0

δsk 0

⎞
⎠ , k = 1, 3, 5.

Denote

ˆ ∞k

∞k+1

Ψ−1
k+1δAΨk+1dμ =

⎛
⎝a b

c d

⎞
⎠ .

Then the formula (4.5) has the following form:

⎛
⎝ 0 0

δsk 0

⎞
⎠ =

⎛
⎝ 1 0

sk 1

⎞
⎠

⎛
⎝a b

c d

⎞
⎠ ,
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or ⎛
⎝ 0 0

δsk 0

⎞
⎠ =

⎛
⎝ a b

ask + c bsk + d

⎞
⎠ .

It yields: a = 0, b = 0, d = 0 and δsk = c, where

c =

ˆ ∞k

∞k+1

( (
Ψ2

1,1 −Ψ2
2,1

)
4λδu−

(
Ψ2

2,1 +Ψ2
1,1

)
2iδu′ + 8iΨ1,1 Ψ2,1uδu

)
dμ.

Then the integrals of the diagonal elements along the integration paths marked in Fig. 1 give zeros.
It is convenient to define

ψ+
1 = Ψ2

11 +Ψ2
21, ψ−

1 = Ψ2
11 −Ψ2

21, ψ1 = Ψ11Ψ21;

ψ+
2 = Ψ2

12 +Ψ2
22, ψ−

1 = Ψ2
22 −Ψ2

12, ψ2 = Ψ12Ψ22.

For reasons that mirror the calculations of the Stokes multipliers in Section 2, we obtain the
following statement.

Theorem 2. Variations of the Stokes multipliers are defined by the following integrals:

δsk =

ˆ ∞k

∞k+1

4μδu (ψ−
1 )k+1 − 2iδu′ (ψ+

1 )k+1 + 8iuδu (ψ1)k+1dμ, k = 1, 3, 5; (4.6)

δsk =

ˆ ∞k

∞k+1

4μδu (ψ−
2 )k+1 + 2iδu′ (ψ+

2 )k+1 − 8iuδu (ψ2)k+1dμ, k = 2, 4, 6. (4.7)

The formulas for the integrals over λ can be used at any regular point of the solution of the
Painlevé-2 equation.

5. FORMULA FOR SOLUTION OF THE LINEARIZED PAINLEVÉ-2 EQUATION

Consider the equations for quadratic expressions ψ+
1 , ψ

−
1 , ψ1:

dψ+
1

dλ
= −2i(4λ2 + x+ 2u2)ψ−

1 + 16λuψ1. (5.1)

dψ−
1

dλ
= −2i(4λ2 + x+ 2u2)ψ+

1 + 8iu′ψ1. (5.2)

dψ1

dλ
= 4λuψ+

1 − 2iu′ ψ−
1 . (5.3)

Similar expressions are obtained for the derivatives of the same quadratic expressions with respect
to x:

dψ+
1

dx
= −2iλψ−

1 + 4uψ1, (5.4)

dψ−
1

dx
= −2iλψ+

1 , (5.5)

dψ1

dx
= uψ+

1 . (5.6)

We will assume that the variation δu represents a solution to the linearized Painlevé-2 equation:

δu′′ = (6u2 + x)δu. (5.7)

Differentiating Eq. (4.6) with respect to x, using Eqs. (5.4), (5.5), and the linearized equa-
tion (5.7) gives (with s1 used for concreteness)

d

dx
δs1 =

ˆ ∞1

∞6

(
(−2i(4μ2 + x+ 2u2)ψ+

1 + 8iu′ψ1)δu− 2ifψ+
1

)
dμ

= δu

ˆ ∞1

∞6

dψ−
1

dμ
dμ.
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To calculate the integral involving the derivative of λ, we will consider the representation of ψ−
1 in

terms of the squares of the first column of the Ψ-function. For λ → ∞6 and r = |λ|, α = Arg(λ) we
obtain

Ψ2
11 ∼ exp

(
−2i

(
4

3
r3e3iα + xreiα

))
,

Ψ2
21 ∼

−u2e−2iα

4r2
exp

(
−2i

(
4

3
r3e3iα + xreiα

))
, λ → ∞6,

As λ → ∞1 and r = |λ|, β = Arg(λ)− π/3 we get:

Ψ2
11 ∼ exp

(
2i

(
4

3
r3e3iβ − xreiπ/3eiβ

))(
1 +O(r−1)

)
+O(1/r)

+ s21 exp

(
−2i

(
4

3
r3e3iβ − xreiπ/3eiβ

))(
u2e−2iπ/3−2iβ

4r2
+O(r−3)

)
,

Ψ2
21 ∼ s21 exp

(
−2i

(
4

3
r3e3iβ − xreiπ/3eiβ

))(
1 +O(r−1)

)
+O(1/r)

+ exp

(
2i

(
4

3
r3e3iβ − xreiπ/3eiβ

))(
e2iπ/3+2iβ

r2
+O(r−3)

)
.

The integral involving the derivative of ψ−
1 with respect to λ can be written as the sum of

integrals:
ˆ ∞1

∞6

dψ−
1

dμ
dμ =

ˆ
L11

dΨ2
11

dμ
dμ +

ˆ
L21

dΨ2
21

dμ
dμ.

For each of the integrals, we deform the contour so that at its ends the functions Ψ2
11 and Ψ2

21,
respectively, vanish. The choice of an integration path for representing solutions to the auxiliary
linear equations connecting the Painlevé-2 equation was considered in [13] and [14].

Let us consider the asymptotics of Ψ2
11 near the ray to ∞1, as Arg(λ) = π/3 + β, where β � 1

and r → ∞. The curve, where the real part of the exponent is equal to zero:

�
(
2i

(
4

3
λ3 + xλ

))
= 0,

as λ = reiπ/3eiβ, has the form

8

3
r2 sin(3β) − x sin(β)−

√
3x cos(β) = 0.

As r → ∞ this curve has the asymptotics

β ∼ x
√
3

8r2
+O(r−4)

The asymptotics of Ψ11 is

Ψ2
11 ∼ exp

(
−8

3
r3β + rxβ +

√
3xr

)
O(1) +

exp
(
8
3r

3β − xrβ −
√
3xr

)
r2

O(1).

The first term of this formula decreases when β > x
√
3/(8r2), and the second term decreases

when (
8

3
r3β − xrβ −

√
3xr

)
− 2 ln(r) < 0,
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or as r → ∞:

β <

√
3

8r2
x+

1

4r3
ln(r).

Then Ψ2
11 → 0 as r → ∞ and:

π

3
+

√
3

8r2
x < Arg(λ) <

π

3
+

√
3

8r2
x+

1

4r3
ln(r).

In the same way one can get the asymptotics of Ψ2
21 near the ray (0,∞1) for Arg(λ) = π/3 + β,

where β � 1 and r → ∞

Ψ2
21 ∼

exp
(
−8r3β + xrβ +

√
3xr

)
r2

O(1) + exp
(
8r3β − xrβ −

√
3xr

)
O(1).

For this function, the exponents have the opposite sign compared to the other asymptotics of Ψ2
11.

Therefore, similar considerations give the condition: Ψ2
21 → 0 as r → ∞, leading to

π/3− x
√
3

8r2
> Arg(λ) > π/3− x

√
3

8r2
− 1

4r3
ln(r).

The integral in the formula for the derivative of Ψ2
11 has the integration path L11, as shown in

Fig. 4. The path begins at the point L−
11 in the sector −Δ < Arg(λ) < 0, where Δ > 0, and finishes

at the point L+
11, where π/3 + x

√
3

8r2 + 1
4r3 ln(r) > Arg(L+

11) > π/3 + x
√
3

8r2 and r = |λ|.

Fig. 4. The ends of the path of integration L11 lie in the sectors π/3+ x
√

3
8r2

< Arg(λ) < π/3+ x
√

3
8r2

+ 1
4r3

ln(r)

and −Δ < Arg(λ) < 0, for ∀Δ > 0.

The path L21 is obtained using the same considerations. This path is shown in Fig. 5.

Fig. 5. The ends of the path of integration L21 lie in the sectors π/3− x
√

3
8r2

− 1
4r3

ln(r) < Arg(λ) < π/3− x
√
3

8r2

and −Δ < Arg(λ) < 0 for ∀Δ > 0.
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Then the following formula is valid:

d

dx
δs1 = 0. (5.8)

The formulas for the squares of Ψ allow us to represent the solution of the linearized Painlevé-2
equation in terms of quadratic expressions from Ψ. Indeed, we differentiate with respect to x
Eq. (5.4) by virtue of Eqs. (5.5) and (5.6):

d2ψ+
1

dx2
= 4(−λ2 + u2)ψ+

1 + 4u′ψ1.

In this equation, the last term on the right-hand side can be replaced using Eq. (5.2). This gives

d2ψ+
1

dx2
= (x+ 6u2)ψ+

1 − i
1

2

dψ−
1

dλ
.

The same calculations for ψ−
1 give

d2ψ−
1

dx2
= 4(−λ2)ψ−

1 − 8iλuψ1.

and, using replacement, this yields

d2ψ−
1

dx2
= (x+ 2u2)ψ−

1 − i
1

2

dψ+
1

dλ
.

The formulas obtained above are useful for deriving an integral representation of the solution to
the linearized Painlevé-2 equation, which is one of the main goals of this work.

Consider the integral

v(x) =

ˆ ∞6

∞1

ψ+
1 (λ, x)dλ.

The second derivative of this integral is

d2

dx2

ˆ ∞1

∞6

ψ+
1 (λ, x)dλ = (6u2 + x)

ˆ ∞1

∞6

ψ+
1 (λ, x)dλ

− i
1

2

ˆ
L11

d

dλ
ψ2
11dλ+ i

1

2

ˆ
L21

d

dλ
Ψ2

21dλ.

Then, by following similar reasoning used in the derivation of formula (5.8), we find that the solution
to the linearized Painlevé-2 equation

v′′ = (6u2 + x)v

can be represented as

v(x) =

ˆ ∞1

∞6

ψ+
1 (λ, x)dλ. (5.9)

In the same way we obtain the formula

y =

ˆ ∞1

∞6

ψ−
1 (λ, x)dλ,

which is a solution for

y′′ = (x+ 2u2)y.
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Theorem 3. A solution of the linearized Painlevé-2 equation has the following integral represen-
tation:

v(x) =

ˆ ∞6

∞1

ψ+
1 (λ, x)dλ.

The formula for the integral over λ can be used at any regular point of the solution of the Painlevé-2
equation.

Let v(x) and v1(x) be linearly independent solutions of the linearized Painlevé-2 equation. Since
their Wronskian is a constant, say 1, one has

vv′1 − v′v1 = 1.

Then v1(x) can be found due to the Wronskian formula and one gets

v1(x) = v(x)

ˆ
dx

v2(x)
.

If v(ξ) = 0, then v′(ξ) 
= 0, and the integral should be considered in the regularized sense:

v1(ξ) =
1

v′(ξ)
.

Corollary 1. A general solution for the linearized Painlevé-2 equation can be represented in the
form

y(x) = Cv(x) + C1v1(x), C,C2 ∈ R.

6. CONCLUSION

In this work we obtain integral formulas for the monodromy data for connection of auxiliary
linear equations with the Painlevé-2 equation. The formulas allow us to derive the perturbation
theory for the auxiliary linear system (2.1) and to obtain formulas for infinitesimal variations of the
monodromy data. We also derive an integral formula for the solution to the linearized Painlevé-2
equation. This formula utilizes the squares of the solutions to the auxiliary system of equations
in (2.1).
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