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Abstract—We present an algorithm for constructing analytically approximate integrals of mo-
tion in simple time-periodic Hamiltonians of the form H = H0 + εHi, where ε is a perturbation
parameter. We apply our algorithm in a Hamiltonian system whose dynamics is governed by the
Mathieu equation and examine in detail the orbits and their stroboscopic invariant curves for
different values of ε. We find the values of εcrit beyond which the orbits escape to infinity and
construct integrals which are expressed as series in the perturbation parameter ε and converge
up to εcrit. In the absence of resonances the invariant curves are concentric ellipses which are
approximated very well by our integrals. Finally, we construct an integral of motion which
describes the hyperbolic stroboscopic invariant curve of a resonant case.
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1. INTRODUCTION

The detection of integrals of motion is an important task in the study of dynamical systems.
The existence of integrals of motion is related to certain symmetries of the equations of motion
of the system (through Noether’s theorem) and gives a deep insight into their time evolution.
Furthermore, it simplifies significantly the calculations, since it decreases the independent variables
of the system and can be used for the error control of the calculations.

The integrals of motion appear in two main categories: a) the exact integrals of motion and
b) the approximate integrals of motion. In the case a) these integrals are analytical mathematical
expressions of the variables of the system that do not depend on time. In the case b) the approximate
integrals (also called formal integrals) are non-convergent series expansions, truncated at a certain
order that remain approximately constant in time.

Formal integrals of motion have been proved to be very useful in dynamical astronomy and
especially galactic dynamics. In particular, their construction in the case of autonomous dynamical
systems has already been considered in the past, even to high orders using computer algebra [1–4].

As regards time-periodic Hamiltonians, a general method for calculating formal integrals [5] was
first presented as far back as 1966. This method was applied to some simple Hamiltonians of one
and two degrees of freedom. However, due to the lack of computer algebra systems at that time, the
calculations were made by hand and were limited to second order with respect to the perturbation
parameter ε.

In recent years there has been much interest in time-periodic Hamiltonians, especially in Russia.
Most of this work dealt with stability problems in one or more degrees of freedom (e.g., Markeev [6–
10], Kholostova [11–13], Bardin and Lanchares [14]). More recently Bruno [15, 16] calculated normal
forms in particular problems.
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On the other hand, some authors (Kandrup [17, 18] and Terzić and Kandrup [19]) have calculated
orbits in time-periodic potentials, with emphasis on the generation of chaos.

Our interest in this problem was revived because of our need to compare the classical results
with the quantum mechanical results (Efthymiopoulos and Contopoulos [20]).

In the present paper we exploit the power of the Maple Computer Algebra System in order to
construct high-order integrals of motion in simple time-periodic Hamiltonian systems. As a first
step towards this direction we apply our algorithm on a simple Hamiltonian system whose equations
of motion can be written in a single second-order differential equation of the form

d2x

dt′2
+

[
a− 2q cos(2t′)

]
x = 0. (1.1)

Although this differential equation is linear in x and there is no chaos in its orbits, it is very useful
in applied mathematics. It is the well-known Mathieu equation (ME) [21, 22] and has applications
in various fields of physical sciences, such as acoustics (e. g., in the study of an elliptical drum [23]),
quantum mechanics (e. g., in the study of the quantum pendulum [24]), general relativity (e. g., in
the study of the solutions of wave equations in curved spaces [25]) and quantum chemistry (charged
particles in a quadruple field [26]). Many applications of MEs can be found in [27].

As already known from the theory, different parameters in ME can lead to bounded or unbounded
motion. We make a detailed study of the orbits and their invariant curves on a stroboscopic surface
of section by solving numerically in Python 3.7 the Hamilton equations. In the case of bounded
orbits we construct in Maple 2016 an integral of motion which is convergent for small perturbations
and describes very well the invariant curves. This integral becomes divergent and the forms of the
orbits change abruptly at the threshold of the escapes.

In Section 2 of the present paper we give the Hamiltonian of our model and describe our algorithm
for the calculation of formal integrals of motion up to an arbitrary order in the absence of resonances.
Then in Section 3 we present our results in the case where the perturbation parameter ε is positive,
by calculating both the orbits and their stroboscopic sections (i. e., the distribution of their points
after successive periods). We apply our algorithm and calculate the integrals at successive orders
of the perturbation parameter and show their convergence to the form of the invariant curves on
the stroboscopic sections. Then in Section 4 we examine the case of the negative values of the
perturbation parameter and in Section 5 we study a formal integral in a resonant case. Finally, in
Section 6 we summarise our results and draw our conclusion.

2. INTEGRAL OF THE MATHIEU EQUATION

In the special case of the Mathieu equation we have

H = H0 + εHi =
1

2
(y2 + ω2

i x
2)− εx2 cos(ωt). (2.1)

The corresponding equations of motion are

dx

dt
= y,

dy

dt
=

d2x

dt2
= −

[
ω2
1 − 2ε cos(ωt)

]
x. (2.2)

The second equation takes the form of the Mathieu equation if we set ωt = 2t′, a = 4ω2
1/ω

2 and

q = 4ε
ω2 . In particular, if ω = 2 we have t = t′, a = ω2

1 and q = ε. There are resonance conditions
when a = 1, 4, 9, 16 . . . . For ω = 2 resonances appear if ω1 = 1, 2, 3, . . . An integral of motion

Φ = Φ0 + εΦ1 + ε2Φ2 + · · ·+ εsΦS + . . . (2.3)

must satisfy the equation

dΦ

dt
=

∂Φ

∂t
+ [Φ,H] = 0, (2.4)

where [Φ,H] is the Poisson bracket

[Φ,H] ≡ ∂Φ

∂x

∂H

∂y
− ∂Φ

∂y

∂H

∂x
. (2.5)
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We apply Eq. (2.4) to the terms of successive orders in ε and find

∂Φs+1

∂t
+ [Φs+1,H0]−Ks = 0, (2.6)

where

Ks = −[Φs,H1]. (2.7)

If we set Φ0 = H0 we can calculate successively the terms of various orders of Φ expressed in
trigonometric terms of multiplicities of ωt. From the characteristic curves of Eq. (2.6) we find

dt =
dx

y
=

dy

−ω2
1x

=
dΦs+1

Ks
. (2.8)

The zeroth-order solution is

x =

√
2Φ0

ω1
sin(ω1t), y =

√
2Φ0 cos(ω1t). (2.9)

Consequently, from Eqs. (2.8) we get

Φs+1 =

∫ t

0
Ksdt, (2.10)

where KS is expressed in trigonometric terms of multiples of ωt and ω1t. After the integration we
use again Eqs. (2.9) to express back the trigonometric terms of Φs+1 which contain ω1t in terms of
y2, x2, xy multiplied by trigonometric terms of multiples of ωt. Consequently, the integral Φ, which
is in practice truncated at some order, is Φ = Φ(x, y, ωt).

In particular, Φ0 = H0 and

Φ1 =

∫ t

0

∂Φ0

∂y

∂H1

∂x
dt = −2

∫ t

0
xy cos(ωt)dt. (2.11)

The integral Φ is a series in ε and of second order in x, y. Up to second order in ε it is

Φ =
1

2

(
Cxω1

2x2 + Cyy
2 + Cxyxy

)
, (2.12)

where

Cx = 1 +
4ε (cos (ωt) + 1)

ω2 − 4ω1
2

+
ε2

(
16

(
ω2 − ω1

2
)
cos (ωt) +

(
4ω1

2 + 7ω2 − 2ω4

ω1
2

)
cos (2ωt) + 12ω1

2 − 7ω2 + 4ω4

ω1
2

)

(ω2 − 4ω1
2)2 (ω2 − ω1

2)

+ . . . (2.13)

Cy = 1− 4ε (cos (ωt)− 1)

ω2 − 4ω1
2

+
ε2
(
− 16

(
ω2 − ω1

2
)
cos (ωt) + 3

(
ω2 − 4ω1

2
)
cos (2ωt) + 13ω2 − 4ω1

2
)

(ω2 − 4ω1
2)2 (ω2 − ω1

2)
+ . . . (2.14)

and

Cxy =
−4εω sin (ωt)

ω2 − 4ω1
2

+
ε2ω

(
− 16

(
ω2 − ω1

2
)
sin (ωt) + 6

(
ω2 − 4ω1

2
)
sin (2ωt)

)

(ω2 − 4ω1
2)2 (ω2 − ω1

2)
+ . . . (2.15)

We notice that the first-order terms in ε contain cos(ωt), sin(ωt) and a constant, the second-
order terms contain also cos(2ωt) and sin(2ωt) and so on. The constant terms are due to the fact
that the integral starts at t = 0.
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Fig. 1. The invariant curves (ellipses) of the stroboscopic surface of section in the case ω = 2, ω1 = 0.9, ε = 0.1
and various initial conditions (IC) for the first 200 periods. The various concentric ellipses are similar to each
other.

In general the terms of order εm contain cosines of multiples of ωt up to order mωt together
with constant terms in the coefficients of x2 and y2, while they contain only sines up to order mωt
in the coefficient of xy. The denominators contain factors of the form (ω2 − 4ω2

1), (ω
2 − ω2

1), (ω
2 −

9ω2
1), . . . (ω

2 −m2ω2
1).

Using our program for the construction of this integral we have calculated its terms up to order
28. For ε not large the integral Φ represents an ellipse of the form

Φ = Ax2 +By2 + 2Dxy. (2.16)

If t = 2kπ/ω = kT we have

A =
ω2
i

2

[
1 +

8ε

ω2 − 4ω2
1

+
2ε2ω2(ω2 + 8ω2

1) + . . .

ω2
1(ω

2 − 4ω2
1)

2(ω2 − ω2
1)

]
, B =

1

2
,D = 0. (2.17)

This represents an ellipse passing through the initial point (x0 = 0, y0 = 1) with semiaxes a =√
Φ
A , b =

√
Φ
B . The points (x, y) of an orbit on a stroboscopic Poincaré surface of section t = kT lie

on this ellipse if the series giving A converges.
We have calculated several orbits and verified that, if ε is small and ω is not close to a resonance

ω = ωi, 2ωi, 3ωi . . ., the points of the orbits on the stroboscopic surface of sections lie on such an
ellipse. Figure 1 represents a set of such ellipses for ε = 0.1, ω = 2 and ω1 = 0.9. In fact, for various
initial conditions we have similar concentric ellipses.

3. APPLICATIONS FOR ε > 0

If we fix ω = 2 and ω1 = 0.9 and the initial condition x0 = 0, y0 = 1, we have Φ = 1/2. Then the

semiaxes of the ellipses are a = 1√
2A

, b = 1. In Fig. 2 we present the stroboscopic surface of section

for these parameters for various values of ε. We observe that they are all ellipses with one axis from
y = 1 to y = −1. The same holds for other non-resonant values of ω and ω1.

In Figs. 3a, 3b we mark the successive points after times T, 2T, 3T . . . etc. for ε = 0.1 and
ε = 0.18. At the same time we draw the ellipses found if we truncate the integral Φ after the terms
of order 2, 4, 6. . . in ε. We see that the ellipse of order 2 is far from the points of the numerical
solution. But as we increase the order of the truncation, the ellipses approach gradually the invariant
curve formed by the successive points. In the case ε = 0.1 we have good convergence at order 6, in
the case ε = 0.15 good convergence is reached at order 20, while in the case ε = 0.18 we have not

REGULAR AND CHAOTIC DYNAMICS Vol. 26 No. 1 2021



INTEGRALS OF MOTION IN TIME-PERIODIC HAMILTONIAN SYSTEMS 93

yet reached good convergence up to order 28. However, these figures indicate that the integral Φ
in fact converges all the way up to ε = 0.1857, namely, up to the critical value of ε above which we
have escapes to infinity.

Fig. 2. Invariant curves on the stroboscopic surface of section in the case with ω = 2, ω1 = 0.9 for various
values of ε and the same initial conditions (x0 = 0, y0 = 1). In particular we have given the successive points
1, 2, . . . , 11 covering clockwise the invariant curve for ε = 0.1.

Moreover, we see that the angles between the lines joining the successive points decrease as ε
increases. In particular, for ε = 0 the successive points are on a circle on a plane (ω1x, y) and the

successive angles are Δφ = 2πω1
ω = 0.9π. Thus, the number of points required to cover roughly the

invariant curve is about 11 (Fig. 3a). In the case ε = 0.1 this number is about 13, for ε = 0.15 it
is 17, for ε = 0.18 it is about 40 and for ε = 0.185 it is almost 110 points. The following iterations
give additional points that fill more densely the ellipse provided by the integral Φ.

These numbers are found also by calculating the distances d =
√

ω2
1x

2 + y2 of the successive
points on the stroboscopic surface of section as functions of time (Fig. 4). All the orbits start at
(x0 = 0, y0 = 1) with d = 1 and decrease down to a minimum distance. Then they increase up to
the distance d = 1 and continue to decrease and increase. We see that for ε = 0.01 one comes back
to the maximum distance after 11 points, for ε = 0.1 after 13 points, and so on. Figure 4 gives
also the time required for the successive points to reach again the maximum distance. This time
increases considerably as ε approaches the critical value εcrit = 0.1857.

The motion with initial conditions (x0 = 0, y0 = 1) for ε < εcrit starts by spiralling inwards until
it reaches a minimum distance and then it spirals outwards and so on. Thus, the orbit fills a ring
as in Fig. 5a for ε = 0.1 and its corresponding invariant curve is an ellipse. As ε increases the ring
becomes broader and the empty hole near the center becomes smaller as in Fig. 5b for ε = 0.185.
Then the invariant ellipse becomes very thin and in the limit ε → εcrit the ellipse tends to the
straight line from y = 1 to y = −1, while the empty region vanishes.

For particular values of ε the orbit comes exactly to its initial point x0 = 0, y0 = 1 after a number
n of periods, i. e., we have a periodic orbit of period nT . Such is the case of Fig. 6 for ε = 0.1501,
where we have a periodic orbit of period 17T . In this case the energy E increases to a maximum,
but then it returns to its initial value. Similar periodic orbits of other periods appear for other
values of ε.

If ε goes beyond a critical value about εcrit = 0.1857, the orbits escape to infinity. In the present
study we notice that the series Φ representing the integral of motion does not converge beyond the
critical value of ε, e. g., for ε = 0.19 (Fig. 7) the orbit starts close to an initial ellipse, but then
makes a spiral outwards that extends to about x = ±15, y = ±15 after 50 periods. In Fig. 8 we see
that the logarithms of the distances for particular values of ε beyond the critical value increase
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Fig. 3. Successive points of the orbits with ω = 2, ω1 = 0.9 and initial conditions (x0 = 0, y0 = 1) on the
stroboscopic surface of section in the cases (a) ε = 0.1 and (b) ε = 0.18. The successive points are joined by
straight lines. The points cover roughly for the first time the corresponding invariant curve. Their numbers are
13 in case (a) and 39 in case (b). The set of points is approached by the theoretical invariant curves truncated
at various successive orders as shown by colors.

linearly in time. Therefore, the distances of the escaping orbits increase exponentially in time and
the increase is larger for larger ε. We know from the theory that this motion extends to infinity.

An interesting aspect of our problem is found if we work in the so-called extended phase space
where our system becomes conservative. Namely, we extend the phase space to include the ordinary
time as a canonical variable and its conjugate momentum E, which is minus the energy. Then the
new Hamiltonian

H̄(x, y,E, t) = H(x, y, t) + E (3.1)

is conservative with respect to a fictitious time variable τ = t and the Hamilton equations read

dx

dt
=

∂H

∂y
,

dy

dt
= −∂H

∂x

dτ

dt
=

∂H̄

∂E
= 1,

dE

dt
= −∂H̄

∂t
= −∂H

∂t
. (3.2)

Then we can calculate the value of the energy E as a function of time using the last of Eqs. (3.2)
and we find that the value of H̄ is very close to zero (in fact, it is of order O(10−8), which is the
accuracy of our calculations). In the cases 0 < ε < εcrit for x0 = 0, y0 = 1 the value of E starts at
E = −0.5 for t = 0, reaches a maximum near E = 0 and then oscillates between this maximum and
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Fig. 4. The distances d ≡
√

ω2
1x

2 + y2 between the origin (0, 0) and the successive points of the intersections
of the orbits by the stroboscopic surface of section, for various values of ε up to t = 200. We have
ω = 2, ω1 = 0.9, x0 = 0, y0 = 1.

Fig. 5. Orbits in the case ω = 2, ω1 = 0.9 together with their intersections by the stroboscopic surface of
section. (a) For ε = 0.1 and 106 periods. This orbit fills a ring inside the original arc of the orbit starting at
(x0 = 0, y0 = 1). (b) For ε = 0.185 and 100 periods. This orbit fills a ring leaving only a small hole around the
center (0, 0).

a minimum. The values of x and E of the stroboscopic section are given by blue dots (Fig. 9a).
These dots mark the points of the invariant curve on the stroboscopic section. The first 40 points lie
successively on the right and on the left part of the hyperbolic-like invariant curve which is directed
upwards. Further points fill this curve densely. On the other hand, for ε > εcrit the value of E
decreases continuously on the average (Fig. 9b) and tends to−∞. The dots are again on a hyperbola-
like curve, but this time the curve is directed downwards and has no limit. This difference allows us
to find with great accuracy the transition value εcrit for the escapes. At ε = εcrit � 0.1857848626
the orbit is periodic, and is represented by the point (x = x0 = 0, y = y0 = 1) on the stroboscopic
surface of section. We have calculated the monodromy matrix of this periodic orbit and found that
its eigenvalues are all equal to one. Therefore, the orbit is marginally unstable.

In the extended phase space we can calculate another integral

Ψ = Ψ0 + εΨ1 + ε2Ψ2 + . . . (3.3)
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Fig. 6. A periodic orbit of period 17T where T = 2π/ω, together with the 17 points of intersection with the
stroboscopic surface of section.

Fig. 7. An escaping orbit for (ω = 2, ω1 = 0.9, ε = 0.19) starting at the point (x0 = 0, y0 = 1) for the first 40
periods, together with its intersections with the stroboscopic surface of section.

if we set Ψ0 = E. Then we find

Ψ1 =

[(
2ω1

2−ω2
)
x2 + 2y2

]
cos (ω t) + 2 sin (ωt)ωxy − 2(ω2

1x
2 + y2)

ω2 − 4ω2
1

. (3.4)

But then we notice that

Φ1 +Ψ1 = −x2 cos(ωt) = H1, (3.5)

therefore,

Ψ1 = H1 − Φ1. (3.6)

If we calculate now Ψ2, this is equal to −Φ2 because [H1,H1] = 0. In the same way we find Ψ3 = −Φ3

and so on. Thus,

Φ +Ψ =
1

2
(ω2

1x
2 + y2) + E − εx2 cos(ωt) = H̄ = 0. (3.7)
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Consequently, we have only two independent isolating integrals H̄ and Φ, thus the transformation
of the system to an autonomous Hamiltonian system does not give any new results.

Fig. 8. The logarithms of the distances r =
√

x2 + y2 of the successive intersections of escaping orbits by the
stroboscopic surface of section for ω = 2, ω1 = 0.9, x0 = 0, y0 = 1 and various values of ε up to t = 30T . In all
these cases the logarithms of the distances increase linearly in time, thus the distances increase exponentially
in time. The distances are longer for larger ε.

Fig. 9. Stroboscopic surfaces of section (blue points). The trajectory of E as a function of x for (a) ε = 0.18 up
to 41 periods and (b) for ε = 0.19 up to 40 periods. We observe that in the case (a) the trajectory is confined
and the blue points oscillate in a certain range of energies, while in the case (b) the trajectory escapes to −∞
and the blue points also tend to −∞. In the extended space, the total energy H̄ = H + E is conserved and
equal to 0 for our parameters.

4. CASES WITH ε < 0

If ε < 0 we have again ellipses on the stroboscopic Poincaré surface of section. However, these
ellipses are outside the ellipse for ε = 0 (Fig. 10). The critical value of ε is εcrit = −0.1857, symmetric
to the critical value εcrit = 0.1857 for positive ε. The stroboscopic ellipses become longer along the
x-axis as ε increases and they tend to infinity as ε tends to the critical value.

The orbits for ε < 0 are different from those of ε > 0. The orbits are outside the limiting ellipse
ω2
1x

2 + y2 = 1 for ε = 0. The number of points on the stroboscopic ellipse required to cover once the
whole ellipse again increases as |ε| increases. For example, for ε = −0.1 this number is 39 (Fig. 10)
and for ε = −0.185 it is n = 110 (Figs. 11a, 11b). The orbits for ε < 0 extend to large distances
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Fig. 10. Invariant curves on a stroboscopic surface of section in the case ω = 2, ω1 = 0.9 for x0 = 0, y0 = 1 and
various negative values of ε. As ε decreases and approaches the critical value εcrit � −0.1857, the size of the
curve along x increases and tends to ∞. In the case ε = −0.18 we give also the successive points corresponding
to successive periods.

Fig. 11. Orbits in the case ω = 2, ω1 = 0.9. (a) For ε = −0.1 and 106 periods. The orbit fills a ring outside
the original arc of the orbit starting at (x0 = 0, y0 = 1). (b) For ε = −0.185 and 110 periods. We observe that
the orbit extends to much larger distances than in the case (a).

both in x and y, but with much smaller ellipticity than the corresponding stroboscopic ellipse.
Finally, for |ε| larger than the critical value |εcrit| = 0.1857 the orbits escape again to infinity. The
form of such an orbit is shown in Fig. 12 for ε = −0.19.

If we change now the value of ω1, we find again ellipses for various values of ε given by the integral
of motion. However, the critical values of ε are now different. We consider here two examples.

1) In the case ω1 = 0.1 we have the ellipses of Fig. 13. In this case the limiting ellipse
ω2
1x

2 + y2 = 1 is just outside the ellipse for ε = 0.001, i. e., it is much more elongated along the
x-axis than in the case with ω1 = 0.9. Furthermore, the successive points on the stroboscopic
surface of section are much closer to each other. The total number of points to cover roughly
the ellipse once for ε = 0.1 is N � 16. As ε increases this number increases. In this case the
critical value of ε is εcrit = 0.89964, i. e., much larger that in the case ω1 = 0.9.
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Fig. 12. An escaping orbit for ω = 2, ω1 = 0.9, x0 = 0, y0 = 1, ε = −0.19 for the first 20 periods, together with
its intersections with the stroboscopic surface of section.

2) The second case is ω1 = 1.1, larger than the resonant value ω1 = 1. In this case the critical
value of ε is about εcrit = 0.21598. We have again ellipses on the stroboscopic surface of
section for ε < εcrit, but these become larger as ε increases (Fig. 14a). The difference between
the behaviour of the case ω1 = 1.1 and the cases ω1 = 0.9 and ω1 = 0.1 can be explained
theoretically. In fact, close to ε = 0 the value of the coefficient A of Eq. (2.17) is approximately

A � ω2
1

2

(
1 +

8ε

ω2 − 4ω2
1

)
, (4.1)

while Φ = 1/2 for (x0 = 0, y0 = 1), hence

a � 1

ω1

(
1− 4ε

ω2 − 4ω2
1

)
. (4.2)

Fig. 13. Invariant curves (ellipses) on the stroboscopic surface of section in the case ω = 2, ω1 = 0.1, x0 =
0, y0 = 1, for various values of ε > 0. As ε increases the invariant curves shrink and for ε = 0.89964 the curve
is very elongated close to a critical value (almost a straight line). In the case ε = 0.1 we give also the successive
points.
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Therefore, for ε > 0 and (ω2 − 4ω2
1) > 0 we have ε/(ω2 − 4ω2

1) > 0, hence a < 1
ω1
, i. e., the

ellipses are inside the ellipse for ε = 0, while for ε < 0 and (ω2 − 4ω2
1) > 0 we have a > 1

ω1
,

i. e., the ellipses are outside the ellipse for ε = 0. On the other hand, for (ω2 − 4ω2
1) < 0 the

ellipses are larger for ε > 0 and smaller for ε < 0.

Thus, the case ω1 = 1.1 with ε > 0 is similar to the case ω1 = 0.9 for negative ε. On the other
hand, for ε < 0 the ellipses become smaller (Fig. 14b) for increasing |ε| and for ε approaching
the critical value ε = −0.21598 they tend to the x-axis.

In all cases the critical values of ε for the same ω and ω1 are the same for positive and
negative ε, but the limiting ellipse in one case (positive ε for ω1 < 1, negative ε for ω1 > 1)
tend to the x-axis, while in the opposite cases the ellipse tends to infinity along the x-axis.

Fig. 14. Invariant curves on the stroboscopic surface of section in the case ω = 2, ω1 = 1.1, x0 = 0, y0 = 1 for
various values of ε (a) for ε > 0 the sizes of the curves increase as ε increases and tend to infinity as ε tends
to the critical value εcrit = 0.21598. (b) for ε < 0 the sizes of the curves decrease as ε decreases and tend to a
straight line from y = −1 to y = 1 as ε tends to the critical value εcrit = −0.21598.

5. THE INTEGRALS IN A RESONANT CASE

The theory of integrals in resonant cases, independent of time, has been developed in detail [28,
29]. However, the applicability of the direct method of Contopoulos to resonant cases periodic in
time has not yet been fully explored [29].
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In the present case we will construct a formal integral in a particular resonant case of the Mathieu
equation, namely, in the case where the periodic term has a frequency ω which is double the basic
frequency ω1 of the unperturbed problem.

When ω1 = ω/2 = 1 the series expansion of the integral Φ contains secular terms (namely, time-
dependent terms which cannot be written in trigonometric form) and cannot be used. In this

case it is appropriate to use as zeroth-order solutions of the form x =
√
2Φ0
ω1

sin(ω1(t− t0)), y =√
2Φ0 cos(ω1(t− t0)) and find

Φ1 =
1

8

[
(y2 − x2) cos(2t)− 2xy sin(2t)− (y2 + x2) cos(2t0)

]

+
1

2
(y2 + x2) sin(2t0)t. (5.1)

We observe that Φ1 contains the secular term

Φ1sec =
1

2
(y2 + x2) sin(2t0)t. (5.2)

However, in this resonant case we can construct two more zeroth-order integrals:

C0 = 2Φ0 cos(ωt− 2ω1(t− t0))
ω=2ω1===== 2Φ0 cos(2ω1t0)

S0 = 2Φ0 sin(ωt− 2ω1(t− t0))
ω=2ω1===== 2Φ0 sin(2ω1t0). (5.3)

We start by writing C0 in the form

C0 = (y2 − ω2
1x

2) cos(ωt) + 2ω1xy sin(ωt), (5.4)

which is periodic in time with period T = 2π
ω . Then we calculate higher-order terms in C =

C0 + εC1 + ε2C2 + . . . In particular, C1 is

C1 =

∫ t

0

∂C0

∂y

∂H1

∂x
dt, (5.5)

and after some algebra we find

C1 =
1

2ω(ω − ω1)

[
y2(1− cos(2ωt)) + x2

(
cos(2ωt)(2ωω1 − ω2

1) + ω2
1 − 2ω2 + 2ωω1

)

− 2ωxy sin(ωt)
]
, (5.6)

which does not have secular terms. Setting ω = 2, ω1 = 1, we have

C1 =
1

4

[ (
y2 − 3x2

) (
1− cos (4 t)

)
− 4xy sin (4 t)

]
, (5.7)

and for t = kπ we get C1 = 0. If we calculate C2 we find

C2 =

∫ t

0

∂C1

∂y

∂H1

∂x
dt, (5.8)

and for ω = 2, ω1 = 1 we find

C2 =
1

64

[
y2[−10 cos(2t) +

5

3
cos(6t)− 13 cos(2t0) +

64

3
]

+ x2[−22 cos(2t)− 37

3
cos(6t) − 13 cos(2t0) +

64

3
]

− 2xy[6 sin(2t)− 5 sin(6t)]

]
− 1

8
(y2 + x2) sin(2t0)t. (5.9)
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Therefore, C2 contains the same secular term as Φ1 (up to a multiplicative constant) and we can
combine the series of Φ and C in order to avoid these terms. In particular, if we multiply Φ by εq1,
we find an integral

C̄ = C0 + ε(q1Φ0 +C1) + ε2(q1Φ1 + C2) + . . . (5.10)

that has no secular term up to order ε2 if we take q1 =
1
4 . In a similar way, we eliminate the secular

terms of order ε3 by adding an appropriate term ε2q2(Φ0 + εΦ1 + . . . ) and so on.

The integral (5.10) describes a stroboscopic surface of section which for small ε represents a
hyperbola. Namely, for t = 0 or t = kπ we find

C̄str = (y2 − x2) +
ε

4
(x2 + y2) + . . . (5.11)

In Fig. 15a we show the orbits corresponding to ε = 0.05 and ε = 0.15 and observe that, the larger
the ε, the faster the escape to infinity. In Fig. 15b we draw their corresponding stroboscopic sections
for times up to t = 15T and see that they form two hyperbolae. Then we superimpose the hyperbolae
predicted by the integral (5.11). We observe the very good agreement between the numerical results
and the approximate integral of motion. In a similar way, one may construct integrals of motion
for every combination of ω, ω1 that leads to resonances.

Fig. 15. (a) Two orbits in the resonant case ω = 2, ω1 = 1 for ε = 0.05 (blue curve) and ε = 0.15 (red curve).
We observe the faster escape to infinity in the case of ε = 0.15. (b) The successive points (blue dots for ε = 0.05
and red stars for ε = 0.15) of two orbits on the stroboscopic surface of section lie, with a very good accuracy,
on the correponding blue and red invariant curves given by Eq. (5.11).

6. CONCLUSIONS

We studied the orbits and the stroboscopic invariant curves in the Hamiltonian H = H0 + εH1,
where H0 =

1
2 (ω

2
1x

2 + y2) with y = dx/dt and H1 = −x2 cos(ωt). This Hamiltonian is equivalent to
a Mathieu equation. We presented a method for constructing formal integrals of motion which are
written as series expansions in ε and converge if |ε| is smaller than a critical value εcrit. We studied
in detail the forms of the orbits and of the integrals for various values of ε, ω and ω1. Our main
results are the following:

1) The integral is quadratic in x and y of the form

Φ = Cxω
2
1x

2 + Cyy
2 + Cxyxy, (6.1)

where Cx, Cy, Cxy are series in ε. In non-resonant cases the integral forms invariant curves
that are similar concentric ellipses on a stroboscopic Poincaré surface of section. The points
of orbits with t = kT (k = 1, 2, . . . , T = 2π/ω) lie on such ellipses when the series converge.
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2) We found the forms of the orbits that fill, in general, elliptical rings, leaving an empty region
near the center x = y = 0. We found also the distribution of the points on the stroboscopic
surface of section.

3) For particular values of ε the orbits are periodic.

4) For values of ω and ω1 below the resonance ω − 2ω1 = 0 the stroboscopic ellipses become
thinner along x for ε > 0 as ε increases. As ε → εcrit, the ellipse tends to a straight line along
the y-axis. For ε > εcrit the orbits spiral outwards and tend to infinity. On the other hand,
for ε < 0 the ellipses become thinner along y as ε decreases, and as ε → −εcrit, they tend to
a straight line along the x-axis.

5) For any given set of physical parameters ω, ω1 and initial conditions x0, y0, there are two
escape values of ε, one positive and one negative, with the same absolute value |εcrit|. We
checked that these values are the same as those given for the escape values of q by other
authors [21]. On the other hand, the orbits and the invariant curves are quite different for
symmetric values of ε.

6) The present system can be considered as a 2-d Hamiltonian system with two variables x and
t and corresponding momenta y and E where −E is the energy. If |ε| < εcrit, the values of
E oscillate between a maximum and a minimum, while if |ε| > εcrit, the values of |E| extend
to infinity.

7) If ω − 2ω1 > 0, the orbits for ε > 0 are of the opposite type from the orbits for ω − 2ω1 < 0.
Namely, they are more elongated along x as ε increases for ε > 0 and more elongated along
y as ε decreases for ε < 0.

8) In resonant cases the integrals are of different form and need to be constructed for every
given resonance. We made an application in one resonant case where the invariant curves are
hyperbolae and are very well approximated by a second approximate integral of motion.

Further work will refer to more general non-linear potentials where chaos becomes apparent.
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