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Abstract—In 1976 S.Newhouse, J. Palis and F.Takens introduced a stable arc joining two
structurally stable systems on a manifold. Later in 1983 they proved that all points of a regular
stable arc are structurally stable diffeomorphisms except for a finite number of bifurcation
diffeomorphisms which have no cycles, no heteroclinic tangencies and which have a unique
nonhyperbolic periodic orbit, this orbit being the orbit of a noncritical saddle-node or a flip
which unfolds generically on the arc. There are examples of Morse – Smale diffeomorphisms
on manifolds of any dimension which cannot be joined by a stable arc. There naturally
arises the problem of finding an invariant defining the equivalence classes of Morse – Smale
diffeomorphisms with respect to connectedness by a stable arc. In the present review we present
the classification results for Morse – Smale diffeomorphisms with respect to stable isotopic
connectedness and obstructions to existence of stable arcs including the authors’ recent results.
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1. INTRODUCTION

The problem of existence of an arc which connects two structurally stable systems (Morse –
Smale systems) on a manifold and which has only finitely many (or countably many) bifurcations
was the 33d in the list of fifty problems in dynamical systems suggested by J. Palis and C. Pugh
in [34].

In 1976 S.Newhouse, J. Palis and F. Takens in [26] introduced a stable arc connecting two
structurally stable systems on a manifold. This arc preserves its qualitative properties under small
disturbances. In the same year S. Newhouse and M. Peixoto [28] proved the existence of a simple
arc (i. e., an arc having elementary bifurcations only) joining any two Morse – Smale flows. From the
paper [8] by G. Fleitas it follows that the simple arc constructed by S.Newhouse and M.Peixoto
can always be replaced by a stable one. There are examples of Morse – Smale diffeomorphisms on
manifolds of any dimension which cannot be connected by a stable arc (see Section 3). Therefore,
there naturally arises the problem of finding an invariant defining the equivalence class of Morse –
Smale diffeomorphisms with respect to connectedness by a stable arc (stable isotopy connected
component).

In the present paper we review the classification results for Morse – Smale systems with respect
to stable isotopy connectedness including the recent research by the authors.
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78 MEDVEDEV et al.

2. STABLE ARCS IN THE SPACE OF DYNAMICAL SYSTEMS

In this section we give an exact definition of the stable arc and the criterion of stability for
arcs composed of diffeomorphisms with finite limit sets. Then we outline the idea of the proof of
existence of a stable arc joining any two Morse – Smale flows on a given manifold.

2.1. Main Concepts of the Theory of Dynamical Systems

Let f : Mn → Mn be a diffeomorphism on a smooth closed (compact without a border) n-
manifold (n � 1) Mn with a metric d.

Two diffeomorphisms f, f ′ : Mn → Mn are said to be topologically conjugate if there is a
homeomorphism h : Mn → Mn such that fh = hf ′.

A point x ∈ Mn is wandering for f if there exists an open neighborhood Ux of x for which
fn(Ux) ∩ Ux = ∅ for every n ∈ N. Otherwise x is said to be nonwandering. The set of the
nonwandering points of a diffeomorphism f is the nonwandering set denoted by Ωf .

For example, every limit point of a diffeomorphism is nonwandering. Recall that a point
y ∈ Mn is an ω-limit point for a point x ∈ Mn if there is a sequence tk → +∞, tk ∈ Z such that
lim

tk→+∞
d(f tk(x), y) = 0. The set ω(x) of all ω-limit points for x is its ω-limit set. By changing +∞

to −∞ one defines the α-limit set α(x) of the point x. The set Lf = cl (
⋃

x∈Mn

ω(x) ∪ α(x)) is called

the limit set of the diffeomorphism f .
If the set Ωf is finite, then each point p ∈ Ωf is periodic. Denote by mp ∈ N its period. Each

periodic point p has the corresponding stable and unstable manifolds defined by

W s
p = {x ∈ Mn : lim

k→+∞
d(fkmp(x), p) = 0},

W u
p = {x ∈ Mn : lim

k→+∞
d(f−kmp(x), p) = 0}.

Both the stable and the unstable manifolds are the invariant manifolds.

On the set of periodic orbits there is a partial order relation (Smale order) defined by

Op ≺ Or ⇐⇒ W s
Op

∩W u
Or


= ∅.

The periodic orbits O1, . . . ,Ok compose a cycle if W s
Oi

∩W u
Oi+1


= ∅ for i ∈ {1, . . . , k} and

Ok+1 = O1.
A periodic point p ∈ Ωf is said to be hyperbolic if the absolute value of each eigenvalue of the

Jacobian matrix
(
∂fmp

∂x

)
|p is not equal to 1. If the absolute value of each eigenvalue is less (greater)

than 1, then p is a sink (a source). Sinks and sources are called nodes. If a hyperbolic point is not
a node, then it is called a saddle.

It follows from the hyperbolic structure of a periodic point p that its stable W s
p and unstable

W u
p manifolds are the images of the spaces R

qp and R
n−qp by injective immersions where qp is

the number of the eigenvalues of the Jacobian matrix whose absolute value is greater than 1.
The number νp is called the orientation type of a point p and it equals +1(−1) if the map fmp |Wu

p

preserves (reverses) the orientation of W u
p . A linear connected component of the set W u

p \ p (W s
p \ p)

is called an unstable (stable) separatrix of the point p.

A closed f -invariant set A ⊂ Mn is called an attractor of the dynamical system f if A has a
compact neighborhood UA such that f(UA) ⊂ int UA and A =

⋂

k�0

fk(UA). In this case UA is called

a trapping or an isolating neighborhood. A repeller for f is the attractor for f−1. Let A be an
attractor for f with a trapping neighborhood UA, V = Mn \ int(UA) and let R =

⋂

k�0

f−k(V ) be a

repeller. Then the pair A, R is called dual.
A diffeomorphism f : Mn → Mn is said to be a Morse – Smale diffeomorphism if

1) the nonwandering set Ωf consists of a finite number of hyperbolic orbits;

2) for any two nonwandering points p, q the manifolds W s
p , W

u
q transect transversally.
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A Morse – Smale diffeomorphism is said to be gradient-like if from W s
σ1

∩W u
σ2


= ∅ for any two
distinct points σ1, σ2 ∈ Ωf it follows that dimW u

σ1
< dimW u

σ2
.

A Morse – Smale flow on a manifold Mn is defined in a similar way, and if such a flow has no
periodic trajectories, it is called gradient-like.

A detailed explanation of the facts of this section can be found in [13, 16, 39].

2.2. Stability of an Arc of Diffeomorphisms

Consider a single parameter family of diffeomorphisms (an arc) ϕt : M
n → Mn, t ∈ [0, 1]. The

arc ϕt is called smooth if the map F : Mn × [0, 1] → Mn defined by F (x, t) = ϕt(x) is a diffeotopy,
i. e., a smooth map which is a diffeomorphism for each fixed t. This map is called the isotopy in the
topological category.

The smooth arc ϕt is called the smooth composition of the smooth arcs φt and ψt if φ1 = ψ0 and

ϕt =

{
φτ(2t), 0 � t � 1

2 ,

ψτ(2t−1),
1
2 � t � 1,

where τ : [0, 1] → [0, 1] is a smooth monotonic map such that τ(t) = 0

for 0 � t � 1
3 and τ(t) = 1 for 2

3 � t � 1. We write

ϕt = φt ∗ ψt.

Following [27] a smooth arc ϕt is called stable if it is an inner point of the equivalence class
with respect to the following relation: two arcs ϕt, ϕ′

t are said to be conjugate if there are
homeomorphisms h : [0, 1] → [0, 1], Ht : M → M such that Htϕt = ϕ′

h(t)Ht, t ∈ [0, 1] and Ht

continuously depends on t.
Denote by Q the set of smooth arcs ϕt, t ∈ [0, 1] such that the starting point and the ending

point of arcs of Q is a Morse – Smale diffeomorphism and every diffeomorphism ϕt has a finite limit
set.

It is shown in [27] that an arc ϕt ∈ Q for t ∈ [0, 1] is stable if and only if its every point is a
stable diffeomorphism except for a finite number of bifurcation points ϕbi , i = 1, . . . , q for which

1) the limit set of the diffeomorphism ϕbi contains a unique nonhyperbolic periodic orbit which is
a saddle-node or a flip;

2) the diffeomorphism ϕbi has no cycles;

3) the invariant manifolds of all periodic points of ϕbi transect transversally;

4) ϕbi has a unique nonhyperbolic periodic orbit which is the orbit of a noncritical saddle-node or
of a flip which unfolds generically (Fig. 1).

Fig. 1. A stable arc.

Recall the definition of a fixed saddle-node or a flip generic unfolding when the nonhyperbolic
point is of period k > 1. For the arc ϕk

t the definition is similar.
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80 MEDVEDEV et al.

A saddle-node p unfolds generically on the arc ϕt ∈ Q where t ∈ [0, 1] (Fig. 2) if in some
neighborhood of the point (p, bi) ∈ Mn × [0, 1] the arc ϕt (or the arc ϕ1−t) is conjugate to the
arc

ϕ̃t̃(x1, x2, . . . , x1+nu , x2+nu , . . . , xn)

=

(

x1 +
x21
2

+ t̃,±2x2, . . . ,±2x1+nu ,
±x2+nu

2
, . . . ,

±xn
2

)

,

where (x1, . . . , xn) ∈ R
n, |xi| < 1/2, |t̃| < 1/10.

In the local coordinates (x1, . . . , xn, t̃) the bifurcation occurs at the time t̃ = 0, the coordinate
origin O ∈ R

n being the saddle-node (Fig. 3). Here the axis Ox1 is the central manifold, the
set {(x1, x2, . . . , xn) ∈ R

n : x1 � 0, x2+nu = . . . = xn = 0} is the unstable manifold of O, the set
{(x1, x2, . . . , xn) ∈ R

n : x1 � 0, x2 = . . . = x1+nu = 0} is the stable manifold of O.

Fig. 2. The saddle-node bifurcation.

Fig. 3. The graphs of the map x1 +
x2
1
2

+ t̃ for t̃ = −0, 1; t̃ = 0 and t̃ = 0, 1.

If p is a saddle-node of the diffeomorphism ϕbi , then there is a unique ϕbi-invariant foliation F ss
p

with smooth leaves such that ∂W s
p is a leaf of F ss

p [18]. F ss
p is called the strongly stable foliation

(Fig. 4). The analogous strongly unstable foliation is denoted by F uu
p . A point p is called s-critical if

there exists a hyperbolic periodic point q such that W u
q intersects some leaf of F ss

p nontransversally;
the u-criticality is defined analogously. The point p is called

• semicritical if it is either s- or u-critical;

• bicritical if it is both s- and u-critical;

• noncritical if it is neither s- nor u-critical.
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For the first time instability of an arc in the neighborhood of a critical saddle-node was found in
1974 by V. S. Afraimovich and L. P. Shilnikov [36, 37]. The existence of invariant foliations F ss

p , F uu
p

was previously proved by V. I. Lukyanov and L.P. Shilnikov in [20].

Fig. 4. The strongly stable and unstable foliations.

Remark 1. For surface diffeomorphisms the stable and the unstable manifolds of a saddle-node p
are of dimension one and two. If p is noncritical, then its invariant 1-manifold does not intersect
separatrices of saddles. The 1-dimensional foliation of the 2-manifold of the saddle-node must
transversally intersect the separatrices of the saddles (Fig. 5).

Fig. 5. p1 is a s-critical saddle-node, p2 is an u-critical saddle-node, p3 is a noncritical saddle-node.

A flip p unfolds generically on the arc ϕt ∈ Q where t ∈ [0, 1] (Fig. 6) if in some neighborhood
of the point (p, bi) the arc ϕt (or the arc ϕ1−t) is conjugate to the arc

ϕ̃t̃(x1, x2, . . . , x1+nu , x2+nu , . . . , xn)

=

(

−x1(1± t̃) + x31,±2x2, . . . ,±2x1+nu ,
±x2+nu

2
, . . . ,

±xn
2

)

,

where (x1, . . . , xn) ∈ R
n, |xi| < 1/2, |t̃| < 1/10 (Fig. 7).

We say two diffeomorphisms f0, f1 are of the same class of stable isotopy connectedness if in
the space of diffeomorphisms they can be joined by an arc satisfying the previously described
properties 1–4.

2.3. A Simple Arc Joining Two Morse – Smale Flows

The problem of existence of a “good” arc joining two Morse – Smale flows on a given manifold
was solved by S. Newhouse and M. Peixoto in [28].
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Fig. 6. The period-doubling bifurcation (flip).

Fig. 7. The graphs of the map −x1(1± t̃) + x3
1 and its square for t̃ = −0, 1; t̃ = 0 and t̃ = 0, 1.

Theorem 1 ([28], Theorem B). Any two Morse – Smale flows on a given manifold can be joined
by a simple arc.

The simplicity means that the entire arc consists of Morse – Smale systems except for a finite set
of points at which the vector field deviates from the Morse – Smale field in the least way in some
sense. More exactly, at these points the vector field either has a unique nonhyperbolic saddle-node
or it has a unique curve which is the nontransversal intersection of the invariant manifolds of the
saddles (heteroclinic tangency).

The idea of the proof is to construct an arc joining the initial flow with the gradient flow of
some Morse function.

Let Mn be a smooth n-manifold and Φ : Mn → R be a Cr-smooth (r � 2) function. The point

p ∈ Mn is called the critical point of Φ if gradΦ(p) = 0, i. e., ∂Φ
∂x1

(p) = . . . = ∂Φ
∂xn

(p) = 0 in the local

coordinates x1, . . . , xn of p. A critical point p is nondegenerate if the matrix of the second-order

partial derivatives (Hessian matrix)
(

∂2Φ
∂xi∂xj

)
|p is nonsingular. Otherwise p is said to be degenerate.

The function Φ is called the Morse function if it has no degenerate critical points.
A continuous function Φ : Mn → R is called a Lyapunov function for a Morse – Smale system

(a diffeomorphism or a flow) on the manifold Mn if it strictly decreases along the wandering
trajectories and is constant on the periodic orbits.

A smooth Lyapunov function Φ is called an energy function for a Morse – Smale system if the
set of the critical points of Φ coincides with the nonwandering set of the system.

When constructing the desired arc the first step would be to destroy the closed orbits by
sequentially creating a saddle-node on each closed trajectory (Fig. 8). Then when passing through
the saddle-node there appear two hyperbolic points of neighboring indices, while the end point of
the arc is the gradient-like flow.
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Fig. 8. The destruction of periodic orbits.

By Franks’ lemma in [9] a gradient-like flow can be connected by an arc without bifurcations
to a gradient-like flow which is locally gradient in the neighborhood of its fixed points. S. Smale
in [38] proved that any such flow allows a Morse energy function. Then using the level curves of
this function one constructs an arc joining the gradient-like flow to the gradient flow of its Morse
function (see Section 4.2 where this idea is used for Morse – Smale diffeomorphisms). The last step
is to join the two Morse functions by an arc which typically generates the simple arc of gradient
flows.

Unfortunately, the results of S. Newhouse and M. Peixoto cannot be directly used to construct
a stable arc between two Morse – Smale diffeomorphisms. The first reason is that typically Morse –
Smale diffeomorphisms cannot be included in Morse – Smale flows (see, for example, [10, 11]
and [12]). The other reason is that the discretization (i. e., replacement of the flows by their 1-
time shifts) of an arc with a heteroclinic tangency is not a stable arc. The last problem is solved
by the following theorem due to G. Fleitas [8].

Theorem 2 ([8], Theorem). If two gradient-like flows on the manifold Mn are joined by an arc
with the unique bifurcation point of heteroclinic tangency, then they can be joined by an arc with
two saddle-node bifurcations (Fig. 9). The discretization of this arc is a stable arc that joins 1-time
shifts of the initial gradient-like flows.

Fig. 9. Replacing heteroclinic tangencies by saddle-nodes.

3. THE OBSTRUCTIONS TO THE EXISTENCE OF A STABLE ARC BETWEEN TWO
ISOTOPIC MORSE– SMALE DIFFEOMORPHISMS

In this section we review the well-known obstructions to the existence of a stable arc between
two isotopic Morse – Smale diffeomorphisms.

3.1. The Discrepancy Between Rotation Numbers of Two Rough Transformations of a Circle

The rotation number was introduced by H. Poincaré for homeomorphisms of a circle while
studying flows on the torus without fixed points.
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Consider the circle S1 = R/Z, an orientation-preserving homeomorphism f : S1 → S1 and its
lift f̄ : R → R with respect to the covering map

π(x) = {x},
where {x} is the fractional part of x ∈ R. Then for every x ∈ R there exists the limit

lim
n→∞

f̄n(x)− x

n

whose fractional part r(f) is independent of the choice of the lift of f as well as of the point x. It
is called the Poincaré rotation number.

Morse – Smale diffeomorphisms of the circle were thoroughly studied by A.G. Mayer [22]. He
showed that, if a circle transformation is rough, then it is a Morse – Smale diffeomorphism (a
diffeomorphism with a finite number of hyperbolic periodic points). Any such diffeomorphism
is a composition of the 1-time shift of a gradient flow of some Morse function and either an
orientation-changing involution for an orientation-changing diffeomorphism or a rational rotation
for an orientation-preserving diffeomorphism.

Since the rotation number continuously depends on the homeomorphism in the C0 topology
(see, for example, [19]), any arc joining two orientation-preserving Morse – Smale diffeomorphisms
with distinct rotation numbers contains a continuum of bifurcations and, therefore, it is not stable.

Theorem 3 ([30], Theorem 1). All rough orientation-reversing diffeomorphisms of the circle lie
in the same component of the stable isotopy connectedness, whereas the stable isotopy class of the
rough orientation-preserving transformation of the circle is completely determined by the Poincaré
rotation number.

The idea of the proof is to construct a bifurcation-free arc joining an arbitrary diffeomorphism
of a given topological conjugacy class to the corresponding model diffeomorphism Φn,m,k or Ψq,ν

(Fig. 10) constructed as follows.

Fig. 10. (a) Orientation-preserving diffeomorphisms of the circle; (b) orientation-reversing diffeomorphisms
of the circle.

Let (n,m, k) be a triple of integers such that either n ∈ N and k = 0 for m = 1 or k ∈
{1, . . . ,m− 1} when m > 1 and (m,k) are mutually prime. Consider the map Φ̄n,m,k : R → R

defined by (Fig. 11):

Φ̄n,m,k(x) = x+
1

4nmπ
sin(2nmπx) +

k

m
.
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Fig. 11. The map Φ̄n,m,k(x)− k
m
.

Let Φn,m,k = πΦ̄n,m,kπ
−1 : S1 → S1. Then Φn,m,k is an orientation-preserving diffeomorphism with

the rotation number k
m and 2n periodic orbits (half of which are attracting and the other half are

repelling) of period m.

Let (q, ν) be a pair of numbers q ∈ N, ν ∈ {−1, 0,+1} and let ν = 0 if and only if q is odd.
Consider the maps Ψ̄q,ν : R → R (Fig. 12) defined by

Ψq,ν(x) = −x− 1

4πq
sin(2πqx), ν = 0; −1;

Ψq,+1(x) = Ψ−1
q,−1

(

x− 1

2q

)

+
1

2q
, q = 2κ, κ ∈ N.

Let Ψq,ν = πΨ̄q,νπ
−1 : S1 → S1. Then Ψq,ν is an orientation-reversing diffeomorphism with 2q

periodic orbits, two of which (1, 0), (−1, 0) are fixed points and the other 2(q − 1) are periodic
orbits with period 2. Thus, Ψ2κ−1,0 corresponds to the case when the fixed points have opposite
stability, and Ψ2κ,±1 corresponds to the case where the fixed points are both unstable (-1) or both
stable (+1), respectively.

Fig. 12. The maps Ψq,ν : 1) Ψ̄2,1, 2) Ψ̄2,−1, 3) Ψ̄3,0.

Thus, the problem is reduced to the problem of finding the classes of the stable isotopy
connectedness for the model diffeomorphisms.
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For the orientation-preserving diffeomorphism Φn,m,k, n > 1 the number of periodic orbits can
be reduced by one pair if one constructs the arc passing through the noncritical saddle-node which
unfolds generically. Therefore, the diffeomorphism Φn,m,k can be joined by a stable arc to the
diffeomorphism Φ1,m,k with the same rotation number. Since the rotation number is a topological
invariant of circle homeomorphism and since it continuously depends on the parameter of the
arc, any arc joining two orientation-preserving circle diffeomorphisms f, f ′ with distinct rotation
numbers is not stable because it contains a continuum of bifurcations, and that contradicts the
definition of the stable arc.

The orientation-reversing diffeomorphism Ψ2κ−1,0, κ > 1 (as in the case of orientation-preserving
diffeomorphism) can be joined to the “source-sink” diffeomorphism Ψ1,0 by an arc with (2κ− 3)
noncritical saddle-nodes unfolding generically (this applies to period-2 orbits). For the diffeomor-
phism Ψq,±1 the number q is odd and q > 2. The described technique allows one to join the
diffeomorphism Ψ2κ,±1, κ > 1 to the diffeomorphism Ψ2,±1 which, in turn, is joined to the “source-
sink” diffeomorphism Ψ1,0 by an arc with period-doubling bifurcations.

3.2. The Nontrivial Relatedness of Periodic Points

In [21] S. Matsumoto showed that the 2-torus T2 allows Morse – Smale diffeomorphisms that are
isotopy equivalent to the identity, but cannot be joined by a stable arc.

Two periodic points p, q of a diffeomorphism f : Mn → Mn are said to be trivially related if there
is an arc c ⊂ Mn for which ∂c = {q} − {p} and for some integer N the closed curve fN (c)− c is

null-homotopic, fN (p) = p and fN (q) = q. Otherwise the points p, q are nontrivially related. Notice
that this property is independent of the choice of the curve c if f is isotopy equivalent to the
identity. If all periodic points of f are trivially related, then f is trivial. Otherwise f is nontrivial.

S. Matsumoto constructed two Morse – Smale diffeomorphisms f0, f1 : T
2 → T

2, both being
isotopy equivalent to the identity and such that f0 is the 1-time shift of the gradient flow of a typical
Morse function with 4 critical points, while f1 is the composition of f0 with the two oppositely
directed Dehn twists (Fig. 13). One can easily see that f0 is trivial, while f1 is nontrivial.

Fig. 13. S.Matsumoto’s example.

Theorem 4 ([21], Theorem 1.3). The diffeomorphisms f0, f1 of the 2-torus T
2 cannot be joined

by a stable arc1).

1)Indeed, S. Matsumoto’s proved Theorem 4 for the so-called simple arcs which include the stable arc as a special
case.
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To explain this result, suppose the contrary, i. e., that there is a stable arc that joins trivial
and nontrivial diffeomorphisms. Then there is a stable arc φt with the unique bifurcation g = φ 1

2

and such that φ0 is trivial, while φ1 is nontrivial. Since the period-doubling bifurcation does not
produce nontrivial relations between the periodic points, the diffeomorphism g must have a saddle-
node periodic point; denote it by p. Denote by Op its orbit and denote by Oq,Or the nearest with
respect to the Smale order neighboring orbits (possibly not unique). Since g has no cycles, these
orbits are in the partial Smale order

Oq  Op  Or,

i.e., W s
Oq

∩W u
Op


= ∅, W s
Op

∩W u
Or


= ∅ and there is no such periodic point x for which either

W s
Oq

∩W u
Ox


= ∅, W s
Ox

∩W u
Op


= ∅ or W s
Op

∩W u
Ox


= ∅, W s
Ox

∩W u
Or


= ∅.

Since the saddle-node p is noncritical, either q or r is a node. Suppose that an unstable separatrix
l of a saddle-node point p is attracted by the sink q. Then consider a curve c = cl(l) which is

invariant under some power N of f such that fN (p) = p and fN(q) = q and, hence, fN (c)− c is
null-homotopic. As the trivial relatedness is transitive, we find that g is trivial. On the other hand,
the saddle-node bifurcation creates new periodic points that are trivially related to the old ones
and, hence, φ1 is trivial and we come to a contradiction.

Obviously, similar effects are intrinsic to all surfaces with the nontrivial fundamental group.
Moreover, they are naturally generalized to manifolds of greater dimensions. In [7] the trivial f0 and
the nontrivial f1 Morse – Smale diffeomorphisms are constructed on the manifold Sn−1 × S1, n �
3, both being isotopy equivalent to the identity (Fig. 14). As in Matsumoto’s example, the
diffeomorphism f0 is the Cartesian product of the “source-sink” diffeomorphisms on the sphere
Sn−1 and on the circle S1. A diffeomorphism f1 diffeotopic to the identity is constructed from f0
by composition with the following multidimensional Dehn twist Γ. Namely, consider an (n− 1)-
annulus K = Sn−2 × S1 in Sn−1 × S1. Then the set W ⊂ Sn−1 × S1 bounded by K and f0(K)
is a fundamental domain of f0 on Sn−1 × S1 \ (cl(W u

σ1
∪W s

σ2
)) and W ∼= Sn−2 × [0, 1] × S1. Let

Γ : Sn−1 × S1 → Sn−1 ×S1 be the identity outside W , and on W let it be defined by Γ(s, t, ei2πϕ) =

(s, t, ei2π(ϕ+t)).

Fig. 14. An example of diffeomorphisms on Sn−1 × S1, n � 3 which cannot be joined by a stable arc.

Theorem 5 ([7], Theorem 1). The diffeomorphisms f0, f1 on the manifold Sn−1 × S1, n � 3
cannot be joined by a stable arc.

3.3. The Inconsistency of the Periodic Decompositions

D. Pixton in [35] proved that an energy Morse function Φf : M2 → R exists for any Morse –

Smale diffeomorphism f on a surface M2. P. Blanchard [1] constructed the special decomposition
of M2 by the level curves of Φf using the notion of the oddness of a periodic orbit. He proved that
the consistency of these decompositions for distinct diffeomorphisms is the necessary condition of
existence of a stable arc between them.
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Let M2 be an orientable surface and f : M2 → M2 be an orientation-preserving Morse – Smale
diffeomorphism with the nonwandering set Ωf . The oddness of the periodic orbit Op ⊂ Ωf of period

m is the odd integer l for which m = 2kl for some nonnegative k. A decomposition

M2 = M1 ∪ · · · ∪Mn

of M2 is said to be a periodic decomposition if it satisfies:

• each element Mi is a surface whose boundary is either empty or consists of the regular
level curves of Φf ; distinct submanifolds Mi and Mj may intersect only along their common
boundary component;

• Ωf ∩Mi 
= ∅ for each i; all the periodic orbits Op ⊂ Mi are of the same oddness li, called
the oddness of Mi; if Mi ∩Mj 
= ∅ for i 
= j, then their oddnesses are different.

An element Mi of the periodic decomposition is called inessential if it is homeomorphic to a
union of annuli and for each annulus the vector field Φf points out along one boundary component
and it points in along the other boundary component.

The elementary cancellation of a periodic decomposition is the elimination of an inessential
element Mi from the decomposition by uniting it with the element Mj which has the common
boundary with the annulus and such that gradΦf points out of the annulus along this boundary.
Then the new element is assigned the oddness lj and is united with the elements of the same
oddness with which it has the common border. Notice that the result of an elementary cancellation
is not a periodic decomposition.

Denote by Df the decomposition of the surface M2 obtained from a periodic decomposition

by all elementary cancellations. Two decompositions Df , Df ′ of the surface M2 are equivalent if

there is a homeomorphism of M2 which sends the elements of one decomposition to the elements of
the other and preserves the oddness. Notice that decompositions corresponding to different energy
functions for the same diffeomorphism f are equivalent.

Theorem 6 ([1], Theorem 2.13). If two Morse – Smale diffeomorphisms f, f ′ : M2 → M2 can
be joined by a stable arc, then their respective decompositions Df , Df ′ are equivalent.

The idea of the proof is based on the fact that for the saddle-node bifurcation and the flip
bifurcation the periodic decomposition of the diffeomorphism after the bifurcation is equivalent
to the elementary cancellation of the periodic decomposition of the diffeomorphism before the
bifurcation.

One can easily construct infinitely many diffeomorphisms with pairwise nonequivalent decom-
positions. Therefore, in every isotopy class containing an orientation-preserving Morse – Smale
diffeomorphism there are infinitely many classes of stable isotopic connectedness.

For illustration consider the following diffeomorphisms of the sphere S2:

1) h is the “source-sink” diffeomorphism (Fig. 15.1);

2) g is the Morse – Smale diffeomorphism whose nonwandering set Ωg consists of the fixed sink ω1,

the fixed source α, the sink orbit of period m: {ω2, f(ω2), . . . , f
m−1(ω2)} and the saddle orbit of

period m: {σ, f(σ), . . . , fm−1(σ)} (Fig. 15.2 for m = 3);

3) f is the diffeomorphism with two fixed sources at the poles, which on the equator of the
sphere coincides with the rough transformation of the circle with two periodic orbits of period m
(Fig. 15.3 for m = 3).

Consider the respective periodic decompositions for these diffeomorphisms (Fig. 15):

1) M1 = S2;

2), 3) S2 = D1 ∪ C ∪D2 where D1, D2 are the 2-disks and C is the 2-annulus.

One can check that, though the periodic decompositions of the diffeomorphisms h and g are
different, the annulus C in the decomposition of g is inessential. The vector field gradΦg enters
from one side of C and leaves from the other. After the elementary cancellation the annulus is
united with the disk D1 and the two remaining disks are united along the border producing the
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Fig. 15. Examples of diffeomorphisms on the sphere.

sphere S2. Thus, the decompositions Dh and Dg are equivalent, which is not surprising because h
and g can be joined by a stable arc with one saddle-node bifurcation.

The annulus C in the decomposition of f is not inessential, its periodic decomposition cannot
be reduced. Therefore, the decompositions Df and Dg are not equivalent and the diffeomorphisms
f and g are in different classes of stable connectedness.

Notice that diffeomorphisms like f with the distinct oddnesses of periodic orbits cannot be
joined by a stable arc, and this produces infinitely many classes of stable isotopy connectedness.
Nevertheless, diffeomorphisms with the same oddness but with distinct periods of periodic orbits
(for example, m = 3 and m = 6) have equivalent periodic decompositions. We will see in Section 4.1
that such diffeomorphisms cannot be joined by a stable arc, therefore, the inverse of Theorem 6
does not hold true.

3.4. The Nonhomeomorphic Characteristic Spaces

V.Grines and O.Pochinka found ([14]) a new obstruction to the existence of a stable arc. To
explain it let us represent the dynamics of any Morse – Smale diffeomorphism in the following way
(see, for example, [2, 5, 13] and Chapter 2.2 of [16]).

Denote by Ωq
f , q = 0, 1, 2, 3 the set of periodic points p such that dim W u

p = q. Then Af =

W u
Ω0

f∪Ω1
f
is the connected attractor and Rf = W s

Ω3
f∪Ω2

f
is the connected repeller, their topology

dimensions being less or equal to 1. The sets Af and Rf do not intersect; every point of the set

Vf = M3 \ (Af ∪Rf ) is wandering and moves under f from Rf to Af . The orbit space V̂f = Vf/f
is called the characteristic space. It is proved (see, for example, Theorem 1.2 of [17]) that a

characteristic space is a simple manifold2). Denote by p
f
: Vf → V̂f the natural projection.

A heteroclinic intersection of a Morse – Smale diffeomorphism is an intersection of the invariant
manifolds of distinct saddle points of this diffeomorphism.

Theorem 7 ([14], Lemma 1). Let diffeomorphisms f, f ′ : M3 → M3 have no heteroclinic points

and let them be joined by a stable arc. Then their characteristic spaces V̂f , V̂f ′ are homeomorphic.

The idea of the proof is based on the fact that the dynamics in the trapping neighborhood of
either attractor or repeller Rf does not change when passing though a bifurcation point of the
stable arc if this bifurcation is not the appearance or the disappearance of a heteroclinic curve.
Therefore, the topology of the characteristic space remains unchanged.

To illustrate Theorem 7, we first consider the simplest Morse – Smale diffeomorphism “source-
sink”. Its nonwandering set consists of two points: the source and the sink. The ambient manifold
is homeomorphic to the sphere.

Theorem 8 ([4], Theorem 1). Any two source-sink diffeomorphisms on S3 can be joined by a
bifurcation-free arc.

2)A smooth 3-manifold is simple if it is either irreducible (every smooth 2-sphere bounds the 3-ball in it) or it is

homeomorphic to S2 × S1.

REGULAR AND CHAOTIC DYNAMICS Vol. 27 No. 1 2022



90 MEDVEDEV et al.

Notice that for a source-sink diffeomorphism on the 3-sphere the attractor Af consists of the
unique sink ω, while the repellerRf consists of the unique source α. Since the diffeomorphism f |W s

ω
is

topologically conjugate in R
3 to a homothety, the manifold V̂f = V̂ω = (W s

ω \ω)/f is homeomorphic

to the manifold S2 × S1. So, the attractor and the repeller of a source-sink diffeomorphism are
separated by a 2-sphere in the following sense.

We say that the attractor Af and a repeller Rf of a Morse – Smale diffeomorphism f : M3 → M3

are separated by a 2-sphere if there is a smooth 2-sphere Σf ⊂ Vf such that Af and Rf are in the

different connected components of the set M3 \ Σf (Fig. 16).

Fig. 16. A Morse – Smale diffeomorphism f : M3 → M3 whose attractor Af and repeller Rf are separated by
a 2-sphere.

Theorem 9 ([14], Theorem 1). A Morse – Smale diffeomorphism f : M3 → M3 without hetero-
clinic intersections can be joined to the source-sink diffeomorphism by a stable arc if and only if its
attractor Af and repeller Rf are separated by a 2-sphere.

The key technical point for the proof of Theorem 9 is the following fact. Any diffeomorphism
of the considered class (distinct from source-sink diffeomorphism) has a node point whose basin
contains a unique saddle separatrix. This separatrix is one-dimensional and has the same period as
the node point. Moreover, it is tamely embedded to the basin in the sense of the following definition.

Consider a Morse – Smale diffeomorphism f : M3 → M3 with a fixed saddle point σ whose 1-
dimensional unstable saddle separatrix uσ satisfies

cl(uσ) \ (uσ ∪ σ) = {ω},

where ω is a sink. If dim W u
σ = 1 (2), then cl(uσ) is the arc (the 2-sphere) topologically embedded3)

to M3 (see, for example, Proposition 2.3 [16]). The set uσ ∪ σ is the smooth submanifold of M3,
but the manifold cl(uσ) may be wild at the point ω. In this case the separatrix uσ is called wild,
while otherwise it is called tame. The wildness and the tameness of a stable separatrix is defined
in the same way.

The first “wild” example was constructed by D. Pixton in [35]. This was a diffeomorphism of
Pixton class which is the class of 3-dimensional Morse – Smale diffeomorphisms whose nonwandering

3)A C0-map g : B → X is called a topological embedding of the topological manifold B to the manifold X if it
homeomorphically sends B to the subspace g(B) with the topology induced from X. The image A = g(B) is
called the topologically embedded manifold. Notice that a topologically embedded manifold is not a topological
submanifold in general. If A is a submanifold, then it is said to be tame or tamely embedded. Otherwise A is
called wild or wildly embedded; the points in which the conditions of the topological manifold are not satisfied
are called the points of wildness.
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sets consist of exactly four points: three nodes and one saddle (Fig. 17). This class allows
diffeomorphisms with wild separatrices, but either the attractor Af or the repeller Rf of any
diffeomorphism of Pixton class consists of the unique node. Therefore, the attractor and the repeller
are separated by a 2-sphere. C. Bonatti and V. Grines [3] gave the topological classification of Pixton
diffeomorphisms. Theorem 9 for Pixton diffeomorphisms was proved in [4].

Now consider a diffeomorphism f constructed as the connected sum of two 2-spheres on each of
which a Pixton diffeomorphism is defined (Fig. 17. The 3-balls for the connected sum are marked).

Fig. 17. The connected sum of two Pixton diffeomorphisms.

All separatrices of such a diffeomorphism are wild by construction, while the attractor Af

(the repeller Rf ) is the arc with two points of wildness. Therefore, the trapping neighborhood

of the attractor is not homeomorphic to the 3-ball and the orbit space V̂f is not homeomorphic to

the manifold S2 × S1. Thus, the constructed diffeomorphism cannot be joined to the source-sink
diffeomorphism by a stable arc.

3.5. The Existence of Exotic Spheres

At the end of the 1950s J. Milnor [24] proved the surprising fact that the 7-sphere allows 28
pairwise nondiffeomorphic smooth structures. One of them coincides with the standard one, i. e., the
one produced on Sn = {(x1, . . . , xn+1) ∈ R

n+1 : x21+ . . . x2n+1 = 1} by two charts (U−, ϑ−), (U+, ϑ+)
where N(0, . . . , 0

︸ ︷︷ ︸
n

, 1), S(0, . . . , 0
︸ ︷︷ ︸

n

,−1), U− = Sn \ {S}, U+ = Sn \ {N} and ϑ− : Sn \ {S} → R
n,

ϑ+ : Sn \ {N} → R
n (called stereographic projections, Fig. 18) and defined by

ϑ−(x1, . . . , xn+1) =

(
x1

1 + xn+1
, . . . ,

xn−1

1 + xn+1
,

xn
1 + xn+1

)

,

ϑ+(x1, . . . , xn+1) =

(
x1

1− xn+1
, . . . ,

xn−1

1− xn+1
,

xn
1− xn+1

)

.

The others define the so-called exotic spheres. One of the first examples of exotic spheres found
by J. Milnor [24, Chapter 3] was the following. Consider two copies of D4 × S3 with the boundary

S3 × S3 and identify the point (a, b) on the boundary with the point (a, a2ba−1)4). The resulting

4)Here the sphere S3 is identified with a specific unitary group

SU(2) =

⎧
⎨

⎩

⎛

⎝
α −β̄

β ᾱ

⎞

⎠ : α, β ∈ C, |α|2 + |β|2 = 1

⎫
⎬

⎭
where the dash means complex conjugate.
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Fig. 18. The stereographic projection.

manifold has the natural smooth structure of the 7-manifold. Milnor showed that this manifold
allows the Morse function with exactly two critical points, and this means that topologically it is
the 7-sphere. He also showed that this manifold allows no orientation-reversing diffeomorphism,
and this means that this is not the standard 7-sphere.

It was shown that the exotic structures are impossible in dimensions 1, 2, 3, 5, 6, 12, 56, 61. Some
multidimensional spheres have exactly two differential structures, while others have thousands of
them. The problem of existence of exotic 4-spheres is still unsolved.

It follows from Smale’s h-cobordism theorem (see, for example, [25]) that for n > 5 each exotic
n-sphere is diffeomorphic to the tangled sphere, i. e., the sphere obtained from two copies of the
standard n-balls by identification of their borders by an orientation-preserving diffeomorphism of
the sphere Sn−1. Though any gluing diffeomorphism is isotopic to the identity, J. Milnor showed [25]
that it can be nondiffeotopic to it. Finally, it follows from the result by J. Cerf [6] that two
diffeomorphisms of the sphere Sn−1, n > 6, define diffeomorphic smooth structures on Sn if and
only if these diffeomorphisms are diffeotopic.

Hence, nondiffeotopic orientation-preserving diffeomorphisms exist on the n-sphere (n � 6) if
and only if there exist exotic (n+ 1)-spheres and the number of diffeotopy classes coincides with
the number of different exotic spheres. Moreover, from Theorem 10 it follows that there is a Morse –
Smale diffeomorphism in every diffeotopy class of diffeomorphisms of the n-sphere. Therefore,
diffeomorphisms of distinct classes cannot be joined by a smooth arc, in particular, by a stable
arc.

Theorem 10 ([4], Proposition 3.6). Any orientation-preserving diffeomorphism of the n-
sphere is diffeotopic to a source-sink diffeomorphism.

The idea of the proof is the following. At first the initial diffeomorphism is replaced with such
a diffeomorphism that the polar points of the sphere are its fixed points. Then the fixed points
are turned into the hyperbolic source and the hyperbolic sink. After that the resulting map is
composed with a source-sink map whose expansion at the source is great. Since all the changes
are the compositions with identity diffeotopic diffeomorphisms, the resulting diffeomorphism is
diffeotopic to the initial one.

4. COMPONENTS OF STABLE CONNECTEDNESS
OF GRADIENT-LIKE SURFACE DIFFEOMORPHISMS

In this chapter we discuss the classification results with respect to the stable isotopy connect-
edness for some classes of surface gradient-like diffeomorphisms.

4.1. Gradient-like Diffeomorphisms of the 2-sphere

Consider S1 as the equator of the sphere S2. Then a structurally stable diffeomorphism of the
circle with exactly two periodic orbits of the period m ∈ N and the rotation number k

m can be

extended to a diffeomorphism φk,m : S2 → S2 with the two fixed sources in the north pole and
in the south pole. We call this diffeomorphism the model diffeomorphism. Denote by Ck,m the
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component of stable isotopy connectedness of φk,m and denote by C−
k,m the component of stable

isotopy connectedness of φ−1
k,m. Denote by C0 the component of stable isotopy connectedness of the

source-sink diffeomorphism φ0 ∈ G whose nonwandering set consists of exactly one source and one
sink.

The following theorem provides a complete classification of gradient-like diffeomorphisms with
respect to the stable connectivity.

Theorem 11 ([32], Theorem 1.1). Any orientation-preserving gradient-like diffeomorphism of

the 2-sphere S2 lies in one of the components C0, Ck,m, C−
k,m, k, m ∈ N, k < m/2, (k,m) = 1 and

• the components C0, Ck,m, C−
k,m, k, m ∈ N, k < m/2, (k,m) = 1 are pairwise disjoint;

• Ck,m = Cm−k,m, C−
k,m = C−

m−k,m, C1,2 = C−
1,2 = C0,1 = C−

0,1 = C0.

Notice that from Theorem 6 it follows that the diffeomorphisms φk,m, φk′,m′ : S2 → S2 for

m = 2r · q,m′ = 2r
′ · q′ for integer r, r′ � 0 and natural q 
= q′ lie in the different components of

stable isotopy connectedness.

The key point of the proof of Theorem 11 is the fact that the dynamics of any orientation-
preserving gradient-like diffeomorphism f : M2 → M2 can be represented as the dynamics of the
global dual pair attractor-repeller whose space of the wandering orbits is connected. Denote by
Ω0
f , Ω

1
f , Ω

2
f the sets of the sinks, the saddles and the sources of f . For any (possibly empty) f -

invariant set Σ ⊂ Ω1
f let

AΣ = Ω0
f ∪W u

Σ, RΣ = Ω2
f ∪W s

Ω1
f\Σ

.

From [17] it follows that AΣ and RΣ are the dual attractor and repeller. We say

VΣ = M2 \ (AΣ ∪RΣ)

are the characteristic space. Denote by V̂Σ the orbit space of action of the diffeomorphism f on VΣ.

According to [15], each connected component of the manifold V̂Σ is homeomorphic to the 2-torus.

Moreover, due to [29] there is such a set Σ that the orbit space V̂Σ is connected. Let Σ be this set
and let

Af = AΣ, Rf = RΣ, Vf = VΣ.

For the class G of gradient-like diffeomorphisms on the 2-sphere S2 the attractor Af and the
repeller Rf can be described more precisely (Fig. 19). Notice that Vf consists of mf mutually
disjoint cylinders. A collection of noncontractible curves, one curve on each component, divides the
sphere S2 into two disjoint parts U and V such that

f(U) ⊂ U, Af =
⋂

j∈N
f j(U); f−1(V ) ⊂ V, Rf =

⋂

j∈N
f−j(V ).

Then for any diffeomorphism f ∈ G (or for f−1) the following holds:

1) the set U consists of mf ∈ N pairwise disjoint disks Df , f(Df ), . . . , f
mf−1(Df ) such that

fmf (cl Df ) ⊂ intDf ;

2) the attractor Af consists of mf connected components A, f(A), . . . , fmf−1(A) such that A =
⋂

j∈N
f jmf (Df ) and fmf (A) = A;

3) the repeller Rf is connected.
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Fig. 19. An example of the attractor Af and the repeller Rf of a gradient-like diffeomorphism of the 2-sphere.
The set U is shown in rose, the part of the attractor Af lying in Df is shown in red, and the connected repeller
Rf is shown in blue.

The reason for this is that the mf cylinders are mapped into each other by f cyclically, and
thus so do the boundary circles of U and V . This implies that U is either a union of mf disjoint
discs or a connected set, and the same alternative holds for V . Since U ∪ V is a sphere, we must
have that either U is a union of discs and V is connected, or the other way around.

Denote by G+ the subset of the set G consisting of diffeomorphisms with all saddle points
of positive orientation type. Let G− = G \G+ and denote by G1 the subset of G consisting of
diffeomorphisms f such that there exists a fixed pair Af , Rf for which mf = 1. Due to the topology
of the 2-sphere one can prove that

• G− ⊂ G1;

• for any diffeomorphism f ∈ G+ the number mf is well-defined, i.e., it is independent of the
choice of the pair Af , Rf .

Thus, the set G+ \G1 is the union of pairwise disjoint subsets

G+ \G1 = G2 · · · ∪Gm ∪ . . .

and mf = m for any diffeomorphism f ∈ Gm, m > 1. Since the attractor Af and the repeller Rf

for f ∈ G1 are connected, it is possible to construct an arc joining f to φ0. Due to connectedness of
Af for f ∈ Gm, m > 1, it is possible to reduce Af , i.e., to join it by a stable arc to a diffeomorphism
g of the class Hm ⊂ Gm where Hm consists of diffeomorphisms g whose attractor Ag is the unique
sink orbit of period m (Fig. 20).

Then one proves that for the diffeomorphism g there exists a saddle orbit Oσ of period m such
that clW u

Oσ
is the g-invariant closed curve Cσ and the map g|Cσ is topologically conjugate to the

rough circle transformation with the rotation number k
m (Fig. 21). The rotation numbers for all

such circles are equal. This makes it possible to join the diffeomorphism g by a stable arc to the
diffeomorphism whose nonwandering set consists of one saddle orbit Oσ = {σ, f(σ), . . . , fm−1(σ)},
one sink orbit Oω = {ω, f(ω), . . . , fm−1(ω)} and fixed sources α1, α2. The resulting diffeomorphism
can be joined to the model diffeomorphism φk,m by a stable arc. Then one proves that distinct
model diffeomorphisms cannot be joined by a stable arc.
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Fig. 20. Transfer from the diffeomorphism f ∈ Gm to the diffeomorphism g ∈ Hm. The connected component
of the attractor Af lying in the disk Df is shown in red (left). It is the union of the closures of the unstable
manifolds of the saddle points σ1, σ2, σ3, σ6, σ8, σ10. The arc from f to g has six saddle-node bifurcations
resulting in reduction of the attractor as shown on the right. There the attractor Ag of the diffeomorphism g
consists of the sink orbit ω.

Fig. 21. The curve Cσ.

4.2. Palis Diffeomorphisms

In this chapter we consider the class P of orientation-preserving gradient-like diffeomorphisms f
on the orientable surface M2 such that all nonwandering points of f are fixed and are of positive
orientation type. This class of diffeomorphisms was singled out by J. Palis in [33] as the class of
Morse – Smale surface diffeomorphisms which can be included in a topological flow.

Theorem 12 ([31], Theorem 1). Any two diffeomorphisms f, f ′ ∈ P defined on the same sur-
face M2 can be joined by a stable arc with a finite number of noncritical saddle-nodes which unfold
generically.

First one constructs a bifurcation-free arc joining the diffeomorphism f ∈ P to a certain
diffeomorphism φf ∈ P which is the 1-time shift of the gradient flow of some Morse function.
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Then, due to Theorems 1 and 2, the diffeomorphisms φf , φf ′ are joined by an arc with a finite
number of saddle-node bifurcations.
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