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Abstract—We compute the trace formula for the magnetic Laplacian on a compact hyperbolic
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1. INTRODUCTION

We consider a classical mechanical system which describes the motion of a charged particle in
an external magnetic field on a Riemannian manifold. In addition to the dynamical and variational
problems for such flows, which have been intensively studied over the last years, there are many
interesting questions concerning the relations between the classical dynamics and the spectral
properties of the corresponding quantum Hamiltonian, which is given by the magnetic Laplacian.
Recently we have addressed a few of them in [14, 15]. In [15] we constructed the quasi-classical
approximation for the eigenfunctions of the magnetic Laplacians. This article continues the research
started in [14].

We study the Guillemin –Uribe trace formula for magnetic geodesic flows on hyperbolic surfaces
with a constant magnetic field and on sufficiently low energy levels. The dynamics in this situation
is mostly determined by the ratio

√
E0/B where E0 = |p|2 is the squared norm of the momentum

and the magnetic field takes the form B dvol where dvol is the area form corresponding to the
hyperbolic metric. Without loss of generality, we assume that B = 1. Then the level

E0 = μ0 := 1

is known as the Mane critical level [4, 7] for this system which is integrable for E0 < 1 and chaotic
for E0 > 1.

The magnetic geodesic flow on a Riemannian manifold (M,g) is determined by a magnetic
field F , which is a closed 2-form. The magnetic Laplacian is defined iff F satisfies the integrality
condition

[
F
2π

]
∈ H2(M ;Z). In this case one can define the Hermitian line bundle L on M with a

Hermitian connection such that F is the curvature of this connection and the family of the magnetic

Laplacians ΔLN
, N ∈ N, acting on sections of its tensor powers LN .
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Let us denote by νN,j, j = 0, 1, 2, . . ., the eigenvalues of ΔLN
taken with multiplicities and put

λN,j =
√

νN,j +N2. Given a constant E > 1 and an arbitrary function ϕ ∈ S(R), let us introduce
the sequence

YN (ϕ) =

∞∑

j=0

ϕ(λN,j − EN), N ∈ N.

The Guillemin –Uribe trace formula [13] describes the asymptotic expansion of YN as N → ∞ in
terms of the magnetic geodesic flow on the energy surface E0 = |p|2 = E2 − 1 under some additional
assumption (the cleanness of the flow):

YN (ϕ) ∼
∞∑

k=0

ck(N,ϕ)NdimM−1−k, N → ∞,

where ck(N,ϕ) are bounded in N . Considered as functionals of the Fourier transform ϕ̂, the
coefficients ck are distributions supported in the union of zero and the period set of closed magnetic
geodesics. They are rapidly oscillating in N and the frequencies of these oscillations are given by
the actions of closed magnetic geodesics. The contribution of zero is often called the Weyl term,
because it is related to the asymptotic formula for the eigenvalue distribution function.

In [14] we considered the constant magnetic fields on compact hyperbolic surfaces and computed
the first two coefficients c0 and c1 of this expansion for the energy levels below the Mane critical
level, i. e., for E0 < 1 (Theorem 2). Here we do that for E0 � 1 (Theorem 3).

The coefficients of the trace formula depend on the energy level E0 as follows:

• for E0 < 1, i. e., below the Mane critical level, the classical dynamics is integrable, the
flow is periodic, and periodic trajectories are lifted to hyperbolic circles on the universal
covering. The periodic orbits form two-dimensional Liouville tori which contribute to the
leading coefficient c0;

• for E0 = 1, i. e., on the Mane critical level, the classical dynamics is given by the horocyclic
flow which has no nontrivial periodic orbits. Therefore, the trace formula reduces to the Weyl
term. We can also observe the convergence of the contribution of closed magnetic geodesics
to 0 as E0 → 1. This happens because the periods of primitive closed magnetic geodesics go
to infinity as E0 → 1 (both from below and from above);

• for E0 > 1, i. e., above the Mane critical level, the magnetic geodesic flow is chaotic. The closed
magnetic geodesics are noncontractible, nondegenerate, and isolated. They don’t contribute
to the leading coefficient c0, which coincides with the Weyl term in this case. The magnetic
system looks similar to the system, which describes the motion of a free particle on the
surface. This can be seen both at the classical and quantum level. At the classical level, the
magnetic geodesic flow for the energy level E0 is conjugated to the Riemannian geodesic flow.
At the quantum level, there is a relation between the spectrum of the magnetic Laplacian

ΔLN
on the half-line (N2,∞) and the spectrum of the Laplace –Beltrami operator. One

should note that the coefficient at N2 here is exactly the Mane critical level μ0 = 1. We use
these facts to give an alternative computation of the trace formula, reducing it to the case
of the Laplace –Beltrami operator.

In [21] the second author (I.A.T.) showed how to construct an additional real-analytic first
integral for this system below the Mane critical level. Regretfully, due to the brevity of the original
communication the scenario of the degeneration of these integrals as the energy tends to the Mane
cirtical level was skipped. For completeness we expose it here in Theorem 1.

2. CLASSICAL SYSTEM

Let M2 be a surface with a metric of constant negative curvature K. This means that it is
isometric to the quotient of the space H with respect to some discrete group Γ which acts by
isometries.

REGULAR AND CHAOTIC DYNAMICS Vol. 27 No. 4 2022



462 KORDYUKOV, TAIMANOV

We consider two models of H which are helpful for different reasons:

1) H is the upper half-plane {(x, y) ∈ R
2 : y > 0} endowed with the metric

g =
dx2 + dy2

y2
. (2.1)

The curvature of this space is equal to

K = −1

and the full isometry group is PSL(2,R) = SL(2,R)/ ± 1 which acts by fractional linear transfor-
mations:

z = x+ iy → az + b

cz + d
, det

⎛

⎝ a b

c d

⎞

⎠ = 1.

2) Let us take the (1 + 2)-dimensional Minkowski space R
3
1,2 endowed with the metric

ds2 = dt2 − dx2 − dy2

and consider in it the pseudosphere

t2 − x2 − y2 = 1

endowed with the induced metric (multiplied by −1). In the pseudospherical coordinates ρ, r, ϕ
such that

t = ρ cosh r, x = ρ sinh r cosϕ, y = ρ sinh r sinϕ

the pseudosphere and the induced metric are as follows:

ρ = 1, ds2 = dr2 + sinh2 rdϕ2.

The full isometry group of the pseudosphere is O0(1, 2), the connected component of the unity
in the group O(1, 2) of pseudoorthogonal linear transformations of R3

1,2. Therefore, r and ϕ are
coordinates on the pseudosphere and the mapping

(r, ϕ) → z = i
1− w

1 + w
, w =

sinh r

1 + cosh r
eiϕ, (2.2)

establishes an isometry of the pseudosphere to the upper half-plane with the metric (2.1).
By a constant magnetic field on a surface we mean a two-form F = Bdvol which is a constant

multiple of the volume form. In our case

F = B
dx ∧ dy

y2
or F = B sinh rdr ∧ dϕ, (2.3)

where B is a constant.

2.1. The Lagrangian Formalism

The motion of a charged particle in an arbitrary magnetic field is described by the Euler –
Lagrange equations for the Lagrangian

L(x, ẋ) = |ẋ|2
2

+Aiẋ
i, x ∈ M, ẋ ∈ TxM,

where A = Aidx
i is the vector potential of the magnetic field. In our case we take

A =
B

y
dx or A = B cosh rdϕ. (2.4)

We prefer to use the pseudosphere model for calculations. The Lagrangian takes the form

L =
1

2
(ṙ2 + sinh2 rϕ̇2) +B cosh rϕ̇.
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The Euler –Lagrange equations for this Lagrangian are as follows:

r̈ = sinh r ϕ̇(cosh r ϕ̇+B),
d

dt
(sinh2 r ϕ̇+B cosh r) = 0.

We have two first integrals: the kinetic energy

E0

2
=

1

2
(ṙ2 + sinh2 rϕ̇2),

and, since ∂L
∂ϕ = 0, the momentum with respect to ϕ

I = sinh2 r ϕ̇+B cosh r.

Since O0(1, 2) acts on the pseudosphere transitively, given a trajectory c(t) = (r(t), ϕ(t)), we
may assume that

ṙ = 0 for t = 0.

If in addition

cosh r ϕ̇+B = 0,

then r̈ = 0 and the trajectory has the form

r = const, ϕ = − B

cosh r
t+ ϕ0, ϕ0 = const.

It is easy to calculate that in this case

E0

2
=

B2 tanh2 r

2
.

Therefore, we derive

Proposition 1. If 0 < E0 < B2, then all trajectories are circles of radius

RE0 =
1

2
log

1 + u

1− u
with u =

√
E0

B ,

i.e.,

tanhRE0 =

√
E0

B
.

Remark. For surfaces of constant positive curvature K = 1 analogous calculations show that
for every energy E0 all trajectories are circles of radius

RE0 = arctan

√
E0

B
.

Hyperbolic cirles (E0 < B2
). By (2.2), it is shown that the circles of radius R centered at the

origin are mapped into Euclidean circles (on the upper-half plane with the metric (2.1)) of radius
r = sinhR centered at z = i coshR. Since the hyperbolic circles are invariant under the actions of

⎛

⎝ λ1/2 aλ−1/2

0 λ−1/2

⎞

⎠ ∈ SL(2,R),

where λ is real and positive and a ∈ R, we conclude that all hyperbolic circles of radius r are
realized by Euclidean circles with center at z and radius ρ where

z = iλ coshR+ a, ρ = λ sinhR, λ ∈ R
+, a ∈ R. (2.5)

By simple computation, it can be shown that the geodesic curvature κ of the hyperbolic circle of
radius R satisfies the equality

κ
2 =

1

tanh2 R
=

B2

E0
> 1.
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Horocycles (E0 = B2
). The formula (2.5) in the limit

r → ∞, λ → μ

sinhR

gives us the horocycles which are realized by Euclidean circles with center at z0 and radius ρ0 where

z0 = iμ+ a, ρ0 = μ, μ ∈ R
+, a ∈ R.

To complete the description of horocycles, we have to add the images of these circles by the action
of PSL(2,R) which are Euclidean lines

y = const > 0.

They correspond to the case when the horocycle touches {y = 0} at the infinite point a = ∞. For
the geodesic curvature κ of a horocycle we have

κ
2 =

B2

E0
= 1.

2.2. The Hamiltonian Formalism

In the Hamiltonian formalism, the motion of a charged particle in the magnetic field (2.3)
is described by the magnetic geodesic flow, which is the Hamiltonian flow on the phase space
X = T ∗M equipped with the twisted symplectic form

Ω = dpx ∧ dx+ dpy ∧ dy +
B

y2
dx ∧ dy.

We have to remark that we consider two different Hamiltonian functions: the kinetic energy

H0 =
y2(p2x + p2y)

2
=

|p|2
2

and the Hamiltonian

H = (2H0 + 1)1/2 =
(
y2(p2x + p2y) + 1

)1/2
,

which is more relevant for our considerations of the trace formula, and denote by E0/2 and E the
values of H0 and H, respectively. There is a relation

E0 = E2 − 1.

The corresponding Hamiltonian flows are related by time reparameterization.
The Hamiltonian system defined by H has the form

ẋ =
y2

H
px, ẏ =

y2

H
py, ṗx =

B

H
py, ṗy = − y

H
(p2x + p2y)−

B

H
px. (2.6)

Denote

XE = H−1(E) = {y2(p2x + p2y) = E2 − 1}. (2.7)

It is easy to see that E > 1 is a regular value of H, and, therefore, XE is a smooth submanifold of
T ∗M . The reduction of the system (2.6) to XE is given by

ẋ =
y2

E
px, ẏ =

y2

E
py, ṗx =

B

E
py, ṗy = − y

E
(p2x + p2y)−

B

E
px.

Let us introduce on XE = {y2(p2x + p2y) = E0} the coordinates (x, y, θ):

px =

√
E0

y
cos θ, py =

√
E0

y
sin θ

in which the system takes the form

ẋ =

√
E0

E
y cos θ, ẏ =

√
E0

E
y sin θ, θ̇ = −

√
E0

E
cos θ − B

E
. (2.8)
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This system has an evident conservation law:

f =
θ̇

y
,

df

dt
= 0.

Therefore,

θ̇ = cy for some constant c.

If c = 0, then the system has a solution whose trajectory is a Euclidean line. This is possible if
√
E0

E
cos θ +

B

E
= 0

for some θ. We rewrite the last equality as

cos θ = − B√
E0

. (2.9)

Since −1 � cos θ � 1, such a θ exists if and only if

E0 � B2.

The case E0 = B2 corresponds to horocycles and the remaining case to hypercycles.

Hypercycles (E0 > B2
) are given by the Euclidean lines which meet the axis {y = 0} at the

constant angle θ satisfying (2.9) and the images of these lines under the action of PSL(2,R). Let
us take such a line and consider another line which meets the axis {y = 0} at the same point and is
orthogonal to it. It is a trajectory of the geodesic flow. It is easy to notice that the hypercycle and
this geodesic are equidistant. Therefore, for any hypercycle there exists an equidistant geodesic,
the distance is the same for all hypercycles, and these two flows are conjugate after a constant time
scaling. The formula for the geodesic curvature κ of hypercycles looks the same as for hyperbolic
cycles and horocycles:

κ
2 =

B2

E0
< 1.

2.3. The Lie Group Approach

Let us consider the ANK decomposition of the group PSL(2,R):
⎛

⎝y1/2 0

0 y−1/2

⎞

⎠

⎛

⎝1 x

0 1

⎞

⎠

⎡

⎣

⎛

⎝ cos ϕ
2 sin ϕ

2

− sin ϕ
2 cos ϕ

2

⎞

⎠/
⎛

⎝±1 0

0 ±1

⎞

⎠

⎤

⎦ ,

where x, y ∈ R and y > 0. It gives a unique representation of an element from PSL(2,R) as a
product of elements from the canonical subgroups A, N , and K. Since the inversion g → g−1

maps the ANK decomposition into the KNA decomposition and the products of subgroups AN
and NA coincide, we have the canonical KAN decomposition which is also known as the Iwasawa
decomposition.

The KNA decomposition was used in [11] for describing the geodesic flow on H. There is the
isomorphism

PSL(2,R) → SH ∼= {(x, y, px, py) : y2(p2x + p2y) = 1}
of the form

(x, y, ϕ) →
(
x, y, px =

1

y
cos

(
ϕ+

π

2

)
, py =

1

y
sin

(
ϕ+

π

2

))
,

i. e., θ = ϕ+ π
2 .

The geodesic which starts at i ∈ H and is directed along the imaginary axis is the orbit of
i under the action of A. Hence, all geodesic orbits are uniquely parametrized by elements from
KN ⊂ PSL(2,R).
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The Lie algebras of the one-dimensional subgroups A,N , and K are generated by

e1 =

⎛

⎝1/2 0

0 −1/2

⎞

⎠ , e2 =

⎛

⎝0 1

0 0

⎞

⎠ , e3 =

⎛

⎝ 0 1/2

−1/2 0

⎞

⎠ .

It is clear that under the isomorphism SH ∼= PSL(2,R) the left-invariant vector field corresponding
to e3 is

V3 =
∂

∂ϕ

and such a field corresponding to e1 is

V1 = −y sinϕ
∂

∂x
+ y cosϕ

∂

∂y
+ sinϕ

∂

∂ϕ
.

Let us rewrite (2.8) as the equations on SH:

ẋ = −αy sinϕ, ẏ = αy cosϕ, ϕ̇ = α sinϕ+ β (2.10)

with

α =

√
E0

E
, β = −B

E
, (2.11)

and notice that they describe the motion along trajectories of the left-invariant vector field

αV1 + βV3.

Denote by Φα,β
t the flow given by the right translation by exp(t(αE1 + βE3)). Since

det(αV1 + βV3) = −1/4(α2 − β2) = −1

4

E0 −B2

E2
,

we have to specialize three cases when det > 0,det = 0, and det < 0:

1) det > 0, i. e., E0 < B2: the hyperbolic cycles;

2) det = 0, i. e., E0 = B2: the horocycle flow;

3) det < 0, i. e., E0 > B2: the hypercycle flow. In this case the flow Φα,β
t is conjugate to the flow

Φδ,0
t for certain δ. For B = 1 the condition det < 0 is equivalent to

E >
√
2 or E0 > 1.

The constant δ can be found from the condition

det(αV1 + βV3) = det(δV1) = −1

4
δ2,

which gives δ =

√
E0−B2

E . This approach to describing magnetic geodesic flows was initiated in [20]

(see also [3, 4]).
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2.4. The (Mane) Critical Level

The qualitative behavior of the magnetic geodesic flow on M depends on the ratio τ = B2

E0
.

Since the flow on H is completely integrable, we see from the exact formulas for trajectories that
the dynamics is different for τ < 1, τ = 1 and τ > 1.

At the beginning of the 1960s just after the emergence of the Kolmogorov entropy theory Arnold
had shown that, given B = 1, if the metric entropy (with respect to the Liouville measure) of
the geodesic flow is equal to h(0), then the metric entropy of the hypercycle flow is equal to

h(κ) = h(0)
√
1− κ2 and it vanishes for κ2 � 1 [1].

The relation of this flow of linear elements to magnetic fields was not discussed in [1] and
probably it was first considered by Ginzburg [12] who pointed out that the horocycle flow on a
closed hyperbolic surface gives an example of a magnetic geodesic flow without periodic trajectories.
Until recently this was the only known such example.

A systematic study of magnetic geodesic flows started in the early 1980s [17]. Therewith, such
flows appeared as reductions of mechanical systems (the Kirchhoff equation, mechanical tops)
and their periodic trajectories do not describe motions of charge particles in real magnetic fields.
Although great progress was achieved in the study of the periodic variational problem for such
systems, the original periodic problems for explicit mechanical systems mostly remain unsolved [18].

In [21] the second author (I.A.T.) mentioned that for τ > 1 the flow is easily integrable and its
additional (to the kinetic energy) first integral F can be constructed from any smooth function
f : M → R on the hyperbolic surface M . Indeed, for every point q = (p.ξ) ∈ SM we consider the
hyperbolic circle γ on M such that γ(0) = p, γ̇(0) = ξ, take the center cγ of this circle and put

F (q) = f(cγ).

These integrals were successfully used in [2] for a quantization of periodic magnetic geodesics.

As τ → 1 the integrability disappears and for τ < 1 the flow is chaotic.

Due to the brevity of a short communication [21], the scenario of the degeneration of the first
integral F was skipped and we describe it here.

Let us assume that E0 = 1. Take

p ∈ M, ξ ∈ TpM, |ξ| = 1, q = (p, ξ),

η ∈ TpM such that ξ ⊥ η, ξ ∧ η < 0.

Let us draw the geodesic γp,ξ : [0,∞) → M with the inital data γp,ξ(0) = p, γ̇p,ξ(0) = ξ.

Theorem 1. Given E0 = 1, B > 1, and a smooth function f : M → R, we have the first inte-
gral FB:

FB(p, ξ) = f

(
γp,ξ

(
1

2
log

(
B + 1

B − 1

)))
.

Regular contours lying on an energy level FB = const give rise to invariant two-dimensional tori.
As B → 1 the first integral FB degenerates.

From the modern point of view this example is considered as a particular case of the Mane
critical level [4, 7]. Given B = 1, the energy level E0 = 1 is (Mane) critical. We skip its definition
here; however, in the rest of the article we study how transition through the critical level affects
the (Guillemin –Uribe) trace formula for the magnetic geodesic flow.
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3. QUANTUM SYSTEM AND TRACE FORMULA

3.1. Quantum Hamiltonian

To quantize a classical magnetic system on a Riemannian manifold (M,g) defined by a magnetic

field F , it is necessary that the de Rham cohomology class of the form 1
2πF be integral:

[
1

2π
F

]
∈ H2(M ;Z).

In this case, it is the first Chern class of a line bundle L on M :

c1(L) =

[
1

2π
F

]
,

and the quantum Hamiltonian ΔL (the magnetic Laplacian) acts on sections of L. Its definition

depends on the choice of a Hermitian connection ∇L on L (a vector potential of the magnetic field).

For the upper half-plane model of the hyperbolic plane H endowed with metric (2.1) and constant

magnetic field (2.3) with an arbitrary B, we can take the Hermitian line bundle L̃ to be trivial and

the connection form of the connection ∇L̃ on L̃ to be given by (2.4). The corresponding magnetic
Laplacian on H is given by

ΔB = −y2

((
∂

∂x
− iBy−1

)2

+
∂2

∂y2

)

.

Such an operator first appeared in the theory of automorphic forms, where it is known as the Maass
Laplacian. More precisely, it is related to the Maass Laplacian

DB = y2
(

∂

∂x2
+

∂2

∂y2

)
− 2iBy

∂

∂x

by the formula

ΔB = −DB +B2.

The relation between magnetic trajectories on the hyperbolic plane and the corresponding spectral
properties of the magnetic Laplacian was first discussed in [5] where it was also observed that the
magnetic Laplacian on the hyperbolic plane is given by the Maass operator.

For a compact hyperbolic surface M = Γ \H, where Γ ⊂ PSL(2,R) is some discrete group of
isometries, endowed with metric (2.1) and constant magnetic field (2.3), the Hermitian line bundle
L exists iff the quantization condition

(2g − 2)B ∈ Z

holds true, where g is the genus of M .

Under this assumption, we can choose a Hermitian line bundle LB on M such that its smooth
sections on M are identified with smooth functions ψ on H, satisfying the condition

ψ(hz) = ψ(z) exp(i2B arg(cz + d)) =

(
cz + d

|cz + d|

)2B

ψ(z) (3.1)

for any z ∈ H and h =

⎛

⎝a b

c d

⎞

⎠ ∈ Γ.

We will fix B = 1 and denote by L the Hermitian line bundle LB for B = 1. For any N ∈ N,
the bundle LN is the Nth tensor power of L, LN = L⊗N , and the space C∞(M,LN ) of its smooth
sections is identified with the space FN of smooth functions ψ on H, satisfying condition (3.1)
with B = N . The parameter N plays the role of a semiclassical parameter for the symplectic
manifold (M,F ), and the limit N → ∞ can be considered as the semiclassical limit. One can show
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that DN : FN → FN . Therefore, the magnetic Laplacian ΔLN
on C∞(M,LN ) corresponds to the

restriction of the operator −DN +N2 to FN under isomorphism C∞(M,LN ) ∼= FN .

The spectrum of ΔLN
is computed by means of the Maass operators [16], which are first-order

differential operators on H given by

KN = (z − z̄)
∂

∂z
+N = 2iy1−N ∂

∂z
yN ,

LN = (z̄ − z)
∂

∂z̄
+N = −2iy1+N ∂

∂z̄
y−N .

Recall some basic properties of these operators:

KN = L−N , K∗
N = −LN+1.

DN = LN+1KN +N(N + 1) = KN−1LN +N(N − 1).

DN+1KN = KNDN , DNLN+1 = LN+1DN+1.

KN : FN → FN+1, LN : FN → FN−1.

For the magnetic Laplacian ΔLN
, we have

ΔLN
= K∗

NKN −N = L∗
NLN +N.

Using the Maass operators, one can compute the spectrum of ΔLN
on the interval [0, N2] [19]

(see also [6, 8, 10]). It consists of eigenvalues

ν
(i)
N,k = (2k + 1)N − k(k + 1), 0 � k � N − 1, (3.2)

with multiplicity

mN,k = (g − 1)(2N − 2k − 1), 0 � k � N − 1.

The theory of Maass operators also allows us to relate the spectrum of ΔLN
on the half-line

(N2,∞) to the spectrum of the Laplace –Beltrami operator on M . More precisely, let ΔH denote
the Laplace –Beltrami operator of the metric (2.1) on H:

ΔH = −y2
(

∂

∂x2
+

∂2

∂y2

)
= −D0

and ΔM denote the Laplace –Beltrami operator on M . The operator ΔM on C∞(M) corresponds
to the restriction of the operator ΔH = −D0 to F0 under isomorphism C∞(M) ∼= F0. Denote by

λ0 = 0 < λ1 � λ2 � . . . , λj → +∞,

the eigenvalues of ΔM (taking into account multiplicities):

ΔMψ
 = λ
ψ
, ψ
 ∈ C∞(M) ∼= F0.

Using the properties of the Maass operators, one can show (see, for instance, [9, p. 146]) that
the functions

uN,
 =
1

cN,j
KN−1 . . . K0ψ
 ∈ FN ,

with some suitable constants cN,
, are orthonormal eigenfunctions of DN with the eigenvalue −λ
.

It follows that the eigenvalues of the magnetic Laplacian ΔLN
on the half-line (N2,∞) are given

by

ν
(c)
N,
 = λ
 +N2, � = 0, 1, 2, . . . . (3.3)
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3.2. The Trace Formula

Let (M,g) be a compact Riemannian manifold equipped with a magnetic field F , satisfying the
integrality condition, L the associated Hermitian line bundle on M with Hermitian connection and

ΔLN
, N ∈ N, the magnetic Laplacian, acting on sections of LN . Denote by {νN,j, j = 0, 1, 2, . . .}

the eigenvalues of ΔLN
taken with multiplicities. Put

λN,j =
√

νN,j +N2. (3.4)

Fix E > 1. For an arbitrary function ϕ ∈ S(R), we introduce the sequence

YN (ϕ) =

∞∑

j=0

ϕ(λN,j − EN), N ∈ N. (3.5)

The Guillemin –Uribe trace formula [13] describes the asymptotic expansion, as N → ∞, of the
sequence YN given by (3.5) with some E > 1 and ϕ ∈ S(R) with compactly supported Fourier
transform in terms of the magnetic geodesic flow on the energy level XE (see (2.7)) under the
assumption that the flow is clean. A survey of basic notions and results related to the Guillemin –
Uribe trace formula is given in [14]. In [14], we have also provided some concrete examples of its
computation. In particular, we computed the trace formula in the current setting of hyperbolic
surfaces with constant magnetic fields in the case 1 < E <

√
2. We note that the threshold value

E =
√
2 corresponds exactly to the Mane critical level μ0 = 1 discussed above. Let us recall the

result.
Let M = Γ \H be the compact hyperbolic surface endowed with metric (2.1) and constant

magnetic field (2.3) with B = 1 and let L = L1 be the Hermitian line bundle on M defined
by (3.1) with Hermitian connection defined by (2.4). In this case, the set {νN,j , j = 0, 1, 2, . . .} of the
eigenvalues of ΔLN

is the union of two parts {ν(i)N,k, k = 0, 1, . . . , N − 1} and {ν(c)N,
, � = 0, 1, 2, . . .}
given by (3.2) and (3.3), respectively (taking into account the multiplicities). Denote by ϕ̂ the
Fourier transform of ϕ.

Theorem 2 ([14], Theorem 7). For any ϕ ∈ S(R) and 1 < E <
√
2, i. e., 0 < E0 = |p|2 < 1,

one has an asymptotic expansion

YN (ϕ) ∼
∞∑

j=0

cj(N,ϕ)N1−j , N → ∞,

where the coefficients cj(N,ϕ) are bounded in N .

The coefficients cj can be computed explicitly. For the first two of them, we get

c0(N,ϕ) = (2g − 2)Eϕ̂(0)

+ (2g − 2)E
∑

k �=0

ϕ̂

(
2πkE√
2− E2

)
exp(ikπ) exp

(
2πik

√
2− E2N

)
,

c1(N,ϕ) = (2g − 2)2iϕ̂′(0) +

[
∑

k �=0

(2g − 2)2iϕ̂′
(

2πkE√
2− E2

)

+
∑

k �=0

(2g − 2)
πikE

4
√
2− E2

ϕ̂

(
2πkE√
2− E2

)

+
∑

k �=0

(2g − 2)i
2πikE

(2 − E2)3/2
ϕ̂′′

(
2πkE√
2− E2

)]

× exp(ikπ) exp
(
2πik

√
2− E2N

)
.
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In this paper we complete the computation of the Guillemin –Uribe trace formula for this
example, considering the case E �

√
2.

Theorem 3. For any ϕ ∈ S(R) with compactly supported Fourier transform and E �
√
2, i. e.,

E0 = |p|2 > 1, one has an asymptotic expansion

YN (ϕ) ∼
∞∑

j=0

cj(N,ϕ)N1−j , N → ∞, (3.6)

where the coefficients cj(N,ϕ) are bounded in N .

We have

c0(N,ϕ) = (2g − 2)Eϕ̂(0), (3.7)

and, if supp ϕ̂ ⊂ R \ {0}, then for E >
√
2,

c1(N,ϕ) =
∑

h∈{Γ}p

∑

k �=0

logN(h)

2π(N(h)k/2 −N(h)−k/2)

E√
E2 − 2

× ϕ̂

(
E√

E2 − 2
k logN(h)

)
exp

(
−ik logN(h)

√
E2 − 2N

)
, (3.8)

where {Γ}p is the set of representatives of primitive conjugacy classes in Γ and N(h) stands for

the norm of h (see below for the definition), and for E =
√
2,

cj(N,ϕ) = 0, j = 1, 2, . . . . (3.9)

We give two proofs of this theorem. The first proof uses directly the general Guillemin –Uribe
formula and the description of the magnetic geodesic flow given in Section 2.3. In the second proof,
we use the results of Section 3.1 to reduce our considerations in the case E >

√
2 to a spectral

problem for the scaled Laplace –Beltrami operator, where we apply a version of the Guillemin –
Uribe trace formula for the Laplace –Beltrami operator.

3.3. The Case E �
√
2: Direct Computation

Since all periodic trajectories of the magnetic geodesic flow φ are nondegenerate, the existence
and the form of the asymptotic expansion (3.6) follow from the general Guillemin –Uribe formula.
It remains to compute the coefficients. Each coefficient is represented as an infinite sum, and each
term of the sum corresponds either to 0 or to a periodic trajectory. The contribution of 0 to c0(N,ϕ)
is given by

c
(0)
0 (N,ϕ) = (2π)−2ϕ̂(0)Vol(XE). (3.10)

In the current setting, the same computation as in [14] gives (3.7).

Let E >
√
2. Since each periodic trajectory γ ⊂ XE is nondegenerate (i. e., the map I − Pγ

is invertible, where Pγ denotes the linear Poincaré map of γ), the contributions c
(γ)
0 (N,ϕ) and

c
(γ)
1 (N,ϕ) of γ into the formulas for the leading coefficient c0(N,ϕ) and the next term c1(N,ϕ),
respectively, are given by

c
(γ)
0 (N,ϕ) = 0, c

(γ)
1 (N,ϕ) =

T#
γ eπimγ/4

2π|det(I − Pγ)|1/2
e−iNSγ ϕ̂(Tγ), (3.11)

where T#
γ and mγ are the primitive period and the Maslov index of γ, respectively. Note that here

we use a slightly different notation than in [14].

Recall that the lift of the magnetic geodesic flow on XE to T ∗
H is isomorphic to the flow Φα,β

t on
SH given by the right translation by exp(t(αE1 + βE3)) with α and β given by (2.11). Therefore,
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the lift of a periodic trajectory γ ⊂ XE is given by the curve {g exp(t(αE1 + βE3)), t ∈ [0, T ]} such
that

g exp
(
T (αE1 + βE3)

)
= hg (3.12)

with some T and h =

⎛

⎝a b

c d

⎞

⎠ ∈ Γ. It is clear that γ depends only on the conjugacy class {h}Γ of

h in Γ, and the trajectory γ is primitive if and only if the conjugacy class {h}Γ is primitive. One
can show that for any primitive conjugacy class {h}Γ in Γ there exists a unique primitive periodic
trajectory γ ⊂ XE which satisfies (3.12) with some h ∈ {h}Γ.

Since the group Γ is cocompact, each element h ∈ Γ \ {e} is hyperbolic, trh > 2. Therefore, it

is conjugate to a unique element of the form

⎛

⎝N(h)1/2 0

0 N(h)−1/2

⎞

⎠ with some N(h) > 1, called

the norm of h.

On the other hand, we know that the flow Φα,β
t is conjugate to the flow Φδ,0

t with δ =
√
E2−2
E .

Therefore, we get

exp(T#
γ δE1) =

⎛

⎝eT
#
γ δ/2 0

0 e−T#
γ δ/2

⎞

⎠ =

⎛

⎝N(h)1/2 0

0 N(h)−1/2

⎞

⎠ ,

which gives T#
γ = E√

E2−2
logN(h).

We can write the period T as T = kT#
γ with some k ∈ Z \ {0}. The Poincaré map Pγ of γ is a

linear hyperbolic map with the eigenvalues eδT = N(h)k and e−δT = N(h)−k. Therefore, we have

|det(I − Pγ)|1/2 =
(
(1−N(h)k)(1−N(h)−k)

)1/2
= |N(h)k/2 −N(h)−k/2|.

This also implies that

mγ = 0.

Denote by hA(γ) ∈ S1 = R/2πZ the holonomy of the projection πM ◦ γ of the curve γ to M with

respect to the connection ∇L on L. Then the action Sγ of γ is defined modulo multiples of 2π and
given by (see [14])

Sγ =
E2 − 1

E
T + hA(γ).

To compute the action Sγ of the periodic trajectory γ, we lift γ to SH as above. The curve γ
on SH is not closed and we should use the formula (3.1) to get a correct identification of the fibers
of the line bundle L at its extreme points. Since the form F is exact on H, F = dA with A given
by (2.4), by (3.12) and (3.1), we have

hA(γ) =

∫

πM◦γ
A− 2 arg(cz + d).

Using (2.10), we compute
∫

πM◦γ
A =

∫ T

0

ẋ

y
dt = −

∫ T

0
α sinϕdt = −

∫ T

0
(ϕ̇− β)dt = ϕ(0) − ϕ(T )− 1

E
T.

Using (3.12) and computing the action of h on SH, we get with z = x+ iy

z(T ) =
az(0) + b

cz(0) + d
, ϕ(T ) = ϕ(0) − 2 arg(cz + d).
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We conclude that

hA(γ) = − 1

E
T

and

Sγ =
E2 − 1

E
kT#

γ − 1

E
kT#

γ = k logN(h)
√

E2 − 2.

This completes the proof of (3.8).

If E =
√
2, then E0 = 1 and the magnetic geodesic flow on XE is isomorphic to the horocyclic

flow. It is well known that this flow has no periodic trajectories, which implies (3.9).

3.4. The Case E >
√
2: Reduction to the Laplace –Beltrami Operator

In this section, we use the relation (3.3) to reduce our considerations in the case E >
√
2 to a

spectral problem for the scaled Laplace –Beltrami operator Δ
(0)
M , where we apply a version of a

semiclassical trace formula.

First, we write

YN (ϕ) = Y
(i)
N (ϕ) + Y

(c)
N (ϕ),

where

Y
(i)
N (ϕ) =

N−1∑

k=0

mN,kϕ

(√
ν
(i)
N,k +N2 − EN

)
,

and

Y
(c)
N (ϕ) =

∞∑


=0

ϕ

(√
ν
(c)
N,
 +N2 − EN

)
.

Since ν
(i)
N,k � N2 for any N ∈ N and k = 0, . . . , N − 1, it is easy to see that Y

(i)
N (ϕ) = O(N−∞) as

N → ∞.

Using (3.3), we get

Y
(c)
N (ϕ) =

∞∑


=0

ϕ
(√

λ
 + 2N2 − EN
)
.

The right-hand side of the last formula is closely related to the semiclassical trace formula for
the Schrödinger operator. We compute its asymptotic expansion by applying the Guillemin –Uribe

trace formula in the following setting (cf. [13, Corollary 7.5]). Let Δ
(0)
M be the Laplace –Beltrami

operator on M associated with the Riemannian metric

g(0) =
2

y2
(dx2 + dy2).

It is clear that Δ
(0)
M = 1

2ΔM . We will interpret this operator as the magnetic Laplacian associated

with the vanishing magnetic field F (0) = 0. So the associated Hermitian line bundle L0 is trivial,

the Hermitian connection ∇L0 is trivial and the associated magnetic Laplacian ΔLN
0 coincides with

Δ
(0)
M for all N . The eigenvalues ν

(0)
N,
 of Δ

LN
0 are given by

ν
(0)
N,
 =

1

2
λ
, � = 0, 1, 2, . . . .
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For an arbitrary function ψ ∈ S(R), the sequence Y
(0)
N (ψ) associated with the operator ΔLN

0 and

an energy level E(0) > 1 by the formula (3.5) has the form

Y
(0)
N (ψ) =

∞∑


=0

ψ

(√
ν
(0)
N,
 +N2 − E(0)N

)
, N ∈ N.

It is easy to see that

Y
(c)
N (ϕ) = Y

(0)
N (ψ)

with

E(0) =
1√
2
E, ψ(z) = ϕ

(√
2z

)
.

By [13, Corollary 7.5], the sequence Y
(0)
N (ψ) admits an asymptotic expansion

Y
(0)
N (ψ) ∼

∞∑

j=0

c
(0)
j (N,ψ)N1−j , N → ∞,

where the coefficients c
(0)
j (N,ψ) are bounded in N .

The associated magnetic geodesic flow is the geodesic flow of g(0), that is, the Hamiltonian flow
defined by the Hamiltonian

H(0)(x, y, px, py) =

(
y2

2
(p2x + p2y) + 1

)1/2

on the cotangent bundle X = T ∗M equipped with the standard symplectic form. Put

X
(0)

E(0) = (H(0))−1(E(0)).

As in (3.10), the contribution of 0 is given by

c
(0)
0 (N,ψ) = (2π)−2ψ̂(0)Vol(X

(0)

E(0)).

We compute

Volg(0)(M) = 2Vol(M) = 4π(2g − 2)

and

Vol(X
(0)

E(0)) = 2πE(0)Volg(0)(M) = (2π)2(2g − 2)E
√
2.

Finally, we observe that

ψ̂(z) =
1√
2
ϕ̂

(
z√
2

)
.

Taking all this into account, we conclude that

c0(N,ϕ) = c
(0)
0 (N,ψ) = (2g − 2)Eϕ̂(0).

As in (3.11), the contributions of a periodic trajectory γ ⊂ XE(0) with period Tγ = kT#
γ are

given by

c
(0,γ)
0 (N,ψ) = 0, c

(0,γ)
1 (N,ψ) =

T#
γ eπimγ/4

2π|det(I − Pγ)|1/2
e−iNSγ ψ̂(Tγ),

where Pγ denotes the Poincaré map of γ, and T#
γ and mγ are the primitive period and the Maslov

index of γ, respectively.
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The Hamiltonian flow of H(0) on X is given by

ẋ =
y2

2H(0)
px, ẏ =

y2

2H(0)
py, ṗx = 0, ṗy = − y

2H(0)
(p2x + p2y),

and its restriction to XE(0) by

ẋ =
y2

2E(0)
px, ẏ =

y2

2E(0)
py, ṗx = 0, ṗy = − y

2E(0)
(p2x + p2y).

We introduce on XE(0) = {y2(p2x + p2y) = 2((E(0))2 − 1)} the coordinates (x, y, θ):

px =

√
2((E(0))2 − 1)

y
cos θ, py =

√
2((E(0))2 − 1)

y
sin θ

in which the system takes the form

ẋ = δ0y cos θ, ẏ = δ0y sin θ, θ̇ = −δ0 cos θ,

with

δ0 =

√
2((E(0))2 − 1)

2E(0)
,

and defines the flow Φδ0,0
t .

As above, we get

T#
γ =

1

δ0
logN(h) =

2E(0)

√
2((E(0))2 − 1)

logN(h) =
E
√
2√

E2 − 2
logN(h).

|det(I − Pγ)|1/2 = |N(h)k/2 −N(h)−k/2|, mγ = 0.

The action Sγ of γ is given by

Sγ =
(E(0))2 − 1

E(0)
kT#

γ = k logN(h)
√

E2 − 2.

We arrive at the desired formula:

c
(γ)
1 (N,ϕ) = c

(0,γ)
1 (N,ψ)

=
logN(h)

2π|N(h)k/2 −N(h)−k/2|
E√

E2 − 2
ϕ̂

(
E√

E2 − 2
k logN(h)

)

× exp
(
−ik logN(h)

√
E2 − 2N

)
.
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