
ISSN 1560-3547, Regular and Chaotic Dynamics, 2021, Vol. 26, No. 6, pp. 618–646. c© Pleiades Publishing, Ltd., 2021.

The Interaction of Two Unsteady Point Vortex Sources
in a Deformation Field in 2D Incompressible Flows

Armand Vic1*, Xavier Carton1**, and Jonathan Gula1, 2***

1Univ. Brest, CNRS, Ifremer, IRD,
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Abstract—Taking into account the coupling of the ocean with the atmosphere is essential
to properly describe vortex dynamics in the ocean. The forcing of a circular eddy with the
relative wind stress curl leads to an Ekman pumping with a nonzero area integral. This in
turn creates a source or a sink in the eddy. We revisit the two point vortex-source interaction,
now coupled with an unsteady wind, leading to a time-varying circulation and source strength.
Firstly, we recover the various fixed points of the two vortex-source system, and we calculate
their stability. Then we show the effect of a weak amplitude, subharmonic, or harmonic time
variation of the wind, leading to a similar variation of the circulation and the source strength of
the vortex sources. We use a multiple time scale expansion of the variables to calculate the long
time variation of these vortex trajectories around neutral fixed points. We study the amplitude
equation and obtain its solution. We compute numerically the unstable evolution of the vortex
sources when the source and circulation have a finite periodic variation. We also assess the
influence of this time variation on the dispersion of a passive tracer near these vortex sources.
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1. INTRODUCTION

Vortices are essential features in ocean dynamics [5, 6]. They are ubiquitous at least at the ocean
surface [8] and they contribute substantially to the meridional heat and momentum transfer. Large
oceanic vortices have a moderate Rossby number (the ratio between the Coriolis parameter and
the inertial accelerations) and a finite Burger number (which measures the relative influences of
global rotation and of fluid stratification). Such vortices have been accurately studied using the
quasi-geostrophic (QG) model. In particular, the stability of isolated QG-vortices, and QG-vortex
interactions have been investigated, see [7, 9, 10, 17–20, 23, 24]. The simplest vortex interaction
occurs between pointwise structures. Point vortex interaction has also been the subject of many
studies investigating, in particular, the onset of Hamiltonian chaos [2, 11–15, 25]).

Recent studies of oceanic vortices have shown the importance of taking into account the oceanic
flow in the atmospheric forcing terms for a proper evaluation of the strength and durability of these
vortices [21]. Also, the Gulf Stream latitude of detachment from the coast and its eastward extent
have been proved to be sensitive to a wind forcing properly taking into account the presence of
vortices [22].
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TWO UNSTEADY POINT VORTEX-SOURCE INTERACTIONS 619

In the present study, we explore the consequence of taking into account the relative wind stress
on a vortex. We show that a source/sink flow component appears in the vortex flow. We analyze the
interaction of two identical point vortex sources (or vortex sinks) in an external deformation flow
mimicking the influence of neighbouring vortices. The motion of point-vortex sources has already
been addressed in previous studies [3, 4]. The first paper lists the integral invariants of the problem
and the cases of integrability of the equations. It then describes the motion of two point vortex
sources. The second paper lists the fixed points of two vortex sources in a deformation flow and
briefly addresses the case of a time-varying deformation flow.

In Section 2, we complement these studies by considering that, due to the interaction of the
wind with the vortex sources, both the source strength and the vortex circulation vary periodically
in time. In Section 3, we look at the dynamical system and compute the equilibrium points and
their stability. In Section 4, we follow the method of [15], a multiple time expansion, to obtain an
amplitude equation for the slow time variation of the position of each vortex source and we study
this amplitude equation with respect to this time variation of the vortex source and circulation.
Finally, we model numerically the evolution of the two point vortex sources and of passive particles
moving around them in Section 5. Conclusions, perspectives and physical interpretations are finally
provided in the last section.

2. MODELLING THE RELATIVE ATMOSPHERIC FORCING OF A VORTEX FLOW

2.1. Basic Equations

The linearized momentum equations on the f -plane for an ocean, forced by a wind stress �τ , are{
∂tu− f0v = (−1/ρ0) ∂xp+ (τx/ρ0)− ku

∂tv + f0u = (−1/ρ0) ∂yp+ (τy/ρ0)− kv,
(2.1)

where k is a friction coefficient (a necessary loss of energy of this ocean to balance the momentum
input by the wind).

For low frequency, low Rossby number motions, we neglect the relative acceleration and replace
the pressure gradient by a geostrophic velocity:{

−f0v = −f0vg + (τx/ρ0)− ku

f0u = f0ug + (τy/ρ0)− kv.
(2.2)

Using the subscript “a” for the ageostrophic velocity ua = u− ug, we have{
−f0va + ku = (τx/ρ0)

f0ua + kv = (τy/ρ0).
(2.3)

Taking the curl of the system (2.3), we obtain

f0�∇ · �ua + k�z · �∇× �u = �z · �∇× �τ/ρ0. (2.4)

Thus, we see that the wind stress curl �τ can have an influence on both the vorticity ω = ∇× u
and the velocity divergence ∇ · u (the source-sink term). In particular, if the wind has a steady or
a time-varying component, it will induce steady or time-varying velocity divergence and curl. This
source-sink effect is next explained in more detail.

2.2. The Relative wind Stress Curl

Recent work [21] has shown that, for the ocean mesoscales, and in particular for the dynamics
of oceanic vortices, the wind stress should be computed using the relative velocity of the air to the
ocean:

�τ = ρairCD|�uair − �uocean|(�uair − �uocean) (2.5)

(hereafter referred to as relative wind stress) rather than the total wind velocity

�τa = ρairCD|�uair|�uair (2.6)
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(the absolute wind stress). In these expressions, ρair is the density of the air, CD is the drag
coefficient (about 1.5 10−3 for |�uair| = 15 m/s), �uair is the wind velocity, and �uocean is the velocity
of the oceanic currents.

In what follows, we estimate the difference induced by taking the relative rather than the absolute
wind stress, using a simple configuration:

• a zonal and horizontally sheared wind �uair = (U0 − qy)�i.

• a circular vortex oceanic flow �uocean = Υr�eθ for 0 < r < R (we neglect the vortex deformation
due to the wind, in this simple estimate), where �eθ is the tangential vector to the circle, R is
the vortex radius and Υ (capital upsilon) is the vortex rotation rate.

From there, we can compute the relative wind stress through

�uair − �uocean =

⎛
⎝U0 − qy +Υr sin(θ)

−Υr cos(θ)

⎞
⎠ = U0

⎛
⎝1 + Υ−q

U0
y

− Υ
U0

x

⎞
⎠ , (2.7)

so

|�uair − �uocean| = U0

√(
1 +

Υ− q

U0
y

)2

+
Υ2

U2
0

x2. (2.8)

We next assume that qR/U0 ∼ ΥR/U0 ∼ ε (in practice on the order of 10−2). Setting

εα =
Υ− q

U0
y, εγ =

Υ

U0
x, (2.9)

we find via a Taylor expansion that

�τ = τ0

⎛
⎝1 + 2εα+ ε2(α2 + γ2

2 )

−εγ − ε2αγ

⎞
⎠ , (2.10)

where τ0 = ρairCDU
2
0 .

The wind stress curl is evaluated at orders 0, ε, ε2. The first two orders give

∇×

⎛
⎝τ0

0

⎞
⎠ = 0, ∇×

⎛
⎝2εα

−εγ

⎞
⎠ = −τ0

2q +Υ

U0
. (2.11)

The effect of the atmosphere-ocean coupling becomes apparent. In the absence of wind shear (q = 0),
the curl of τ at order ε1 would be null for an absolute wind stress.

The presence of a wind stress curl leads to an Ekman vertical velocity (Ekman pumping):

wE =
1

ρo
∇× �τ

f0
, (2.12)

where ρo is the seawater density.
It should be noted that, from this expression, one can compare the effect of the relative wind

stress to the effect of the Earth’s curvature on the Ekman vertical velocity. The former is

wE(air − ocean) = − ρair
ρocean

CDU0
Υ+ 2q

f0
, (2.13)

while the latter is

wE(β) = −β
ρair

ρocean
CD

U2
0

f2
0

. (2.14)

Using Υ ∼ q ∼ 10−5s−1 and U0 = 15 m/s, one obtains that the Ekman vertical velocity due to the
absolute wind stress is about 30% of the one due to the relative wind stress.
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2.3. Ekman Pumping and Point Vortex Sources

We next calculate the source/sink magnitude S0 associated with the Ekman vertical velocity. To
compute the order of magnitude, we assume here that the source/sink term S0 and the circulation
of the vortex Γ0 are decorrelated. Assuming that the Ekman pumping is uniform over the vortex
area, we can calculate the order of magnitude for S0 = SπR2 wE .

We can also compare the radial velocity thus created, vR = S0/(2πRH), to the vortex velocity
vθ = ΥR. With R = 15 km, the radial velocity is of the order of 2.25 10−3 m/s, while the azimuthal
velocity is vθ = 0.15 m/s. The source/sink magnitude S0 is therefore about 1.5% that of the
circulation Γ0.

Note that such vortices are not identical to vortices in a stratified ocean with free density
interfaces. Such vortices, in a steady circular configuration, would have no vertical velocity.

Hereafter we assume that the vortex sources are point vortex sources. This is a strong assumption
which would, in practice, suppress the effect of the wind stress curl. In fact, this point-vortex
assumption means that we only study the vortex motion and not its deformation.

3. INTERACTION OF TWO POINT VORTEX SOURCES

The study of this interaction proceeds in two steps. Firstly, we consider a steady wind and
so constant circulation Γ0 and source/sink magnitude S0. Secondly, we consider a time-oscillating
circulation Γ(t) and address the vortex motion via a multiple time scale method.

3.1. Equations of Motion

We consider two similar vortex sources in the plane (see Fig. 1) on which an external deformation
flow acts. This external flow mimicks the effect of surrounding vortices or currents. This problem
is analytically tractable, in particular, if we assume central symmetry. Using this symmetry, we
derive the equations for only one of the two vortex sources. Vortex source 1 has polar coordinates
(r, θ) and, by symmetry, the second vortex source has (r, θ + π).

Vortex-source 1 is submitted to the influence of:

• vortex-source 2: ⎧⎪⎪⎨
⎪⎪⎩

ṙ =
S0

2π(2r)
,

rθ̇ =
Γ0

2π(2r)

(3.1)

• the external deformation flow composed of a global rotation and a strain:{
ṙ = rA cos(2θ),

rθ̇ = rΩ− rA sin(2θ).
(3.2)

The vortex-source motion is therefore governed by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ṙ =
S0

4πr
+ rA cos(2θ),

θ̇ =
Γ0

4πr2
+Ω−A sin(2θ).

(3.3)

All the physical parameters (S0,Γ0,Ω, A) are assumed to be nonzero.
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Fig. 1. The two similar point vortex sources in a deformation flow.

3.2. Equilibrium Points and Stability

3.2.1. Preliminaries

The equilibrium points (r0, θ0) ∈ R∗
+ × [−π

4 ,
3π
4 [ satisfy:⎧⎪⎪⎨

⎪⎪⎩
S0

4πr0
+ r0A cos(2θ0) = 0,

Γ0

4πr20
+Ω−A sin(2θ0) = 0.

(3.4)

Let (r0, θ0) be an equilibrium. To determine its stability, we calculate the Jacobian matrix D(r0,θ0)u
from the velocity field:

u(r, θ) =

⎛
⎜⎜⎝

S0

4πr
+ rA cos(2θ)

Γ0

4πr2
+Ω−A sin(2θ)

⎞
⎟⎟⎠ , (3.5)

D(r0,θ0)u =

⎛
⎜⎜⎝
− S0

2πr20

−Γ0

2πr0
− 2r0Ω

−Γ0

2πr30

S0

2πr20

⎞
⎟⎟⎠ . (3.6)
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Its characteristic polynomial is

χ(X) = X2 − S2
0 + Γ2

0 + 4πr20Γ0Ω

4π2r40
. (3.7)

Depending on the sign of

Δ0 = S2
0 + Γ2

0 + 4πr20Γ0Ω, (3.8)

we have a neutral (or center) equilibrium point (if Δ0 < 0) or a saddle equilibrium point if Δ0 > 0.

Since saddle points are unstable, and since we wish to describe the long-term evolution of
the weakly perturbed vortex-source system (see the following section), we only consider neutral
equilibria. A necessary condition for the existence of a center then appears:

Γ0Ω < 0. (3.9)

(if Γ0Ω > 0, the vortices diverge to infinity along the x or y axis). Hereafter, we assume that this
condition is satisfied (unless otherwise stated).

Remark 1. Considering the oceanic case, where S0 � Γ0, the condition on Δ0 for the existence
of a center becomes approximately Γ2

0 + 4πr20Γ0Ω < 0.

3.2.2. Existence of a neutral equilibrium point

First, we calculate the position of the equilibria from the system (3.4):⎧⎪⎨
⎪⎩

r20A cos(2θ0) = −S0

4π
,

r20A sin(2θ0) =
Γ0

4π
+ r20Ω

(3.10)

implies tan(2θ0) = −Γ0+4πr20Ω
S0

. Because the function
]
−π

2 ,
π
2

[
−→ R, x �→ tan(2x) is not injective,

we cannot decide analytically (using this method of analysing necessary conditions) if we have

θ0 = −1

2
arctan

[
Γ0 + 4πr20Ω

S0

]
, (3.11)

or

θ0 = −1

2
arctan

[
Γ0 + 4πr20Ω

S0

]
+

π

2
. (3.12)

But this is not a numerical difficulty since the equilibrium points are clear in a streamfunction plot.

Squaring and summing the two equations in (3.10) gives a biquadratic equation in r0

r40(Ω
2 −A2) +

Γ0Ω

2π
r20 +

S2
0 + Γ2

0

16π2
= 0. (3.13)

From this equation, several equilibria can be found (they are detailed in Appendix A). The only
equilibrium point which is a center is determined by

r0 =

√
−Γ0Ω+

√
Δ′

4π (Ω2 −A2)
and θ0 =

1

2
arctan

[
Γ0A

2 − Ω
√
Δ′

S0 (Ω2 −A2)

](
+
π

2

)
, (3.14)

where Δ′ = A2
(
S2
0 + Γ2

0

)
− S2

0Ω
2 = S2

0

(
A2 − Ω2

)
+A2Γ2

0 and where the additional +π
2 depends on

the sign of S0. This is valid under the conditions

A2 < Ω2 < A2

(
1 +

Γ2
0

S2
0

)
and Γ0Ω < 0. (3.15)
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Remark 2. These conditions do not depend on the sign of S0. This will allow us to choose S0 as
a source or a sink with the same intensity.

The various equilibria and their nature depending on the four physical parameters are shown in
Fig. 2. This figure shows the presence of an attractive or a repulsive center at the origin of the
plane when the source flow is strong (this equilibrium will not be considered further because it
corresponds to the final position of the two vortex sources after a merging event). Two saddle
points exist when the source flow is weak and when the strain flow is strong. Finally, two centers
appear for weak external flow and weak source intensity, and when conditions (3.15) are satisfied.

Remark 3. With Γ0 < 0, S0 < 0, Ω > A > 0, the oceanographic limit |S0| � |Γ0| leads to the

following approximation for the center position: θ0 ≈ π/4, r0 ≈
√
−Γ0/[4π(Ω −A)]. Note that,

though S0 is not infinitesimal in Fig. 2, the orientation of the centers corresponds to this solution
in the upper left case.

Fig. 2. Vortex-source trajectories for different sets of physical parameter values. Neutral equilibrium points
(centers) appear only in the configuration where conditions (3.15) are fulfilled (see the upper left panel). The
upper right panel shows a case with a strong strain field; the lower two cases have fast global rotation with
either like-signed or opposite-signed circulation and source intensity.
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4. VORTEX MOTION WITH UNSTEADY CIRCULATION
AND SOURCE-SINK MAGNITUDE

This section is devoted to the motion of a source-sink pair with a periodic circulation and source
magnitude, due to the effect of an equally periodic wind stress. This wind stress is assumed to have
a dominant steady component and a weak periodic component. In this section, we first address
the case of a subharmonic time variation of Γ and of S with respect to the period of rotation of a
vortex source around the neutral equilibrium point.

4.1. Weakly Nonlinear Evolution of the Vortex Pair Displaced from a Center with a Subharmonic
Variation of Circulation and Source

We consider a center point defined by Eq. (3.14) that we slightly perturb from its equilibrium
position. Computed from Eq. (3.7), the natural pulsation of the motion around this center is

ω0 =

√
−
[
S2
0 + Γ2

0 + 4πr20Γ0Ω
]

2πr20
. (4.1)

4.1.1. Multiple time scale development

In this subsection, we assume that the wind stress leads to a subharmonic variation of
system (3.3) with circulation and source-sink magnitude:⎧⎨

⎩Γ(t) = Γ0

(
1 + ε2δ cos (2ω0t)

)
,

S(t) = S0

(
1 + ε2δ cos (2ω0t)

)
.

(4.2)

The algebra for this subharmonic case is detailed here and in Appendix B. To simplify notations,
we introduce the constants ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

a =
S0

2πr20
= −2A cos(2θ0),

b = 2

(
Ω+

Γ0

4πr20

)
= 2A sin(2θ0),

c =
Γ0

2πr20

(4.3)

such that a2 + bc = −ω2
0.

Remark 4. For an oceanic point vortex source, |S0| ∼ 1.5%|Γ0|, so a � b and a � c. Although
this is not done here, we could use this to make approximations in the following computations. In
Appendix B, we can see that the quotient rates a/b and a/c appear frequently.

The equation of motion is expanded at higher order in ε than in the previous section. Close to
(r0, θ0), we expand in ε the time t = t0 + εt1 + ε2t2 + ε3t3 and the dynamical variables:⎧⎨

⎩r = r0 + εr1 + ε2r2 + ε3r3,

θ = θ0 + εθ1 + ε2θ2 + ε3θ3.
(4.4)

Once substituted in the equation of motion (3.3), we obtain:

• Equations for r:

∂tr = ε (∂t0r1) + ε2 (∂t0r2 + ∂t1r1) + ε3 (∂t0r3 + ∂t1r2 + ∂t2r1)

=
S0

4πr0
+Ar0 cos(2θ0)︸ ︷︷ ︸

=0

+ε [−ar1 − b (r0θ1)] (4.5)
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+ ε2
[
−ar2 − b (r0θ2) +

aδr0
2

cos(2ω0t0) +
a

2r0
r21 +

a

r0
(r0θ1)

2 − b

r0
r1 (r0θ1)

]
(4.6)

+ ε3
[
−ar3 − b (r0θ3) +

a

r0
r1r2 −

ar31
2r20

− aδ

2
r1 cos(2ω0t0)− aδr0ω0t1 sin(2ω0t0) (4.7)

− b

r0
(r2 (r0θ1) + r1 (r0θ2)) +

a

r20
r1 (r0θ1)

2 +
2a

r0
(r0θ1) (r0θ2) +

2b

3r20
(r0θ1)

3

]

• Equations for θ:

∂t (r0θ) = ε [∂t0 (r0θ1)] + ε2 [∂t0 (r0θ2) + ∂t1 (r0θ1)]

=
Γ0

4πr0
+ r0Ω−Ar0 sin(2θ0)︸ ︷︷ ︸

=0

+ε [−cr1 + a (r0θ1)] (4.8)

+ ε2
[
−cr2 + a (r0θ2) +

cδr0
2

cos(2ω0t0) +
3c

2r0
r21 +

b

r0
(r0θ1)

2

]
(4.9)

+ ε3
[
−cr3 + a (r0θ3)− cδr1 cos(2ω0t0) +

3c

r0
r1r2 +

2b

r0
(r0θ1)(r0θ2)

−2c

r20
r31 −

2a

3r20
(r0θ1)

3 − cδr0ω0t1 sin (2ω0t0)

]
. (4.10)

By gathering terms at each order, we obtain:

At order ε1. As expected, we recover from Eqs. (4.5) and (4.8) the unforced harmonic
oscillator (the forcing appears only at order ε2).⎧⎨

⎩ ∂t0r1 = −ar1 − b(r0θ1),

∂t0 (r0θ1) = −cr1 + a(r0θ1)
(4.11)

with the solution

r1 = C1,1 (t2, t3) e
iω0t0 +C1,1(t2, t3)e

−iω0t0 . (4.12)

Hereafter, the second term is denoted c.c for “complex conjugate”.

r0θ1 = D1,1(t2, t3)e
iω0t0 + c.c, (4.13)

with

D1,1(t2, t3) = μ1C1,1(t2, t3), (4.14)

where μ1 = −a+iω0
b .

At order ε2. Equations (4.6) and (4.9) contain nonlinear terms. The absence of linear growth
of the solution leads to ∂t1C1,1 = ∂t1r1 = 0:{

∂t0r2 = −ar2 − b(r0θ2) + f2(t0, t1, t2, t3)

∂t0 (r0θ2) = −cr2 + a(r0θ2) + g2(t0, t1, t2, t3)
(4.15)

with f2 and g2 being two functions defined by⎧⎪⎪⎨
⎪⎪⎩

f2(t0, t1, t2, t3) =
aδr0
2

cos(2ω0t0) +
a

2r0
r21 +

a

r0
(r0θ1)

2 − b

r0
r1 (r0θ1) ,

g2(t0, t1, t2, t3) =
cδr0
2

cos(2ω0t0) +
3c

2r0
r21 +

b

r0
(r0θ1)

2 .

(4.16)
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This leads to the solution{
r2 = C2,0|C1,1|2 + C2,1e

iω0t0 + c.c +
(
C2,2,1 + C2,2,2C

2
1,1

)
e2iω0t0 + c.c,

(r0θ2) = D2,0|C1,1|2 +D2,1e
iω0t0 + c.c +

(
D2,2,1 +D2,2,2C

2
1,1

)
e2iω0t0 + c.c,

(4.17)

where C2,0, C2,2,1, C2,2,2, D2,0, D2,2,1, D2,2,2 are complex constants. Their values are computed
and details are given in Appendix B.

At order ε3. Equations (4.7) and (4.10) lead to the following system of equations:{
∂t0r3 = −ar3 − b(r0θ3) + f3(t0, t1, t2, t3),

∂t0(r0θ3) = −cr3 + a(r0θ3) + g3(t0, t1, t2, t3),
(4.18)

where f3 and g3 are the functions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f3 = −∂t2r1 +
ar1r2
r0

− ar31
2r20

− aδr1 cos(2ω0t0)

2
− b (r2(r0θ1) + r1 (r0θ2))

r0
+

ar1(r0θ1)
2

r20

+
2a(r0θ1)(r0θ2)

r0
+

2b(r0θ1)
3

3r20
− aδr0ω0t1 sin(2ω0t0)

g3 = −∂t2(r0θ1) +
3cr1r2
r0

− 2cr31
r20

− cδr1 cos(2ω0t0)−
2a(r0θ1)

3

3r20
+

2b(r0θ1)(r0θ2)

r0

− cδω0t1 sin(2ω0t0).

(4.19)

This yields (see Appendix B) a differential equation on C1,1(t2), called the amplitude equation. This
equation governs the evolution of the amplitude of a perturbation from the vortex source around
the neutral equilibrium point:

∂t2C1,1 = (V + iVI) δC1,1 + (VII + iVIII) |C1,1|2C1,1, (4.20)

where V, VI, VII, VIII are real constants computed in Appendix B. For Γ0 = −0.5, S0 =
±0.01,Ω = 1 and A = 0.8 (two sets of parameters related to conditions (3.15), corresponding to
the upper left case of Fig. 2, which we generically use in further numerical applications) we have
V 
 ∓3.00 · 10−3, VI 
 1.33 · 10−1, VII 
 ±3.77 · 10−2 and VIII 
 3.35 · 10−1.

4.1.2. Study of the amplitude equation

To study the slow-time variation of C1,1, we set C1,1 = ueiβ or C1,1 = X + iY such that

∂t2C1,1 = (∂t2u+ iu∂t2β) e
iβ = ∂t2X + i∂t2Y (the polar form is of interest for determining the

equilibria; the Cartesian form is simpler to analyze the stability of these equilibria). Using the
polar form and separating the real and imaginary parts yields{

∂t2u cos β − u∂t2β sin β = u
[(
δV + u2VII

)
cosβ +

(
δVI + u2VIII

)
sin β

]
∂t2u sin β + u∂t2β cos β = u

[(
δVI + u2VIII

)
cos β +

(
−δV + u2VII

)
sinβ

] (4.21)

equivalent to: ⎛
⎝ ∂t2u

u∂t2β

⎞
⎠ = uδ

⎛
⎝ cos(2β) sin(2β)

− sin(2β) cos(2β)

⎞
⎠
⎛
⎝V

VI

⎞
⎠+ u3

⎛
⎝ VII

VIII

⎞
⎠ . (4.22)

The equilibria u0e
iβ0 of this amplitude equation (see Fig. 3) are, from Eq. (4.22), either u0 = 0 or

they are given by

δ

⎛
⎝ cos(2β0) sin(2β0)

− sin(2β0) cos(2β0)

⎞
⎠
⎛
⎝V

VI

⎞
⎠+ u20

⎛
⎝ VII

VIII

⎞
⎠ = 0, (4.23)
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Fig. 3. Slow time evolution of C1,1(t2) = X(t2) + iY (t2) for different values of δ. The blue dashed lines indicate
the eigendirections of stability of the saddle equilibrium point (0, 0). Here S0 = +0.01, the other equilibrium
points are repulsive.

leading to

β0 =
1

2
arctan

[
VII VI − V VIII

VIII VI + V VII

]
± π

2

 3.86◦ ± 90◦, (4.24)

u0 =
√
δ

(
V2 + VI2

VII2 + VIII2

) 1
4


 0.6293
√
δ. (4.25)

(where the numerical applications are done for our choice of physical parameters Γ0 = −0.5, S0 =
±0.01,Ω = 1 and A = 0.8).

The stability analysis of these equilibria is easier calculated in Cartesian coordinates:{
∂t2X =

(
Vδ + VII

(
X2 + Y 2

))
X +

(
VIδ − VIII

(
X2 + Y 2

))
Y

∂t2Y =
(
VIδ + VIII

(
X2 + Y 2

))
X +

(
−Vδ + VII

(
X2 + Y 2

))
Y.

(4.26)

The Jacobian matrix of this system at the equilibrium point (X0, Y0) = (u0 cos(β0), u0 sin(β0)) is

M =

⎛
⎝ δV + VII

(
3X2

0 + Y 2
0

)
− 2X0Y0VIII δVI − VIII

(
X2

0 + 3Y 2
0

)
+ 2X0Y0VII

δVI + VIII
(
3X2

0 + Y 2
0

)
+ 2X0Y0VII −δV + VII

(
X2

0 + 3Y 2
0

)
+ 2X0Y0VIII

⎞
⎠ . (4.27)

For the equilibrium point (0, 0), the computation of the eigenvalues is straightforward:±δ
√

V2 + VI2

and the eigendirections of this saddle point are represented in Fig. 3. As δ grows, two attractive or
repulsive points appear and separate from each other in the plane. The nature of the centers depends
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of the sign of S0. For this equilibrium, the numerical study of the real parts of the eigenvalues of the
matrix M gives a linear and positive (resp. negative) value when S0 = +0.01 (resp. S0 = −0.01)
with 0.02987 (resp. −0.02987) slope with respect to δ . This corresponds to the repulsive (resp.
attractive) nature of the two equilibria.

4.2. Harmonic Forcing

In this subsection, the time variation of the circulation and source-sink magnitude is⎧⎨
⎩ Γ(t0, t2) = Γ0

(
1 + δε3 cos (ω0t0 + ω2t2)

)
S(t0, t2) = S0

(
1 + δε3 cos (ω0t0 + ω2t2)

)
.

(4.28)

The multiple time scale expansion leads to the amplitude equation

∂t2C1,1 = (VII + iVIII) |C1,1|2C1,1 +
(a− iω0) r0δ

8
eiω2t2 , (4.29)

which is equivalent in polar coordinates (C1,1 = ueiβ) to⎛
⎝ ∂t2u

u∂t2β

⎞
⎠ = u3

⎛
⎝ VII

VIII

⎞
⎠− r0δ

8

⎛
⎝− cos(β − ω2t2) sin(β − ω2t2)

− sin(β − ω2t2) cos(β − ω2t2)

⎞
⎠
⎛
⎝ a

ω0

⎞
⎠ , (4.30)

or in Cartesian coordinates (C1,1 = X + iY ) to⎛
⎝∂t2X

∂t2Y

⎞
⎠ = (X2 + Y 2)

⎛
⎝ VII −VIII

VIII VII

⎞
⎠
⎛
⎝X

Y

⎞
⎠+

r0δ

8

⎛
⎝cos(ω2t2) sin(ω2t2)

sin(ω2t2) − cos(ω2t2)

⎞
⎠
⎛
⎝ a

ω0

⎞
⎠ . (4.31)

For ω2 = 0, finding the equilibrium point (X0, Y0) =
(
u0 cos(β0), u0 sin(β0)

)
is straightforward (see

Figs. 4 and 5) and we have

X0 =
r0δ (−aVII + ω0VIII)

8u20
(
VII2 + VIII2

) , Y0 =
r0δ (aVIII + ω0VII)

8u20
(
VII2 + VIII2

) , (4.32)

where

u30 =
r0δ

8

√
a2 + ω2

0

VII2 + VIII2
. (4.33)

Numerical evaluation gives

u0 
 0.510δ
1
3 , X0 
 0.506δ

1
3 , Y0 
 ±0.062δ

1
3 , (4.34)

for Γ0 = −0.5, S0 = ±0.01,Ω = 1 and A = 0.8.
Analyzing the stability of this equilibrium point, we find two complex conjugate eigenvalues of

the following matrix:

M =

⎛
⎝VII(3X2

0 + Y 2
0 )− 2VIIIX0Y0 −VIII(X2

0 + 3Y 2
0 ) + 2VIIX0Y0

VIII(3X2
0 + Y 2

0 ) + 2VIIX0Y0 VII(X2
0 + 3Y 2

0 ) + 2VIIIX0Y0

⎞
⎠ , (4.35)

which are (X2
0 + Y 2

0 )
(
2VII ± i

√
3VIII2 − VII2

)
. Again, the real parts are positive or negative

depending on the sign of S0. For the set of parameters we have chosen, it is a repulsive equilibrium
point if S0 = +0.01, and it is an attractive equilibrium point if S0 = −0.01, as we can see in Figs. 4
and 5. Around those points, the oscillation pulsation is

ω̃2 = (X2
0 + Y 2

0 )
√

3VIII2 − VII2 = (r0δ)
2
3

(
a2 + ω2

0

VII2 + VIII2

) 1
3

√
3VIII2 − VII2

4

 0.150 δ

2
3 (4.36)

for the set of parameters we chose, independently of the sign of S0.
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Fig. 4. Slow time evolution of C1,1(t2) = X(t2) + iY (t2) for the harmonic forcing in the case ω2 = 0 and for
S0 = +0.01.

Fig. 5. Slow time evolution of C1,1(t2) = X(t2) + iY (t2) for the harmonic forcing in the case ω2 = 0 and for
S0 = −0.01.

When ω2 �= 0, the behavior of the system changes radically if we are in a source system (S0 > 0)
or a sink system (S0 < 0), as we can see in the following figures (Figs. 6 and 7).

REGULAR AND CHAOTIC DYNAMICS Vol. 26 No. 6 2021



TWO UNSTEADY POINT VORTEX-SOURCE INTERACTIONS 631

Fig. 6. Trajectories of C1,1 for the harmonic forcing in the function of ω2 for δ = 0.1 (then ω̃2 = 0.016). The
starting point is at the equilibrium point when ω2 = 0. The source is S0 = +0.01. The straight lines indicate
a numerical divergence of the trajectories. The equilibrium point is highly unstable. The calculation time is
Tf = 500.

Fig. 7. Trajectories of C1,1 for the harmonic forcing in the function of ω2 for δ = 0.1 (then ω̃2 ∼ 0.016). The
starting point is at the equilibrium point when ω2 = 0. The source is a sink S0 = −0.01 and we can see a
stabilization of C1,1 with time. The equilibrium point is stable. The calculation time is Tf = 2000. For large
ω2, it is likely from numerical simulations that C1,1 → 0 as t → ∞.
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5. IMPACT OF THE SOURCE/CIRCULATION VARIABILITY ON THE TRAJECTORIES
OF THE VORTEX SOURCES AND OF PASSIVE TRACERS

In this section, we compute numerically the evolution of the point vortex sources (or vortex
sinks) and of passive tracers, advected by the total velocity field, when we vary ε. The results are
quite similar for the subharmonic or the harmonic case, so we will only present the results for the
subharmonic variability.

5.1. Point Vortex Trajectories

First, we study the trajectory of the point vortex sources before considering the evolution of the
passive tracers. Figures 8 and 9 are built using a 4th-order Runge –Kutta scheme and show the
evolution of one of the two point vortex sources (or vortex sinks) around the center of the stationary
problem, as ε is increased. When ε = 0, we observe the rotation of the point vortex around the
neutral equilibrium (the center). When increasing slightly ε, the vortex spirals outwards from
its initial position. This is another illustration of the result previously shown (in Fig. 3): as ε is
increased, the neutral point evolves into two repulsive centers. The slow time evolution is an increase
in the modulus of C11. Still, our analytical model holds only for weakly nonlinear evolutions and for
small ε. The point vortex-source evolution for finite values of ε can only be described numerically.
In particular, for ε = 0.5, vortex sinks leave the vicinity of the neutral point to drift towards the
plane center. For large ε (ε � 0.4), the point vortex trajectories intersect and the dynamical system
becomes irregular. Furthermore, these trajectories are noticeably different for a vortex source and
for a vortex sink. In the latter case, the trajectory spirals around the plane center.

5.2. Passive Tracer Trajectories

After determining the vortex-source trajectories, we obtain those of passive tracers using also a
4th-order Runge –Kutta scheme. As a first indication for the possible trajectories of a passive tracer
embedded in the time-varying flow, we compute the streamlines of the total flow, for vortex sources
at the steady neutral points in Fig. 10. This figure helps position tracers initially. In particular,
we see that the topology of the flow is comprised of 6 regions, five of them being compact and
symmetric around the plane center, and the external trajectories circling these five regions. These
regions enclose five centers and four hyperbolic (saddle) points.

Remark 5. The evolution of a passive tracer (in blue in Figs. 11 and 12) is not that of a vortex
source. The tracer is advected by the two vortex sources simultaneously.

Using Fig. 10, we place passive tracers either near the plane center, or near a neutral point, or
in the external region, far away from the plane center, see Figs. 11 and 12. In these figures, the
evolution of point vortex source 1 is plotted in black; this vortex lies initially at the neutral point
(which is no more an equilibrium point for ε > 0). For ε = 0, the tracer follows a closed curve around
the plane center. For the point-vortex source, we can clearly see that the tracers’ trajectories move
out of the closed regions indicated in Fig. 10 when ε = 0.5. Such a finite amplitude variation of the
source strength can be attained when induced by wind variability. It is clear that the tracers are
mixed between the various regions. For an oceanographic application, this indicates that finite-area
vortices would exchange their water masses in this case.

For a vortex sink, as mentioned previously, passive particles initially located around a neutral
center can drift towards the center of the plane (for ε = 0.4); this indicates that mixing will be even
more efficient in this case.

To measure the mixing of the tracers, we compute the trajectories of 100 passive particles initially
close to each other and we calculate the time evolution of their RMS (root-mean square) relative
distance. Figure 13 shows the motion and the growth in time of a patch of tracers. It indicates that
the standard deviation grows initially exponentially fast, with a characteristic time T = 25. The
subsequent growth (at t = 75) is even faster. A more detailed view of the growth of the patches is
provided on Fig. 14. The initial position of the four patches of particles is indicated on Fig. 10. At
long time, the growth of the tracer patch is similar for ε = 0 and for ε = 0.2, but at shorter time
the patch shown on Fig. 13 grows exponentially fast for ε = 0.2.
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Fig. 8. Trajectories of the vortex source 1 for Γ0 = −0.5, S0 = 0.01,Ω = 1 and A = 0.8. The red point is the
center equilibrium point, the orange one is the initial position of the vortex and the blue one the position of
the vortex at the calculation time Tf = 300.

Fig. 9. Trajectories of the vortex sink 1 for Γ0 = −0.5, S0 = −0.01,Ω = 1 and A = 0.8. The red point is the
center equilibrium point, the orange one is the initial position of the vortex and the blue one the position of
the vortex at the calculation time Tf = 300.
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Fig. 10. Streamlines of the total flow when the two vortex sinks are placed at their equilibrium point (black
points), for ε = 0 and for the usual parameters (here we take S0 = −0.01 but it is really similar for the source
case). We can see three center equilibrium points (one at the origin and two symmetric), four saddle points
and two attractive equilibrium points (the center of the vortex sinks, they become repulsive equilibrium points
if we take S0 > 0). The four colored points are the starting points of the patch of tracers we used in the study.

Fig. 11. Tracer evolution in the plane for a vortex-source system as ε is increased; in black: vortex-source
trajectory; in blue: passive tracer trajectories. The red points are the initial position of the vortex sources
at their center equilibrium points for ε = 0 and the blue, orange and green points are initial positions of the
passive tracers. Here the calculation time is Tf = 100.
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Fig. 12. Tracer evolution in the plane for a vortex-sink system as ε is increased. The colors are the same as
in Fig. 11 and Tf = 100.

6. CONCLUSIONS, PERSPECTIVES AND PHYSICAL INTERPRETATIONS

In this paper, we have addressed the problem of two vortex sources in an external deformation
field. Compared with previous studies, we have not considered a time-varying external flow but
circulation and strength of the source/sink-vortices. We adressed the problem of point vortices
analytically. This idealized situation, added to geometrical symmetry in the plane, allows the
derivation and analysis of a simple dynamical system. For several values of the physical parameters,
we have shown the existence of a center point of equilibrium around which the oscillation of the
perturbed vortex occurs in a steady configuration.

We then have shown that a periodic variation of circulation or of the source flow, with a
subharmonic or a harmonic frequency, could be caused by an unsteady wind. With such a variation
of Γ or of S, we have calculated the slow evolution of the vortex trajectories from the steady
orbit around the center point. The slow variation of the amplitude of the perturbation shows the
destabilization of the center point into attractive or repulsive equilibria, for both the harmonic and
subharmonic variations. The difference between these two cases is the number of equilibria (1 or 2).
In both cases, the amplitude of the perturbation in the vicinity of these equilibria is bounded
in time for small amplitudes of the time variation of Γ or of S. For larger amplitude variations
(larger ε), trajectories are allowed between the previous fixed points. This indicates a transition to
chaos when ε grows.

We have also computed the evolution and spreading of patches of passive particles. We have
shown that the spreading can grow exponentially fast when the time variation of Γ or S is present.
This indicates that the effect of an unsteady wind, taken into account via a relative wind stress, can
increase the mixing of the fluid (here the oceanic fluid of the two vortices, or in their periphery).
From this analysis alone, and considering previous studies, it is difficult to predict the exact influence
of using the relative wind stress curl to force two interacting finite-area vortices. This will require
numerical modeling with a detailed survey in the space of physical parameters as was done by
Perrot and Carton [16]. In particular, the orientation of the background flow has been shown to
have a crucial importance in facilitating or in reducing the vortex tendency to merge.
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Fig. 13. Evolution of the vortex sink number 1 (black dot) close to its stable point. Evolution of 100 passive
tracers (blue dots), of their global center (red dot) and of the standard deviation of the patch (represented by
the red circle). For this experiment, ε = 0.2.

The orientation of the wind in our problem is related to the polarity of the source (source or
sink) and it would be interesting to study its influence on vortex merger. This can be achieved using
a fully coupled ocean-atmosphere quasi-geostrophic model, as a second step of this study. Another
important aspect to be studied with a coupled model is the stability of individual, finite-area
vortices. Indeed, both vortex interaction, which allows their growth (against the ambient shear of
the surrounding flows which erode them), and the stability of isolated vortices are key mechanisms
for the durability of these structures. Moreover, they make up the bulk of eddy kinetic energy in the
ocean. Understanding eddy kinetic energy variations in coupled ocean-atmosphere models requires
the knowledge of vortex processes in such models.

Ocean-atmosphere coupling creates an asymmetric Ekman pumping in the vortex and so the
resultant of this pumping is not null and corresponds to a nondivergent free flow. The measure of
this divergent component is impossible using altimetry because the speed computed from altimetry
is geostrophic and so divergence-free. Surface buoys, ship drifts or other satellite sensors able to
give complete speed are then needed. Future research will compare the total surface velocity field
and the one deduced from altimetry and related to wind. This will allow us to better evaluate the
impact on the divergence component of the flow on the vortex–vortex interactions.

REGULAR AND CHAOTIC DYNAMICS Vol. 26 No. 6 2021



TWO UNSTEADY POINT VORTEX-SOURCE INTERACTIONS 637

Fig. 14. Evolution of the standard deviation of the patch of tracers for different initial positions (those
described in Fig. 10). The last one is for the initial position close to the saddle equilibrium point.
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APPENDIX A. EQUILIBRIUM POINTS AND STABILITY
This section is a reminder of the fixed points of the problem; it was addressed slightly differently

in [4] and in [3]. Recall the various cases for equilibria here with our notations and in our specific
cases. This is necessary to further study the vortex source evolution with unsteady circulation or
source strength.

Recall that we have the condition Γ0Ω < 0 and the formulas

θ0 = −1

2
arctan

[
Γ0 + 4πr20Ω

S0

]
, (A.1)

or

θ0 = −1

2
arctan

[
Γ0 + 4πr20Ω

S0

]
+

π

2
, (A.2)

and

r40(Ω
2 −A2) +

Γ0Ω

2π
r20 +

S2
0 + Γ2

0

16π2
= 0. (A.3)

6.1. For Ω2 = A2:

Equilibrium. Starting from Eq. (A.3) with Ω2 = A2 and Γ0Ω < 0, we have r20 = −S2
0+Γ2

0
8πΓ0Ω

> 0

and thanks to Eq. (A.1), we have

r0 =

√
S2
0 + Γ2

0

8π(−Γ0Ω)
and θ0 =

1

2
arctan

[
S2
0 − Γ2

0

2S0Γ0

]
. (A.4)

Stability. Is the equilibrium (A.4) stable? From the characteristic polynomial (3.7) of the

differential matrix χ(X) = X2 − S2
0+Γ2

0+4πr20Γ0Ω

4π2r40
, we need to determine the sign of Δ0:

Δ0 = S2
0 + Γ2

0 + 4πr20Γ0Ω =
S2
0 + Γ2

0

2
> 0. (A.5)

So χ has two real roots: one positive and one negative. Then the equilibrium (A.4) is a saddle
equilibrium point. We are not interested in this type of equilibrium.

6.2. For Ω2 �= A2:

From the polynomial equation (A.3) in r20:(
Ω2 −A2

)
X2 +

Γ0Ω

2π
X +

S2
0 + Γ2

0

16π2
= 0, (A.6)

we compute the discriminant

Δ =
1

4π2

[
Γ2
0Ω

2 −
(
S2
0 + Γ2

0

) (
Ω2 −A2

)]
, (A.7)

and look at the sign of

Δ′ = A2
(
S2
0 + Γ2

0

)
− S2

0Ω
2, (A.8)

Δ′ = S2
0

(
A2 − Ω2

)
+A2Γ2

0. (A.9)

We want Δ′ to be positive because we want real (positive) solutions to Eq. (A.6). This brings three
situations (we have already studied the situation Ω2 = A2):

• If A2 > Ω2, then Δ′ > 0 clearly from Eq. (A.9).

• If Ω2 > A2, then Δ′ > 0 ⇐⇒ Ω2 < A2
(
1 +

Γ2
0

S2
0

)
.

• If Ω2 = A2
(
1 +

Γ2
0

S2
0

)
, then Δ′ = 0.
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6.2.1. For A2 > Ω2:

Because A2 > Ω2, we have Δ′ > 0 without any more condition, and we have two solutions to
the polynomial equation (A.6):

X± =
Γ0Ω±

√
Δ′

4π (A2 − Ω2)
. (A.10)

Recall that we want only a nonnegative solution (r20 > 0). Because we have supposed the condition
Γ0Ω < 0, this constraint removes X−. The root X+ is a nonnegative solution if and only if√
Δ′ > −Γ0Ω > 0. This condition is valid because

(
A2 −Ω2

) (
S2
0 + Γ2

0

)
> 0 so Δ′ > Γ2

0Ω
2.

Equilibrium for X+. We have the following equilibrium point (with θ0 computed from
Eq. (A.1)):

r0 =

√
Γ0Ω+

√
Δ′

4π (A2 − Ω2)
and θ0 = −1

2
arctan

[
Γ0A

2 +Ω
√
Δ′

S0 (A2 −Ω2)

]
. (A.11)

Stability for X+. How is the equilibrium (A.11) stable? We need to know the sign of Δ0.

Proposition 1. Under all the conditions of this subsection, we have

Δ0 = S2
0 + Γ2

0 + 4πr20Γ0Ω > 0

and the equilibrium point (A.11) is a saddle equilibrium point.

Proof. Remember that we work under the assumption A2 > Ω2 and Γ0Ω < 0. Then put r20 in Δ0

and

Δ0 > 0 ⇐⇒
(
S2
0 + Γ2

0

) (
A2 − Ω2

)
+ Γ2

0Ω
2 > −Γ0Ω

√
Δ′

⇐⇒
[
S2
0

(
A2 −Ω2

)
+ Γ2

0A
2
]2

> Γ2
0Ω

2S2
0

(
A2 − Ω2

)
+ Γ4

0Ω
2A2

⇐⇒ S4
0

(
A2 − Ω2

)
+ S2

0Γ
2
0

(
2A2 − Ω2

)
+ Γ4

0A
2 > 0.

The right-hand side of the equivalence is true under the assumption A2 > Ω2. This concludes the
proof of the proposition. �

6.2.2. For A2 < Ω2 < A2
(
1 +

Γ2
0

S2
0

)
:

We also have two roots of the polynomial (A.6):

X± =
−Γ0Ω±

√
Δ′

4π (Ω2 −A2)
. (A.12)

X+ is clearly nonnegative. X− is also nonnegative because we have −Γ0Ω >
√
Δ′ > 0 (deduced

from the hypothesis). So we have two situations to analyze:

Equilibrium and stability for X+. We have the following equilibrium point (with θ0
computed from Eq. (A.1)):

r0 =

√
−Γ0Ω+

√
Δ′

4π (Ω2 −A2)
and θ0 =

1

2
arctan

[
Γ0A

2 − Ω
√
Δ′

S0 (Ω2 −A2)

]
. (A.13)

How is this equilibrium (A.13) stable? We need to know the sign of Δ0.

Proposition 2. Whatever the set of parameters we choose, if they satisfy the assumptions we

made: A2 < Ω2 < A2
(
1 +

Γ2
0

S2
0

)
and Γ0Ω < 0, then we have

Δ0 = S2
0 + Γ2

0 + 4πr20Γ0Ω < 0, (A.14)

and the equilibrium point (A.13) is a neutral equilibrium point.
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Proof. Consider Δ0 for the value r0 we have in Eq. (A.13):

Δ0 = S2
0 + Γ2

0 + Γ0Ω

(
−Γ0Ω+

√
Δ′

Ω2 −A2

)
.

So

Δ0 < 0 ⇐⇒
(
S2
0 + Γ2

0

) (
Ω2 −A2

)
− Γ2

0Ω
2 + Γ0Ω

√
Δ′ < 0

⇐⇒ S2
0

(
Ω2 −A2

)
+ Γ2

0A
2 + Γ0Ω

√
Δ′ < 0.

The right-hand side of the equivalence is true because Γ0Ω < 0 and Ω2 −A2 < A2 Γ2
0

S2
0

so

S2
0

(
Ω2 −A2

)
+ Γ2

0A
2 < 0. This concludes the proof of the proposition. �

Equilibrium and stability for X−. We have the following equilibrium point (with θ0
computed from Eq. (A.1)):

r0 =

√
−Γ0Ω−

√
Δ′

4π (Ω2 −A2)
and θ0 =

1

2
arctan

[
Γ0A

2 +Ω
√
Δ′

S0 (Ω2 −A2)

]
. (A.15)

Proposition 3. For the equilibrium (A.15), Δ0 is nonnegative for every set of parameters such

that A2 < Ω2 < A2
(
1 +

Γ2
0

S2
0

)
and Γ0Ω < 0. So the equilibrium (A.15) is a saddle equilibrium point.

Proof. Look at the expression of Δ0:

Δ0 = S2
0 + Γ2

0 + 4πr20Γ0Ω = S2
0 + Γ2

0 +
−Γ2

0Ω
2 − Γ0Ω

√
Δ′

Ω2 −A2
, (A.16)

in which the sign is the same as the sign of(
S2
0 + Γ2

0

) (
Ω2 −A2

)
− Γ2

0Ω
2 − Γ0Ω

√
Δ′ = S2

0

(
Ω2 −A2

)
− Γ2

0A
2︸ ︷︷ ︸

<0 because Ω2−A2<A2
Γ2
0

S2
0

+
(
−Γ0Ω

√
Δ′
)

︸ ︷︷ ︸
>0

. (A.17)

So we have the following equivalences:

Δ0 > 0 ⇐⇒ −Γ0Ω
√
Δ′ > Γ2

0A
2 − S2

0

(
Ω2 −A2

)
⇐⇒ Γ2

0Ω
2Δ′ >

(
Γ2
0A

2 − S2
0

(
Ω2 −A2

))2
⇐⇒ Γ2

0Ω
2S2

0

(
A2 − Ω2

)
+ Γ4

0A
2
(
Ω2 −A2

)
> −2Γ2

0A
2S2

0

(
Ω2 −A2

)
+ S4

0

(
Ω2 −A2

)2
⇐⇒ S4

0

(
Ω2 −A2

)
+ S2

0Γ
2
0

(
Ω2 − 2A2

)
− Γ4

0A
2 < 0.

We have to study the sign of a second-degree polynomial in S2
0 for which the discriminant is

δ = Γ4
0

(
Ω2 − 2A2

)2
+ 4Γ4

0A
2
(
Ω2 −A2

)
= Γ4

0Ω
4 > 0. (A.18)

The two roots are

−Γ2
0

(
Ω2 − 2A2

)
+ Γ2

0Ω
2

2 (Ω2 −A2)
=

A2Γ2
0

Ω2 −A2
> 0, (A.19)

and

−Γ2
0

(
Ω2 − 2A2

)
− Γ2

0Ω
2

2 (Ω2 −A2)
= −Γ2

0 < 0. (A.20)

Because S2
0 > 0, to have Δ0 > 0, we need S2

0 to be smaller than the largest root, but this is not an
additional constraint because

S2
0 <

A2Γ2
0

Ω2 −A2
⇐⇒

(
Ω2 −A2

)
S2
0 < A2Γ2

0

REGULAR AND CHAOTIC DYNAMICS Vol. 26 No. 6 2021



TWO UNSTEADY POINT VORTEX-SOURCE INTERACTIONS 641

⇐⇒ Ω2 < A2

(
1 +

Γ2
0

S2
0

)
.

So the polynomial
(
Ω2 −A2

)
X2 +Γ2

0

(
Ω2 − 2A2

)
X − Γ4

0A
2 is nonpositive for every value between

0 and
A2Γ2

0
Ω2−A2 . Because S2

0 is in this interval, we have Δ0 > 0 for every set of parameters such that

A2 < Ω2 < A2
(
1 +

Γ2
0

S2
0

)
and Γ0Ω < 0. �

6.2.3. For Ω2 = A2
(
1 +

Γ2
0

S2
0

)

In this section, we have Δ′ = 0. Then there is only one solution to Eq. (A.6):

X =
−Γ0Ω

4π (Ω2 −A2)
=

Γ2
0 + S2

0

4π (−Γ0Ω)
> 0. (A.21)

This gives the following equilibrium point:

r0 =

√
Γ2
0 + S2

0

4π (−Γ0Ω)
and θ0 =

1

2
arctan

(
S0

Γ0

)
. (A.22)

To know the type of stability, we compute Δ0:

Δ0 = S2
0 + Γ2

0 + 4πr20Γ0Ω = S2
0 + Γ2

0 + Γ0Ω
Γ2
0 + S2

0

(−Γ0Ω)
= 0. (A.23)

So we cannot conclude about the stability of the equilibrium (A.22).

APPENDIX B. MULTIPLE TIME SCALE DEVELOPMENT

The multiple time scale method is here expanded for the subharmonic case. The harmonic case
is similar.

6.1. Order ε1

We have the following system at order ε1, computed from Eqs. (4.5) and (4.8):⎧⎨
⎩ ∂t0r1 = −ar1 − b(r0θ1)

∂t0 (r0θ1) = −cr1 + a(r0θ1).
(B.1)

So {
r1 = C1,1 (t2, t3) e

iω0t0 + c.c

r0θ1 = D1,1(t2, t3)e
iω0t0 + c.c

(B.2)

with

D1,1(t2, t3) = μ1C1,1(t2, t3), (B.3)

and μ1 = −a+iω0
b .
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6.2. Order ε2

With Eqs. (4.6) and (4.9) and because ∂t1r1 = ∂t1 (r0θ1) = 0, we have the following system in
(r2, r0θ2): {

∂t0r2 = −ar2 − b(r0θ2) + f2(t0, t1, t2, t3)

∂t0 (r0θ2) = −cr2 + a(r0θ2) + g2(t0, t1, t2, t3),
(B.4)

where {
f2(t0, t1, t2, t3) =

aδr0
2 cos(2ω0t0) +

a
2r0

r21 +
a
r0

(r0θ1)
2 − b

r0
r1 (r0θ1)

g2(t0, t1, t2, t3) =
cδr0
2 cos(2ω0t0) +

3c
2r0

r21 +
b
r0

(r0θ1)
2 .

(B.5)

The system (B.4) gives:

• For r2:

∂2
t0r2 = −a (−ar2 − b (r0θ2) + f2)− b (−cr2 + a (r0θ2) + g2) + ∂t0f2

=
(
a2 + bc

)
r2 + h2(t0, t1, t2, t3). (B.6)

• For r0θ2:

∂2
t0 (r0θ2) = −c (−ar2 − b (r0θ2) + f2) + a (−cr2 + a (r0θ2) + g2) + ∂t0g2

=
(
bc+ a2

)
(r0θ2) + k2(t0, t1, t2, t3), (B.7)

where {
h2(t0, t1, t2, t3) = (−af2 − bg2 + ∂t0f2) (t0, t1, t2, t3)

k2(t0, t1, t2, t3) = (−cf2 + ag2 + ∂t0g2) (t0, t1, t2, t3).
(B.8)

• Development of f2:

f2 =
a

r0

[
3− 2c

b

]
|C1,1|2

+

[
ar0
4

+
C2
1,1

r0

(
3a

2
+

a (a+ iω0)
2

b2
+ iω0

)]
e2iω0t0 + c.c

f2 = F2,0|C1,1|2 +
[
F2,2,1 + F2,2,2C

2
1,1

]
e2iω0t0 + c.c. (B.9)

• Development of g2:

g2 =
c

r0
|C1,1|2 +

[
cr0
4

+
C2
1,1

r0

(
3c

2
+

(a+ iω0)
2

b

)]
e2iω0t0 + c.c

g2 = G2,0|C1,1|2 +
[
G2,2,1 +G2,2,2C

2
1,1

]
e2iω0t0 + c.c. (B.10)

• Development of h2:

h2 = [−aF2,0 − bG2,0] |C1,1|2 + [(−bG2,2,1 + (−a+ 2iω0)F2,2,1)

+ (−bG2,2,2 + (−a+ 2iω0)F2,2,2)C
2
1,1

]
e2iω0t0 + c.c

h2 = H2,0|C1,1|2 +
[
H2,2,1 +H2,2,2C

2
1,1

]
e2iω0t0 + c.c. (B.11)
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• Development of k2:

k2 = [−cF2,0 + aG2,0] |C1,1|2 + [(−cF2,2,1 + (a+ 2iω0)G2,2,1)

+ (−cF2,2,2 + (a+ 2iω0)G2,2,2)C
2
1,1

]
e2iω0t0 + c.c

k2 = K2,0|C1,1|2 +
[
K2,2,1 +K2,2,2C

2
1,1

]
e2iω0t0 + c.c. (B.12)

Then from Eqs. (B.6) and (B.7) we have

• The homogeneous solutions: {
r2 = C2,1e

iω0t0 + c.c

(r0θ2) = D2,1e
iω0t0 + c.c

(B.13)

• The particular solutions for the constant terms:⎧⎨
⎩
r2 =

H2,0

ω2
0
|C1,1|2

(r0θ2) =
K2,0

ω2
0
|C1,1|2

(B.14)

• The particular solutions for e2iω0t0 + c.c:⎧⎨
⎩
r2 = −H2,2,1+H2,2,2C2

1,1

3ω2
0

e2iω0t0 + c.c

(r0θ2) = −K2,2,1+K2,2,2C2
1,1

3ω2
0

e2iω0t0 + c.c.
(B.15)

So the total solution of Eqs. (B.6) and (B.7) is⎧⎨
⎩ r2 = C2,0|C1,1|2 + C2,1e

iω0t0 + c.c +
(
C2,2,1 + C2,2,2C

2
1,1

)
e2iω0t0 + c.c

(r0θ2) = D2,0|C1,1|2 +D2,1e
iω0t0 + c.c +

(
D2,2,1 +D2,2,2C

2
1,1

)
e2iω0t0 + c.c

(B.16)

with (for i = 1, 2)

C2,0 =
H2,0

ω2
0

, C2,2,i = −H2,2,i

3ω2
0

, D2,0 =
K2,0

ω2
0

, D2,2,i = −K2,2,i

3ω2
0

. (B.17)

6.3. Order ε3

With Eqs. (4.7) and (4.10), we have the following system at the order ε3:{
∂t0r3 = −ar3 − b(r0θ3) + f3(t0, t1, t2, t3)

∂t0(r0θ3) = −cr3 + a(r0θ3) + g3(t0, t1, t2, t3),
(B.18)

where f3 and g3 are the following given functions:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

f3 = −∂t2r1 +
ar1r2
r0

− ar31
2r20

− ar1 cos(2ω0t0)
2 − b(r2(r0θ1)+r1(r0θ2))

r0
+ ar1(r0θ1)2

r20

+2a(r0θ1)(r0θ2)
r0

+ 2b(r0θ1)3

3r20
− ar0ω0t1 sin(2ω0t0)

g3 = −∂t2(r0θ1) +
3cr1r2
r0

− 2cr31
r20

− cr1 cos(2ω0t0)− 2a(r0θ1)3

3r20
+ 2b(r0θ1)(r0θ2)

r0

−cω0t1 sin(2ω0t0).

(B.19)

The system (B.18) gives:
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• For r3:

∂2
t0r3 = −a (−ar3 − b (r0θ3) + f3)− b (−cr3 + a (r0θ3) + g3) + ∂t0f3

=
(
a2 + bc

)
r3 + h3. (B.20)

• For r0θ3:

∂2
t0 (r0θ3) = −c (−ar3 − b (r0θ3) + f3) + a (−cr3 + a (r0θ3) + g3) + ∂t0g3

=
(
bc+ a2

)
(r0θ3) + k3. (B.21)

We do not develop f3, g3, h3 and k3 as we did for the order ε2. We only introduce the following
notations: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
f3 = F3,0 + F3,1e

iω0t0 + F3,2e
2iω0t0 + F3,3e

3iω0t0 + c.c

g3 = G3,0 +G3,1e
iω0t0 +G3,2e

2iω0t0 +G3,3e
3iω0t0 + c.c

h3 = H3,0 +H3,1e
iω0t0 +H3,2e

2iω0t0 +H3,3e
3iω0t0 + c.c

k3 = K3,0 +K3,1e
iω0t0 +K3,2e

2iω0t0 +K3,3e
3iω0t0 + c.c.

(B.22)

Then, if we denote by L the self-adjoint linear operator ∂2
t0 + ω2

0, we have r�1Lr3 = r�1h3 =

r�1L
�r3 = 0 = 〈r1, h3〉. But 〈einω0t0 , eipω0t0〉 = δn,p (Kronecker symbol) for n, p ∈ Z and because

r1 = C1,1e
iω0t0 + c.c, we have

〈r1, h3〉 = C1,1H3,1 + c.c = 0. (B.23)

Because H3,1 = (−a+ iω0)F3,1 − bG3,1, we deduce the amplitude equation

(−a+ iω0)F3,1 − bG3,1 = 0. (B.24)

So we only have to compute F3,1 and G3,1 from Eq. (B.19): writing{
F3,1 = −∂t2C1,1 + IC1,1 + II |C1,1|2C1,1

G3,1 =
a+iω0

b ∂t2C1,1 + IIIC1,1 + IV |C1,1|2C1,1,
(B.25)

we have:

I = −a

4
+

C2,2,1

r0
(2a− iω0) +

D2,2,1

r0

(
−b− 2a2

b
+

2aiω0

b

)
, (B.26)

II =
1

r20

[
a

(
−3

2
+ 2

a2

b2
+

c

b

)
+ 2iω0

(
a2

b2
+

c

b

)]

+
C2,0

r0
(2a+ iω0) +

D2,0

r0

(
−b− 2a2

b
− 2aiω0

b

)

+
C2,2,2

r0
(2a− iω0) +

D2,2,2

r0

(
−b− 2a2

b
+

2aiω0

b

)
, (B.27)

III = − c

2
+

3c

r0
C2,2,1 +

2D2,2,1

r0
(−a+ iω0) , (B.28)

IV = −6c

r20
− 2ac

r20b
2
(a+ iω0) +

3c

r0
(C2,0 + C2,2,2)

− 2

r0
((a+ iω0)D2,0 + (a− iω0)D2,2,2) . (B.29)

From Eq. (B.24) we obtain the amplitude equation

∂t2C1,1 = (V + iVI)C1,1 + (VII + iVIII) |C1,1|2C1,1, (B.30)
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with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V = Re

(
−(a− iω0)I + bIII

2iω0

)

VI = Im

(
−(a− iω0)I + bIII

2iω0

)

VII = Re

(
−(a− iω0)II + bIV

2iω0

)

VIII = Im

(
−(a− iω0)II + bIV

2iω0

)
.

(B.31)
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