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Abstract—We study the KAM-stability of several single star two-planet nonresonant extra-
solar systems. It is likely that the observed exoplanets are the most massive of the system
considered. Therefore, their robust stability is a crucial and necessary condition for the long-
term survival of the system when considering potential additional exoplanets yet to be seen. Our
study is based on the construction of a combination of lower-dimensional elliptic and KAM tori,
so as to better approximate the dynamics in the framework of accurate secular models. For each
extrasolar system, we explore the parameter space of both inclinations: the one with respect
to the line of sight and the mutual inclination between the planets. Our approach shows that
remarkable inclinations, resulting in three-dimensional architectures that are far from being
coplanar, can be compatible with the KAM stability of the system. We find that the highest
values of the mutual inclinations are comparable to those of the few systems for which the said
inclinations are determined by the observations.
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1. INTRODUCTION

In his short and celebrated article [18] that marked the birth of the KAM theory, A.N. Kol-
mogorov explicitly mentioned celestial mechanics among the fields where it was natural to expect
the most interesting applications of his statement1) about the preservation of quasi-periodic motion
in nearly integrable Hamiltonian systems. Nevertheless, the recent applications of KAM theory to
extrasolar planetary systems were quite unexpected. Of course, the reason is not (only) due to the

existence of planets outside our Solar System, as it was conjectured2) centuries ago. The surprise is
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1)A few years later, the first complete proofs of the KAM theorem were independently published by V. I. Arnol’d
and J. Moser (see [2, 31], respectively). This is the well-known reason for its acronym. However, now it is also
commonly accepted that the proof scheme sketched by Kolmogorov in his paper can be translated in a complete
proof (see [8]). This can be accomplished also by adopting the Lie series formalism (see [4]), by following an
approach that is much more similar to the computational algorithm described in the present work.

2)See, e. g., G. Bruno: De l’infinito, universo e mondi, printed in Venice (1584).
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mainly due to the reverse way the KAM theorem is used in such a context: instead of being applied
to celestial bodies with well-known motions, here from KAM theory one can deduce information
about some unknown orbital properties of the exoplanets. Indeed, the main goal of the present
work is the discussion of the results we can obtain by implementing this kind of approach.

To this day, the counting of discovered exoplanets has surpassed 5000 units, and the number is
set to rapidly increase in the future. Amongst other missions, after its first found candidate in early
2021 (confirmed later on) GAIA has listed in its third data release (DR3) 72 new candidates [1],
with the prospect of thousands more discovered over the whole operating life. The PLATO mission
is set to be launched in 2026, with the objective of searching for new planets from the Sun-Earth
L2 Lagrangian point. As of early 2024, the TESS mission had hit the milestone of more than 7000
exoplanet candidates, waiting for confirmation.

Despite all these discovery missions, the limitations of the detection techniques remain and
very few are the systems for which we have a set of complete orbital and planetary parameters.
For example, the CHEOPS mission goal is to better characterize known Earth-to-Neptune size
exoplanets, combining its observation with previous data to better understand the already
discovered objects. Particularly interesting is the case of exoplanets discovered by means of the
radial velocity method (hereafter, RV). Despite its efficiency in detecting new objects, the RV lacks
the possibility of determining the inclinations of the systems, that is, both the orbital inclination
with respect to the line of sight i and the mutual inclination between the planets imut. The
uncertainty on these parameters prevents a complete and clear understanding of the systems,
as they are both quite relevant. Not knowing the value of i, in fact, implies that we only know
minimal values for the masses of the planets. Considering that the correction factor to multiply
the masses by is 1/ sin i, even small values of the orbital inclinations can have a relevant impact
on the nature of the system. Furthermore, complementing the data provided by RV with the ones
given by other observational methods, it was possible for few extrasolar systems to determine the
value of the mutual inclination between the planets, the most famous case being υ Andromedæ
(see [9, 28]) with almost 30◦. This proves that these systems can have planets that are not only
noncoplanar, but also highly inclined between each other. To this, one should add the notion that
the more massive the planet, the more probable is it to detect it. In the case of the RV, for example,
this is due to the observation that a bigger planet contributes to a more noticeable shift in the
spectrum of the observed star. Therefore, even in the multiplanetary systems already discovered3)

there might be smaller planets that are still undetected. Taking the Solar System as an example,
the survival of the smaller rocky planets is heavily due to the fact that the subsystem of the giant
planets is in itself stable.

Considering all of the above, it is clear that a better understanding of the architecture of the
already known exoplanetary systems is crucial. On the one hand, it has been proven that the
systems can exhibit values of the inclinations that are very different from the low values seen in the
Solar System, and therefore a complete study must take into account a wider range of values. On the
other hand, the stability of the giant planets already detected is vital for the existence of smaller,
undetected planets. Therefore, stability studies that consider wider sections of the parameter space
of the inclinations are crucial in this sense.

There are different approaches that can be employed in this kind of study. In [35], for example,
the authors tackled the problem by performing long-term n-body integrations of several systems,
varying the values of the orbital and mutual inclination. More recently, in [21] the AMD stability
criterion has been proposed, based on the angular momentum deficit of the system. A semianalytical
approach is instead used in [38] and [36], where a secular approximation at order one in the masses
is the base for the numerical exploration of the parameter space of the inclinations. From the last
two works, we inherit the approach to the parameter space (imut, i), and the definition of the criteria
to shortlist the systems to study.

The methodology and the criterion for the stability come instead from KAM theory. Indeed,
we define a system to be KAM stable if it is possible to construct a Kolmogorov normal form

3)The statistical data gathered by online catalogues such as exoplanet.eu list more than 800 multiplanetary
systems.
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ensuring the existence of an invariant torus which includes the initial conditions. Although it
is well known that diffusion phenomena can originate from any open set of initial conditions in
the phase space (for Hamiltonian systems having at least three degrees of freedom), a suitable
normal form approach always allows one to prove the effective stability in small neighborhoods
of KAM tori for intervals of times exceeding the expected lifetime of the physical system under
consideration (see [13, 14, 30]). Thus, our definition of KAM stability surely requires a stronger
condition to be satisfied with respect the simple assumption of existence of invariant tori (different
thresholds of applicability for KAM theory, which come from rigorous results on normal forms or
purely numerical methods, were compared in [34]). Nevertheless, in [37] some encouraging results
were obtained by applying a reverse KAM approach. Starting from a secular approximation at
order two in the masses, the main idea was to determine the stability of a system with respect
to set values of the inclinations via the construction of normal forms corresponding to KAM tori.
The stability was intended as a consequence of the algorithm, rather than a requirement for its
implementation. For few systems it was possible to determine their stability up to nonnegligible
values of the mutual inclination, albeit not considerably high. The main limitation encountered
was the maximal eccentricity admissible, which was � 0.1. It includes an extremely small portion
of the exoplanetary systems known. A definite improvement was reached in [7], where an approach
belonging to the same class was successfully applied to υ Andromedæ. This system is well known to
have considerably relevant eccentricity and, of course, a high value of mutual inclination between the
planets. The key to the success of the method lies in additional preliminary steps performed before
the construction of the KAM tori. The system is found to be winding around a 1-dimensional elliptic
torus, which is then used as a starting point for the procedure of constructing the Kolmogorov
normal form. The initial values of the inclinations considered were within the ranges given by the
observation, and it was possible to prove the stability of the secular dynamics. Indeed, the initial
conditions were selected by applying a robustness criterion, which was derived (once again) from
KAM theory according to the detailed explanations discussed in [25]. Furthermore, in [24] this
constructive algorithm has been applied for a sparse study of the inclination parameter space in
the case of the system HD 4732. In the present work, we extend this last study not only to cover
more widely the possible values of orbital and mutual inclination of the system HD 4732, but also
to discuss the robustness of the three-dimensional architecture for several other extrasolar systems
with two nonresonant planets detected via RV.

The paper is organized as follows. The models of extrasolar planetary systems are defined in
Section 2. Section 3 is devoted to explaining the computational procedure based on the construction
of suitable normal forms. The results produced by such an approach are described in Section 4.
The main conclusions are discussed in Section 5.

2. SELECTION OF THE EXTRASOLAR PLANETARY MODELS

In order to shortlist the single star exoplanetary systems that will be the object of this study,
we follow a strategy similar to the one implemented in [38]. We select the RV-detected systems
that host two exoplanets and satisfy the following criteria: i) the system is far from mean-motion
resonances involving the revolution periods; ii) the observed eccentricities are smaller than 0.65;

iii) the minimal masses of the planets are smaller than4) 10 MJ ; iv) the orbital period of both
planets is greater than 45 days; v) the semimajor axis of the furthest planet is less than 10 AU.
We are then able to apply our purely gravitational secular, three-body, nonresonant model to the
systems meeting these criteria. To reduce the parameter space, we set the initial values of some of
the quantities as given by the observations. In Table 1 we list for each system the values of minimal
masses, semimajor axes, eccentricities and arguments of the pericenters. It should be noted that
the observations provide ranges, rather than a specific value. Further refinements to characterize
the exact values that are more strongly linked to the stability of the system can be implemented
(see, for example, [25], where a search of this kind was applied to the system υ Andromedæ), but
it is beyond the scope of this work. Hence, we have reported in Table 1 the middle value of the

4)As is usual in astronomy, the symbols M� and MJ are used to denote the masses of Sun and Jupiter, respectively.
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parameters, and that is the value that we will consider. As per our secular approach, the mean
anomalies are not taken into account. Therefore, the remaining parameters to completely define
the initial conditions of the planetary system are the inclinations with respect to the line of sight
i1 and i2, the mutual inclination imut and the longitudes of the nodes Ω1 and Ω2. In the general
reference plane these quantities depend on each other according to the following relation:

cos imut = cos i1 cos i2 + sin i1 sin i2 cosΔΩ, (2.1)

where ΔΩ = Ω1 −Ω2. Generally speaking, the orbital inclinations with respect to the line of sight
are unknown. This is particularly relevant as it implies that our knowledge of the mass of the jth
planet is limited to its minimal mass mj sin ij . In order to reduce the dimension of the parameter
space to study, first of all, we set i2 = 180◦ − i1, so as to have the two planes inclined symmetrically
with respect to the line of sight. Therefore, for each value of i we study the system corresponding
to orbital inclinations of (i, 180◦ − i). Hence, formula (2.1) becomes

cos imut = − cos2 i+ sin2 i cosΔΩ. (2.2)

It should be noted that the equation above can be solved only if imut ∈ [180◦ − 2i, 180◦]. As per the
interval limits for the pair (i, imut), it has to be taken into account that both masses of the planets
and the minimum value of imut depend on i, so we decide to set it so as to have i ∈ [0◦, 60◦], with a
step size of 5◦. Secondly, we set the mutual inclination to be at maximum 60◦ with the constraint
that imut ∈ [max(0, 180◦ − 2i), 60◦], with a step of 2◦. On the one hand, the range set for i ensures
that the masses are not going to be multiplied by a factor 1/ sin i that would increase them close
to the brown dwarf limit. On the other hand, preliminary studies showed that with the method
here proposed it is not possible to obtain stability for extremely high values of mutual inclination.
Considering the relation given by Eq. (2.1), we can then determine the value of ΔΩ as a function
of i and imut. It should be stressed that, in the general reference frame, the longitudes of the nodes
appear in the Hamiltonian only as their difference ΔΩ, therefore we have now set the values for all
the parameters needed.

3. CONSTRUCTION OF INVARIANT KAM TORI FOR THE SECULAR MODEL

The aim of this work is to present the practical results obtained by extensively applying
the algorithm developed to construct KAM tori for the secular model of a gravitational three-
dimensional three-body problem. This procedure has already been described in full detail in [24].
As our focus is on the applications of the algorithm and not on the algorithm itself, we do not
describe the construction of the KAM tori in depth herein, but we will schematically recall the
main points. In other words, this is mainly done for the sake of the proper definiteness of the
computational methods that will be described in Section 4. For a deeper discussion about the
details and the multiple steps of the procedure, we refer to [24], whose approach we adopt in the
following.

There are three main blocks that constitute the core of our algorithm: (i) the secular
approximation at order two in the masses; (ii) the normal form for the construction of elliptic
tori; (iii) the normal form for the construction of KAM tori. Each of these constructive steps is

based on the application of a sequence of near-identity canonical transformations by Lie series5)

(for an introduction to the Lie series formalism, see, for example, [12]), whose aim is to transform
the Hamiltonian into a particular normal form.

Our starting point is the Hamiltonian of the purely gravitational three-body problem. The
problem in itself would have nine degrees of freedom, which reduce to six once we take into
account that three of them describe the uniform motion of the center of mass in an inertial frame,
and therefore can be discarded. Considering the reduction of the total angular momentum of the
system C, which is constant in modulus and direction, we arrive at only four degrees of freedom

5)Here, let us just recall that the Lie series operator acts in such a way that exp(Lχ)g =
∑∞

j=0
1
j!
Lj

χg , where g is

a generic function and χ plays the role of the so-called generating function, both of them being defined on the
phase space. Moreover, the symbol of the Lie derivative is used to denote the Poisson bracket, i. e., Lχg = {g, χ}.
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Table 1. Orbital parameters of the selected systems

System m sin i [MJ ] MStar [M�] a [AU] e ω [◦ ] References

HD 113337 b 3.1 1.4 1.03 0.36 229.1 [5]

c 7.2 4.8 0.18 314

HD 11506 b 4.83 1.24 2.9 0.3743 220.16 [29]

c 0.408 0.774 0.193 259

HD 12661 b 2.3 1.07 0.831 0.378 296 [41]

c 1.57 2.56 0.031 165

HD 134987 b 1.59 1.07 0.81 0.233 252.7 [17]

c 0.82 5.8 0.12 195

HD 142 b 1.25 1.1 1.02 0.17 327 [40]

c 5.3 6.8 0.21 250

HD 147873 b 5.14 1.38 0.522 0.207 80 [16]

c 2.3 1.36 0.23 42

HD 154857 b 2.24 1.718 1.291 0.46 57 [39]

c 2.58 5.36 0.06 32

HD 169830 b 2.88 1.4 0.81 0.31 148 [27]

c 4.04 3.6 0.33 252

HD 183263 b 3.67 1.17 1.51 0.357 233.5 [41]

c 3.82 4.25 0.253 339.6

HD 207832 b 0.56 0.94 0.57 0.13 130.8 [15]

c 0.73 2.112 0.27 121.6

HD 4732 b 2.37 1.74 1.19 0.13 35 [33]

c 2.37 4.6 0.23 118

HD 74156 b 1.778 1.24 0.2916 0.638 175.35 [10]

c 7.997 3.82 0.3829 268.9

(see, e.g., [19]). The resulting Hamiltonian describing the dynamics in the astrocentric frame can
be expressed using the following Poincaré canonical variables:

Λj =
m0mj

m0 +mj

√
G(m0 +mj)aj , ξj =

√
2Λj

√
1−

√
1− e2j cos (ωj),

λj =Mj + ωj, ηj =−
√

2Λj

√
1−

√
1− e2j sin (ωj),

(3.1)

m0 being the mass of the central star and mj, aj , ej , ωj and Mj the mass, the semimajor axis, the
eccentricity, the argument of the pericenter and the mean anomaly of the jth planet, respectively.
We introduce a translation Lj = Λj − Λ∗

j such that Λ∗
j corresponds to the quantity computed
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considering the value of aj given by the observations. Finally, we introduce an additional parameter

D2, the so-called angular momentum deficit6), defined as D2 =
[
(Λ∗

1 +Λ∗
2)

2 −C2
]/

(Λ∗
1Λ

∗
2). We then

expand the Hamiltonian H3BP describing the three-body problem around L = 0 (and so, around
the initial value of the semimajor axes) in Fourier series of angles λ and power series of parameter
D2 and canonical variables L, ξ,η.

Given the nature of our study, we are interested in the long-term evolution of the systems.
Therefore, our first aim is to obtain a secular approximation, disregarding the fast dynamics
expressed by the variables (L,λ). We opt for a secular approximation at order two in the masses,
thus aiming to obtain a formulation of the Hamiltonian that is not dependent on the fast angles
λ up to terms of order two in the ratio between the mass of the largest planet over the one of the

star. This is done by computing a generating function χ
(O2)
1 (λ), such that its Lie series exp(L

χ
(O2)
1

)

transforms H3BP into

H(O2) = exp(L
χ
(O2)
1

)H3BP, (3.2)

which satisfies the nondependence on the fast angles required. We then compute the value of the
parameter D2 as given by the particular choice of the initial conditions considered. Taking into
account that we focus on the case L = 0 and that we truncate the otherwise infinite series up to
a certain order NS (defined considering the characteristics of the systems), we finally obtain our
secular approximation at order two in the masses:

H(sec)(ξ,η) =

NS/2∑
s=1

h
(sec)
2s (ξ,η), (3.3)

where h2s is a homogeneous polynomial of degree 2s. Furthermore, we have again reduced the
degrees of freedom of the problem, decreasing them to two. It should be noted that applying the
Lie series exp(L

χ
(O2)
1

) to H3BP is equivalent to perform a canonical transformation. As it is common

practice when working in the framework of perturbation theory, by abuse of notation we have kept
the symbols ξ and η for the variables. Nevertheless, being all the modifications due to near-identity
transformations, the corrections are small. Let us recall that a step-by-step description of the
method, complete with all details, can be found in [24].

Fig. 1. Poincaré sections of the system HD 4732, considering η2 = 0, with parameters i = 90◦ and imut = 1◦.
The dark asterisks represent the true orbit as computed by integrating the secular model at order two in the
masses. The black cross locates the elliptic torus.

6)The angular momentum deficit is a parameter that measures the difference between the actual total angular
momentum C and the one that the system would have if its orbits were circular and coplanar.
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The next block concerns the construction of an invariant elliptic torus by a normal form
algorithm. In order to fix the ideas, in Fig. 1 we show a plot referring to the specific case of the
system HD 4732, taken as an example. We plot the Poincaré sections obtained by setting η2 = 0,
with the additional condition of ξ2 > 0. It should be noticed that setting η2 = 0 is equivalent to
considering the points of the orbits such that ω2 = 0. The dark asterisks represent the actual orbit
of the system, whereas the light color points are the Poincaré sections obtained considering orbits
with different initial conditions but the same level of the energy. It can be appreciated that there is
a fixed point, highlighted as a black cross, which, being surrounded by closed curves, can be argued
to be linearly stable with respect to the transverse dynamics. Elliptic tori are defined as compact
invariant manifolds of smaller dimension than the maximal one (equal to the degrees of freedom of
the problem). Therefore, the black cross represents a 1-dimensional elliptic torus, namely, a linearly
stable periodic orbit. The true orbit of the system is then enclosing such a point, and so we are
going to construct the elliptic torus, aiming to use it as a base for the KAM torus construction.
For this purpose, we have to preliminarly introduce suitable action-angle variables (A, J, α, ϕ) that
are related to (ξ,η) by a canonical transformation. In the new canonical coordinates, the secular
dynamics is described by the following Hamiltonian in the case of r = 0:

H(r)(A, J, α, ϕ) =E(r) +
2π

T (r)
A+Ω(r)J +

∑
s�0

∑
��3

f
(r, s)
� (A, J, α, ϕ)

+
∑

s�r+1

2∑
�=0

f
(r, s)
� (A, J, α, ϕ),

(3.4)

where f
(r, s)
� ∈ P�,2s ∀ �, s. The set P�,2s includes all the real functions that are homogeneous

polynomials of total degree � in the square root of the actions and of trigonometric degree at
most 2s with respect to the angle α, where the pair of canonically conjugate variables (J, ϕ) is of
d’Alembert type. In more detail, this means that the expansion of a generic function belonging

to the set P�,2s contains terms including factors Al1
(√

J
)l2 and Fourier harmonics k2ϕ such that

2l1 + l2 = � and |k2| � l2, where the integers k2 and l2 have the same parity. The occurrence of
d’Alembert type variables is common when a pair of polynomial canonical coordinates is replaced
by the action and the angle that are usually introduced in the basic model of the harmonic oscillator.

We also stress that the size of f
(r, s)
� is expected to get smaller and smaller for increasing values of

the index s, due to the decay of the Fourier coefficients. The algorithm of constructing the normal
form for an invariant elliptic torus considers all the terms appearing in the second row of (3.4) as
the perturbation to remove. In fact, every step of the computational procedure is defined by the
composition of three canonical transformations and each of them is expressed in terms of a Lie series,

with generating function X
(r+1)
� that are determined so as to remove the angular dependence of

the corresponding perturbing term f
(r, r+1)
� = O

(
‖(A, J)‖�/2

)
∀ � = 0, 1, 2. Such a computational

algorithm is convergent if the perturbing part of the initial Hamiltonian is small enough (for a
complete proof see [6]). Therefore, we can write

lim
r→∞

H(r)(A, J, α, ϕ) = H(∞)(A, J, α, ϕ) =E(∞) +
2π

T (∞)
A+Ω(∞)J +O

(
‖(A, J)‖3/2

)
. (3.5)

One can easily check that the Hamiltonian equations related to H(∞) admit the motion law
t �→

(
A(t) = 0, J(t) = 0, α(t) = 2πt/T (∞) + α(0)

)
as a special solution7) that is an orbit on a 1-

dimensional torus with period T (∞); its corresponding energy level is equal to E(∞), while Ω(∞) is
the angular velocity of the small oscillations which are transverse to such a periodic orbit. In the
practical applications that will be described in Section 4, 20 normalization steps are sufficient to

7)Since
(√

2J cosϕ,
√
2J sinϕ

)
denote canonical variables, the value of the angle ϕ is unrelevant when J = 0,

because in such a situation the pair of conjugate coordinates of D’Alembert type is always mapped into the
origin of the corresponding Cartesian phase plane. This is the reason why the angle ϕ is neglected in the motion
law describing the solution on the elliptic torus.
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construct an excellent approximation of the final elliptic torus. Indeed, in Fig. 1 a “+” symbol is

drawn every time that the solution of the equations of motion corresponding to the Hamiltonian8)

H(20) intersects the hyperplane η2 = 0 and all these plots exactly superpose each other as it is
expected for a periodic orbit.

Finally, the third block concerns the construction of an invariant KAM torus. This requires one
to preliminarily perform a canonical transformation aiming to translate the origin of the actions,
i. e.,

A = A∗ + p1 , J = J∗ + p2 , α = q1 , ϕ = q2 , (3.6)

where A∗ and J∗ are constants that are given (as a first approximation) by the values A(0) and
J(0) corresponding to the initial conditions, respectively; their determination will be refined later
as it will be explained in the following. In these new canonical coordinates, the expansion of the
Hamiltonian can be written as

H(r)(p, q) =E(r) + ν(r) · p+
∑
s�0

∑
��2

f
(r, s)
� (p, q)

+
∑

s�r+1

1∑
�=0

f
(r, s)
� (p, q),

(3.7)

with r = 0 and f
(r, s)
� ∈ P�,2s ∀ �, s , where P�,2s is the class of functions that are homogeneous

polynomials of degree � in the actions p and trigonometric polynomials of degree � 2s with respect
to the angles q. Also, in the case of the construction of the Kolmogorov normal form, the terms
appearing in the second row of formula (3.7) are considered as the perturbation to remove and
this is done by performing a sequence of canonical transformations that are expressed by the
composition of two Lie series. At the (r + 1)th normalization step, the corresponding generation

functions χ
(r+1)
1 and χ

(r+1)
2 are determined in such a way as to eliminate the angular dependence in

the perturbing terms which appear in (3.7) and belong to the class of functions Pj,2(r+1) ∀ j = 0, 1.

Of course, these operations are started by considering the Hamiltonian H(0) as the initial one; also
in this case, during the practical applications of the procedure we are describing, we perform 20

normalization steps so as to finally determine H(20). During this third block of the computational
algorithm, we perform the Kolmogorov normalization in a way that is reminiscent of the version
of the KAM theorem for isoenergetically nondegenerate systems (see [3]). This means that the
generating function of the first Lie series to be applied at the rth normalization step is defined so

that χ
(r)
1 (q) = X(r)(q) + ξ(r) · q where X(r)(q) ∈ P0,2r is a real function whose Fourier expansion

includes harmonics with trigonometric degree not greater than 2r, while the translation vector

ξ(r) ∈ R
2 is determined so as to satisfy9) the following two requirements: it must be parallel to

the angular velocity vector and E(r) is approximately equal to the energy level E∗ of the Poincaré
sections. We emphasize that this version of the Kolmogorov algorithm makes the angular velocity

vector ν(r) slightly vary at every normalization step. As discussed in [24], under a few reasonable

assumptions10) the normalization algorithm can be iterated so as to make the perturbing terms

smaller and smaller. Therefore, if r is large enough, then H(r)(p, q) � E(r) + ν(r) · p+O(‖p‖2).
This means that the torus p = 0 is nearly invariant and the motions starting from the corresponding

8)The computational algorithm is tuned in such a way that the Hamiltonian H(20) is determined so that E (20) is
approximately equal to the energy level of the Poincaré sections.

9)Indeed, the determination of the (small) translation vector ξ(r) can be conveniently done by exploiting the linear

approximation of the main terms of the Hamiltonian. This means that we set ξ(r) = βν(r−1) where β is the unique

solution of the equation E(r) + β
∥
∥ν(r−1)

∥
∥2

= E∗, where the energy level E∗ is the one obtained by evaluating

the Hamiltonian H(sec) (whose expansion is written in (3.3)) in accordance with the initial conditions.
10)The classical hypotheses that are usually adopted in KAM theory can be adapted to the present context as follows.

We need the angular velocity vectors ν(r) to be nonresonant and the perturbation in the initial Hamiltonian (which
is given by the terms appearing in the second row of formula (3.7) when r = 0) to be small enough.
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initial conditions (i.e., such that p(0) = 0) are well approximated by quasi-periodic motions with

angular velocities equal to ν(r).

Once the secular model has been fixed by defining the expansion (3.3) in H(sec), let us emphasize

that the sequence of the angular velocities vectors ν(r) just depends on the energy level E∗ and
the values of the translations on the actions, namely, A∗ and J∗, which appear in formula (3.6).
On the other hand, starting from the initial conditions of a motion we want to study (in order
to fix the ideas, one can refer to those which generate the Poincaré sections plotted with dark
asterisks in Fig. 1), if such a motion is at least nearly quasi-periodic, then it is possible to compute
the corresponding angular velocity vector, say ν∗, by using the frequency analysis method (for
an introduction, see [20]). We have found that it is convenient to fix the values of E∗ and A∗

according to the initial conditions, hence, we consider the sequence of the angular velocity vectors
as a function of the parameter J∗, i. e., ν(r) = ν(r)(J∗). Therefore, we determine the value of J∗,
by solving the implicit equation

ν
(20)
2 (J∗) = ν∗2 , (3.8)

where we recall that the twentieth normalization step is the final one we perform in our
computational procedure and it produces H(20) whose expansion is written in (3.7) with r = 20.

The equation above can be numerically solved11) by iterating the Newton method, starting from the
approximation provided by the value of the action J(0) which corresponds to the initial conditions.
Of course, this requires that the construction of the Kolmogorov normal form be repeated several
times starting from different corresponding values of J∗. If all the aforementioned assumptions
are satisfied, then every normalization algorithm will converge as well as the Newton method.
Therefore, the whole computational procedure can be stopped when the two equations

E(20) = E∗ and ν
(20)
2 = ν∗2 (3.9)

are satisfied within a sufficiently good accuracy level. It is worth stressing the reasons why we have
imposed so unusual12) restrictions. Since we aim to compare the Poincaré sections with the solutions
obtained by constructing a KAM torus, it looks natural to require that all of them correspond to the
same energy level E∗, in order to make the numerical tests significant. Moreover, Fig. 1 highlights
the strong dependence of the amplitude of the oscillations on the distance from the elliptic torus.
The value of such a distance given in terms of the area enclosed by the orbit is expressed by the
action J (see [25]). On the other hand, for the kind of orbital motions we are interested in, the range
of possible values which can be experienced by the other action (namely, p1) is much more limited
and so also its impact on the dynamics. Therefore, since the value of J∗ plays a much more crucial
role with respect to A∗, it should be clear why we have chosen to impose also Eq. (3.8), which is
reported as the second one in formula (3.9). This final part of the computational procedure which
includes the Newton method to determine the parameter J∗ was missing in [24]. We stress that
this additional improvement has allowed us to greatly extend our results, which will be discussed
in Section 4.

The last iteration of the Kolmogorov normalization algorithm is the source of the data we are
going to study in the light of the robustness criterion discussed in [7]. Indeed, a sharp decline of

the norm ||χ(r)
2 || is associated with the convergence of the algorithm, and therefore, the lowest the

value of ||χ(20)
2 ||/||χ(1)

2 ||, the better the convergence. This is not just a numerical feature, as in the
context of this work a better convergence is linked to a most robust system.

11)Of course, in order to work properly, the Newton method requires that two conditions must be satisfied. First,
the initial approximation has to be chosen close enough to the final solution; moreover, the derivative of the
l.h.s. of Eq. (3.8) must be different from zero. This is equivalent to asking for the convexity of the Hamiltonian
with respect to the action p2 , in agreement with the usual assumptions of the KAM theorem for isoenergetically
nondegenerate systems.

12)Following the approach developed to construct KAM tori in the framework of other untrivial problems of celestial

mechanics, we should have looked for the solution of ν
(20)
j (A∗, J∗) = ν∗

j (∀ j = 1, 2) with respect to the pair of

unknowns A∗, J∗; see, e. g., [11].
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4. RESULTS

The secular model at order two in the masses is a convenient way to reduce the number of
degrees of freedom of the problem at hand while maintaning the most accuracy possible. It has
been employed both in the framework of the Solar System (as in [26]) and in the one of extrasolar
systems (see, for example, [7, 23, 37]). Overall, it has been found that, especially when the systems
are far from mean-motion resonances, the qualitative description of the dynamics given by the
secular approximation is in line with results provided by purely numerical integrations. The quasi-
periodicity of the motions and the amplitude of the oscillations of the orbital parameters are among
the quantities for which the agreement is quite solid. The differences between the two sets of results
are usually found in the periods of the evolutions. Nevertheless, for the aim of this work it is
sufficient to ensure that the main features of the systems are correctly represented. In particular,
it is essential to check the coherence of the results up to high values of the mutual inclination
between the planets, given the extent of our study. In Fig. 2 we show a comparison of the results
obtained via the integration of the Hamiltonian equations given by the secular approximation,

and the numerical integrations of the complete three-dimensional three-body problem13). Figure 2
refers to the particular system HD 4732, but similar results are found for all the systems which
are the object of this study. The plots are drawn as follows: on the x-axis we have the mutual
inclination between the two planets, in the range [0◦, 60◦], whereas on the y-axis we indicate the
orbital inclination i of the planes. This implies that following a horizontal line from left to right is
equivalent to having fixed the multiplying parameter 1/ sin i for the masses, and to increasing the
mutual inclination. The white areas of the plots are given by the restriction of the value of imut

with respect to that of i given by the relation described by Eq. (2.2). In Fig. 2 (from left to right)
we show the maximal libration amplitude of Δω along the integration (i. e., maxΔω −minΔω),
the maximal value of the eccentricity of the inner planet e1, and that of the outer planet e2. The
top row represents the results given by the secular approximation at order two in the masses, and
the bottom row represents those of the purely numerical integrations. It can be appreciated that
the agreement between the two models is very good, even for high values of the mutual inclination.

The aim of this work is to determine which values of the initial parameter (imut, i) are compatible
with the stability in the KAM sense. Given the extent and the computationally demanding nature of
this study, we need to determine an automatic criterion that allows us to establish the convergence
of the procedure described in [24]. It is a common choice to consider the behavior of the norms
of the second generating function of each step of the construction of the Kolmogorov normal form

χ
(r)
2 (briefly described in Section 3), with respect to its equivalent for the first step χ

(1)
2 .

In Fig. 3 we show the results of two initial configurations for which we reach the convergence
of the algorithm. The graphs show the Poincaré sections obtained by considering η2 = 0, with the
additional condition that ξ2 > 0. In the left panel, we report the case corresponding to i = 90◦ and
imut = 15◦, therefore, considering minimal masses (since sin i = 1) and a medium mutual inclination
value. In the right panel, we show the results for i = 74◦ and imut = 37◦, so with augmented masses
and a quite relevant inclination between the planets. In both panels, the dark asterisks are the
representation of the orbit integrated via the secular order two in the masses model. The orbit
on the invariant KAM torus is represented by a set of black crosses forming what resembles an
ellipse, whereas the elliptic torus is the single black cross centered in the said ellipse. It is possible
to appreciate how the KAM torus given as the final result of the constructive algorithm presented
in this work and in [24] perfectly overlaps with the true orbit. Therefore, the dynamics described
by our final form are coherent with the ones given by the secular approximation.

It can be seen from Fig. 3 that the algorithm can converge in very different regimes. The left
panel is an example of a pair (imut, i) for which the system shows the libration of the angle Δω, as
it is highlighted by the fact that the orbit lies within one half of the graph (ξ1 < 0, in particular).
On the other hand, the right panel shows the case where Δω is circulating, because the origin is
surrounded by the closed orbit.

13)The said integrations have been performed using an integrator of type SBAB3, as defined in [22].
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Fig. 2. Comparison of the results obtained by integrating the Hamiltonian equations given by the secular
approximation at order two in the masses (top row) and numerically integrating the complete three-body
problem (bottom row). From left to right: the maximal amplitude of the libration of the angle Δω, the
maximal value of the eccentricity of the inner planet e1, and of the outer planet e2.

Fig. 3. Poincaré section of the system HD 4732, considering η2 = 0. On the left, the case relative to the
parameters i = 90◦ and imut = 15◦. On the right, the case for i = 74◦ and imut = 37◦.

To present a more general view of the HD 4732 system, in Fig. 4 we compare the maximal
amplitude of variation of Δω with the numerical indicator to which we refer in order to evaluate

the rate of convergence of the normalization algorithm, i.e., the ratio of the norms ||χ(r)
2 ||/||χ(1)

2 ||.
It can be seen that for this specific system the convergence of the algorithm up to imut � 30◦ (that
is, in the region of the right panel of Fig. 4 where darker colors can be observed) corresponds
quite precisely to the change in the behavior of the angle Δω. We observe in fact that for lower
values of imut, Δω is librating, more precisely, around 180◦ (not shown). As the value of the mutual
inclination is increasing, we see that the angle changes to a circulation regime. Among the systems
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Fig. 4. Particular results for the system HD 4732. On the left, the maximal amplitude of the angle Δω. On

the right, the ratio of the norms of the generating function at the rth normalization step χ
(r)
2 and at the

beginning of the normalization process χ
(1)
2 .

we study in the present work, this is the only one that presents a particular feature, namely, the
existence of a small island of convergence (with Δω circulating) that is clearly separated by the
most consistent part at lower values of the mutual inclination (where Δω librates). We find the said
subset at imut � 39◦ for values of i � 80◦. We investigate if the parameter space in between these two
separate regions is characterized by more chaos. In order to study this possibility, we have performed
a more detailed numerical study of the complete three-body problem, as shown in Fig. 5. We have
considered a denser grid for the parameter space (imut, i), setting integrations each 0.1◦ along
the imut axis. For each point, we consider the parameter space of the mean anomalies (M1,M2),
varying their values in [0◦, 355◦]× [0◦, 355◦] with a grid size of 5◦. We have observed that usually
the results obtained by integrating the complete three-body problem are qualitatively independent
of the values of the mean anomalies (as the system is far from mean-motion resonances). That is to
say, the bottom row of Fig. 2 does not change considerably when considering different values of M1

and M2. By means of these more refined computations we want to study if this is still the case in the
region of the parameter space (imut, i) between the lower values of mutual inclination and the small
island. In Fig. 5 we show the difference between a standard case (i = 80◦, imut = 35.4◦, top row) and
the only case it was possible to find where significant differences can be easily noticed when varying
(M1,M2) (i = 80◦, imut = 35.5◦, bottom row). From left to right, the panels show the maximal
amplitude of the libration of Δω, the maximal value of the eccentricity of the inner planet e1, and
of the outer one e2. We see that for imut = 35.4◦ the maximal values of the eccentricities do not
change significantly, and more relevantly the behavior of Δω remains unaltered. On the other hand,
for imut = 35.5◦, not only do we find that the maximal value of e1 ranges between 0.22 and 0.4, but
also Δω can either circulate or librate depending on the values of (M1,M2). As previously stated,
though, this latter case constitutes a very specific exception, which was not found in other regions
of the parameter space.

Let us now discuss the results for all the different extrasolar planetary systems considered in

the study. In Fig. 6 we show the results concerning the ratio of ||χ(r)
2 ||/||χ(1)

2 ||, and consequently
the convergence of the construction algorithm, as previously discussed. The darkest areas in the
plots identify the subset of the parameter space (imut, i) for which we obtain the convergence of the
algorithm, where in the light regions the procedure does not reach its completion. We see that for
the nine systems displayed in Fig. 6 the main feature determining the convergence of the algorithm
is the mutual inclination between the two planets. However, in some cases the border between the
darker regions and the lighter ones (which are KAM stable/unstable, because our computational
algorithm of invariant tori converges/diverges, respectively) is far from being a simple vertical
segment. For instance, in the bottom-right panel referring to HD 74156 we can appreciate that the
rightmost dark pixels nicely describe a sort of arc; this suggests that in this case the transition
from stability to instability should also depend on the orbital inclinations i1 and i2 in an untrivial
way. Overall, we stress that we are able to construct KAM tori up to medium to high values of the
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Fig. 5. Results obtained in the parameter space of the mean anomalies (M1,M2) for a fixed value of i = 80◦

and for imut = 35.4◦ (top row) and imut = 35.5◦ (bottom row). From left to right: the maximal amplitude of
the libration of the angle Δω, the maximal value of the eccentricity of the inner planet e1, and of the outer
planet e2.

mutual inclination, which are comparable with those actually observed in the few cases for which
we have a clear estimate of imut, such as the almost 30◦ of υ Andromedæ (see [7, 28]).

It seems hard to recognize general rules when Figs. 6 and 7 are compared. In the latter, the
results about the maximal amplitude of the variation of Δω are reported for the same exoplanetary
systems already considered in the former. For most of them the stable region corresponding to low
values of the mutual inclination has lighter color, because the angle Δω experiences a full rotation.
As far as HD 11506, HD 207832 and HD 12661 are concerned, the difference of the arguments of the
pericenters is in a libration regime. Except in the last case, the center of libration of Δω (not shown)
is 180◦ for the HD 4732 system, while the libration of Δω is around 0◦ for HD 12661. We stress that,
in our settings of coordinates, 0◦ and 180◦ correspond to the condition of the apsidal alignment and
the anti-alignment configuration, respectively. The stabilizing role played by the latter configuration
was discussed in [7, 32]. By comparing each panel of Fig. 6 with the corresponding one in Fig. 7, one
can appreciate that the border of the region where the algorithm looks convergent has approximately
the same shape of the transition zone from the librational regime to the rotational one. Moreover,
the profile corresponding to the change of colors for the maximal amplitude of the variation of Δω
often overestimates the area where the normalization procedure is successful. This remark is not
surprising at all, because the former quantity is evaluated thanks to purely numerical integrations
of the secular model, while the latter is based on the semianalytical approach we widely described
in the previous section.

Of all the systems listed in Table 1, there are two which have not been discussed yet, i. e.,
HD 183263 and HD 147873. This is due to the fact that no points of the parameter space
(imut, i) led to the successful conclusion of the constructive algorithm. In Fig. 8 we show the
Poincaré sections for i = 90◦ and imut = 1◦, that is, the case in which we consider the masses to be
minimal and the system to be almost coplanar. In the left panel, we present the results concerning
HD 183263, whereas in the right panel we show those relating to HD 147873. It can be seen how
the representation of the true orbit on the Poincaré section is quite distorted with respect to those
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Fig. 6. Ratio of the norms of the second generating functions (as they are determined during the normalization
algorithm) for all the initial conditions considered.

pictured in Fig. 3. As the algorithm is optimized to cases as the ones presented in Fig. 3, which are
found in the vast majority of the systems considered, it performs less well in this framework. More
specifically, in the case of HD 183263 the procedure for the construction of the KAM torus does
not converge, whereas for HD 147873 it is the procedure concerning the elliptic torus that could
not be completed.

5. CONCLUSIONS AND PERSPECTIVES

In this work, we studied the stability of 12 extrasolar systems with respect to their orbital
and mutual inclinations, which are currently unknown. Varying the values of these parameters
drastically changes the structure of the systems. This concerns both their masses (which must
be corrected by multiplying their values by the factor 1/ sin i) and their mutual interaction. We
studied their stability in the KAM sense, therefore, we evaluated the compatibility of the initial
conditions with the construction of KAM tori. The complete procedure relies on three main blocks:
the introduction of the secular model at order two in the masses, the construction of a 1-dimensional
elliptic torus, and the subsequent construction of a KAM torus well approximating the secular
orbital motion. The adoption of the elliptic torus as seed for the KAM algorithm has proven to
be crucial (see [7]) in order to be able to apply the method to systems that can be very different
from the Solar System, for which the method was initially constructed (see, for example, [26]). A
previous study missing this step gave encouraging but not completely satisfactory results, especially
considering the limitations to the systems to which it was applicable (see [37]).

Here, we have applied the method to several systems. For most of them, it was possible to
determine relevant subsets of the parameter space of the inclinations that are compatible with the
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Fig. 7. Maximal amplitude of the libration of the angle Δω as a function of all the initial conditions considered.
The exoplanetary systems considered here are exactly the same as in Fig. 6.

Fig. 8. Poincaré section for η2 = 0. On the left, the case relating to the system HD 183263 for i = 90◦ and
imut = 1◦. On the right, the case relating to the system HD 147873 for i = 90◦ and imut = 1◦.

stability in the KAM sense. From the results we achieved, it is clear that the main factor contributing
to the stability or lack thereof is the mutual inclination between the planets. .Nevertheless, for most
of the cases it was possible to reach values up to � 30◦, or anyway values that are compatible with
the few systems for which observations have provided clear evaluations of the mutual inclination.
From an astronomical point of view, we think that the maps we produced about the KAM stability of
the extrasolar planetary systems as functions of the (mutual) inclinations are the most interesting
results of our work. In fact, they allow one to locate ranges of values of some unknown orbital
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elements, for which the mutual perturbations are so small that the three-body skeletons of those
systems are robust enough to support the eventual presence of other exoplanets not yet detected.
In other words, this provides a quantitative criterion to consider some orbital configurations more
probable than others.

There are also two systems for which no results could be gathered, HD 183263 and HD 147873,
because of a failure at some stage of our computational algorithm based on the previously described
“three blocks scheme”. For both these extrasolar planetary systems, the Poincaré sections show that
the actual orbits are quite different from the more regular ellipses drawn by the successful cases
(for the sake of brevity, we limited the report of this kind of plots in the paradigmatic case we have
studied more in depth, i.e., HD 4732). As a future challenge, we will try to further refine the whole
algorithm constructing the final Kolmogorov normal form, so as to successfully extend it also to
the configurations that have not yet been covered by our approach.
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