

# A New (3+1)-dimensional Hirota Bilinear Equation: Its Bäcklund Transformation and Rational-type Solutions

Kamyar Hosseini<sup>1\*</sup>, Majid Samavat<sup>2\*\*</sup>, Mohammad Mirzazadeh<sup>3\*\*\*</sup>, Wen-Xiu Ma<sup>4,5,6,7\*\*\*\*</sup>, and Zakia Hammouch<sup>8\*\*\*\*\*</sup>

<sup>1</sup>Department of Mathematics, Rasht Branch, Islamic Azad University, P.O. Box 41335-3516 Rasht, Iran

<sup>2</sup>Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Guilan, P.O. Box 41335-1914 Guilan, Rasht, Iran

<sup>3</sup>Department of Engineering Sciences, Faculty of Technology and Engineering, East of Guilan, University of Guilan, P.C. 44891-63157 Rudsar-Vajargah, Iran

> <sup>4</sup>Department of Mathematics, Zhejiang Normal University, Jinhua, 321004 Zhejiang, China

<sup>5</sup>Department of Mathematics, King Abdulaziz University, Jeddah, Saudi Arabia

<sup>6</sup>Department of Mathematics and Statistics, University of South Florida, FL 33620-5700 Tampa, USA

<sup>7</sup>School of Mathematics, South China University of Technology, 510640 Guanqzhou, China

 <sup>8</sup>Division of Applied Mathematics, Thu Dau Mot University, Binh Duong Province, Vietnam
 Received May 07, 2020; revised June 11, 2020; accepted June 15, 2020

**Abstract**—The behavior of specific dispersive waves in a new (3+1)-dimensional Hirota bilinear (3D-HB) equation is studied. A Bäcklund transformation and a Hirota bilinear form of the model are first extracted from the truncated Painlevé expansion. Through a series of mathematical analyses, it is then revealed that the new 3D-HB equation possesses a series of rational-type solutions. The interaction of lump-type and 1-soliton solutions is studied and some interesting and useful results are presented.

MSC2010 numbers: 45K05, 83C15

**DOI:** 10.1134/S156035472004005X

Keywords: new (3+1)-dimensional Hirota bilinear equation, Bäcklund transformation, Hirota bilinear form, rational-type solutions

<sup>\*</sup>E-mail: kamyar\_hosseini@yahoo.com

<sup>\*\*</sup>E-mail: majid\_samavat@yahoo.com

<sup>\*\*\*\*</sup>E-mail: mirzazadehs2@guilan.ac.ir

<sup>\*\*\*\*\*</sup> E-mail: mawx@cas.usf.edu

<sup>\*\*\*\*\*\*</sup>E-mail: hammouch\_zakia@tdmu.edu.vn

#### 1. INTRODUCTION

In the last few decades, nonlinear evolution (NLE) equations have been considered by a lot of researchers in the field of mathematical physics. It is known that exact solutions extracted from NLE equations provide comprehensive information about real-world phenomena. For this reason, searching for exact solutions of NLE equations plays a vital role in mathematical physics and is the major topic of many works. An attractive kind of exact solutions is referred to as rational-type solutions which include soliton, lump, lump-kink, breather-wave, and rogue-wave solutions. Because of the importance of these types of exact solutions, a wide range of scholars have devoted their studies to looking for rational-type solutions of nonlinear evolution equations. For example, Wazwaz and El-Tantawy in [1] exerted the simplified Hirota method to seek solitons of (3+1)-dimensional KP-Boussinesq and BKP-Boussinesq equations. In another work performed by Manukure et al. [2], lump solutions of a (2+1)-dimensional extended Kadomtsev-Petviashvili equation were obtained by making use of quadratic test functions. Lump-kink solutions to the KP equation were constructed in [3] by considering an ansatz which is a combination of positive quadratic and exponential functions. Lan [4] reported breather-wave and rogue-wave solutions of a generalized (3+1)-dimensional B-type Kadomtsev-Petviashvili equation with the variable coefficient using the homoclinic test technique. For more papers, see [5–36].

The fundamental purpose of the present article is to study a new 3D-HB equation in fluids in the following form:

$$u_{yt} + c_1(u_{xxxy} + 6u_xu_y + 3u_{xy}u + 3u_{xx}\int u_y dx) + c_2u_{yy} + c_3u_{zz} = 0,$$
(1.1)

or

$$u_{ut} + c_1(u_{xxxy} + 6u_xu_y + 3u_{xy}u + 3u_{xx}v) + c_2u_{yy} + c_3u_{zz} = 0, \quad u_y = v_x,$$

$$(1.2)$$

and to retrieve a bunch of rational-type solutions for it by exerting a number of effective techniques.

It is worthy of note that by considering  $c_3 = 0$ , the above new 3D-HB equation is reduced to the 2D-HB equation which has been considered by Hua et al. in [37]. Hua and his collaborators extracted interaction solutions of the 2D-HB equation by utilizing a series of ansatz techniques. Hosseini et al. [38] also found rational wave solutions of the 2D-HB equation with different structures by means of a number of useful approaches.

The structure of this paper is as follows: In Section 2, by using the truncated Painlevé expansion, the Bäcklund transformation and Hirota bilinear form of the new 3D-HB equation are formally derived. In Section 3, a series of test functions is applied to obtain rational-type solutions of the new 3D-HB equation. The last section presents the outcomes of the current article.

# 2. BÄCKLUND TRANSFORMATION AND HIROTA BILINEAR FORM OF THE MODEL

According to the truncated Painlevé expansion, the Bäcklund transformation of the system (1.2) can be written as

$$u = \frac{u_0}{f^2} + \frac{u_1}{f} + u_2, \quad v = \frac{v_0}{f^2} + \frac{v_1}{f} + v_2,$$
 (2.1)

where f is a function of variables x, y, z, and t. The functions  $u_2$  and  $v_2$  are arbitrary solutions of the new 3D-HB equation and  $u_0$ ,  $u_1$ ,  $v_0$ , and  $v_1$  are unknown functions including the derivatives of f.

Now, by inserting (2.1) into the system (1.2) and solving the resulting system obtained by equating the coefficients of  $f^{-6}$  and  $f^{-3}$  to zero, we obtain

$$u_0 = -2f_x^2, \quad v_0 = -2f_x f_y. \tag{2.2}$$

Similarly, by considering  $u_2 = v_2 = 0$ , the relations presented in (2.2), and equating the coefficients of  $f^{-5}$  and  $f^{-2}$  to zero, we arrive at a system of nonlinear PDEs whose solution gives

$$u_1 = 2f_{xx}, \quad v_1 = 2f_{xy}.$$

Substituting the above results into (2.1) finally results in the following Bäcklund transformation for the new 3D-HB equation:

$$u = 2(\ln f)_{xx}, \quad v = 2(\ln f)_{xy}.$$
 (2.3)

Based on the Bäcklund transformation (2.3), Hirota bilinear form corresponding to the new 3D-HB equation can be written as

$$B_{3D-HB}(f) := (D_y D_t + c_1 D_x^3 D_y + c_2 D_y^2 + c_3 D_z^2) f \cdot f = 2(f f_{yt} - f_y f_t + c_1 (f f_{xxxy} - 3(f_{xxy} f_x - f_{xy} f_{xx}) - f_y f_{xxx}) + c_2 (f f_{yy} - f_y^2) + c_3 (f f_{zz} - f_z^2)) = 0,$$

$$(2.4)$$

where  $D_x, D_y, D_y$ , and  $D_z$  are Hirota's bilinear operators.

### 3. RATIONAL-TYPE SOLUTIONS OF THE NEW 3D-HB EQUATION

In the present section, rational-type solutions of the new 3D-HB equation with different structures are formally established by exerting a number of effective techniques.

## 3.1. Soliton Solutions

To derive soliton solutions of the governing model, we substitute  $u = e^{k_i x + \tau_i y + \xi_i z + \varsigma_i t}$  into the linear terms of (1.1) and solve the resulting equation for  $\varsigma_i$ . After that, the dispersion relation  $\varsigma_i$  can be written as

$$\varsigma_i = -\frac{c_1 k_i^3 \tau_i + c_2 \tau_i^2 + c_3 \xi_i^2}{\tau_i},$$

and so

$$\theta_i = k_i x + \tau_i y + \xi_i z - \frac{c_1 k_i^3 \tau_i + c_2 \tau_i^2 + c_3 \xi_i^2}{\tau_i} t,$$

where  $\theta_i, 1 \leq i \leq 3$  are phase variables.

Now, by considering the dependent variables

$$u = R(\ln f)_{xx}, \quad v = R(\ln f)_{xy},$$

and the exponential function

$$f = 1 + e^{k_1 x + \tau_1 y + \xi_1 z - \frac{c_1 k_1^3 \tau_1 + c_2 \tau_1^2 + c_3 \xi_1^2}{\tau_1}}t,$$

we obtain R=2. Accordingly, the following 1-soliton solution can be obtained:

$$u = 2 \left( \ln \left( 1 + e^{k_1 x + \tau_1 y + \xi_1 z - \frac{c_1 k_1^3 \tau_1 + c_2 \tau_1^2 + c_3 \xi_1^2}{\tau_1} t} \right) \right)_{xx}, \quad v = 2 \left( \ln \left( 1 + e^{k_1 x + \tau_1 y + \xi_1 z - \frac{c_1 k_1^3 \tau_1 + c_2 \tau_1^2 + c_3 \xi_1^2}{\tau_1} t} \right) \right)_{xy}.$$

Now, we formally take

$$f = 1 + e^{\theta_1} + e^{\theta_2} + a_{12}e^{\theta_1 + \theta_2}$$

as the auxiliary function in order to retrieve the following 2-soliton solution:

$$u = 2(\ln f)_{xx}, \quad v = 2(\ln f)_{xy}.$$

It is noted that the phase variables  $\theta_i$ , i = 1, 2 are defined as above and the phase shift  $a_{12}$  is given as

$$a_{12} = \frac{-3c_1k_1^2k_2\tau_1^2\tau_2 + 3c_1k_1^2k_2\tau_1\tau_2^2 + 3c_1k_1k_2^2\tau_1^2\tau_2 - 3c_1k_1k_2^2\tau_1\tau_2^2 + c_3\tau_1^2\xi_2^2 - 2c_3\tau_1\tau_2\xi_1\xi_2 + c_3\tau_2^2\xi_1^2}{-3c_1k_1^2k_2\tau_1^2\tau_2 - 3c_1k_1k_2^2\tau_1^2\tau_2 - 3c_1k_1k_2^2\tau_1^2\tau_2 - 3c_1k_1k_2^2\tau_1^2\tau_2 - 3c_1k_1k_2^2\tau_1^2\tau_2 + c_3\tau_1^2\xi_2^2 - 2c_3\tau_1\tau_2\xi_1\xi_2 + c_3\tau_2^2\xi_1^2}$$

The special 3-soliton solution of the new 3D-HB equation, namely,

$$u = 2(\ln f)_{xx}, \ v = 2(\ln f)_{xy}, \ f = 1 + e^{\theta_1} + e^{\theta_2} + e^{\theta_3} + a_{12}e^{\theta_1 + \theta_2} + a_{13}e^{\theta_1 + \theta_3} + a_{23}e^{\theta_2 + \theta_3} + a_{12}a_{13}a_{23}e^{\theta_1 + \theta_2 + \theta_3},$$

where

$$\begin{aligned} \theta_i &= k_i x + \tau_i y + \xi_i z - \frac{c_1 k_i^3 \tau_i + c_2 \tau_i^2 + c_3 \xi_i^2}{\tau_i} t, & 1 \leqslant i \leqslant 3, \\ a_{ij} &= \frac{-3c_1 k_i^2 k_j \tau_i^2 \tau_j + 3c_1 k_i^2 k_j \tau_i \tau_j^2 + 3c_1 k_i k_j^2 \tau_i^2 \tau_j - 3c_1 k_i k_j^2 \tau_i \tau_j^2 + c_3 \tau_i^2 \xi_j^2 - 2c_3 \tau_i \tau_j \xi_i \xi_j + c_3 \tau_j^2 \xi_i^2}{-3c_1 k_i^2 k_j \tau_i^2 \tau_j - 3c_1 k_i k_j^2 \tau_i^2 \tau_j - 3c_1 k_i k_j^2 \tau_i \tau_j^2 + c_3 \tau_i^2 \xi_j^2 - 2c_3 \tau_i \tau_j \xi_i \xi_j + c_3 \tau_j^2 \xi_i^2}, \\ 1 \leqslant i, j \leqslant 3, & \end{aligned}$$

can be achieved if and only if the following 3-soliton condition is satisfied [39, 40]:

$$\begin{split} & \sum\nolimits_{\mu_1,\mu_2,\mu_3=\pm 1} P(\mu_1 V_1 + \mu_2 V_2 + \mu_3 V_3) P(\mu_1 V_1 - \mu_2 V_2) P(\mu_2 V_2 - \mu_3 V_3) P(\mu_1 V_1 - \mu_3 V_3) \\ &= 2 \sum\nolimits_{(\mu_1,\mu_2,\mu_3) \in S} P(\mu_1 V_1 + \mu_2 V_2 + \mu_3 V_3) P(\mu_1 V_1 - \mu_2 V_2) P(\mu_2 V_2 - \mu_3 V_3) P(\mu_1 V_1 - \mu_3 V_3) = 0, \end{split}$$

in which  $P = yt + c_1x^3y + c_2y^2 + c_3z^2$ ,  $V_i = (k_i, \tau_i, \xi_i, \varsigma_i)$ , and  $S = \{(1, 1, 1), (1, 1, -1), (1, -1, 1), (-1, 1, 1)\}$ . The 1-soliton, 2-soliton, and special 3-soliton solutions of the new 3D-HB equation are presented in Figs. 1–3, presenting the behavior of dispersive waves.

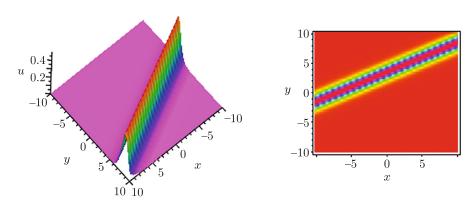


Fig. 1. 1-soliton solution on the x-y plane for  $k_1=1, \tau_1=-2, \xi_1=2, c_1=1, c_2=1, c_3=2, z=1,$  and t=1.



**Fig. 2.** 2-soliton solution on the x-y plane for  $k_1=1,\ \tau_1=2,\ \xi_1=-1,\ k_2=-1,\ \tau_2=1,\ \xi_2=2,\ c_1=-1,\ c_2=-2,\ c_3=1,\ z=1,\ \text{and}\ t=1.$ 

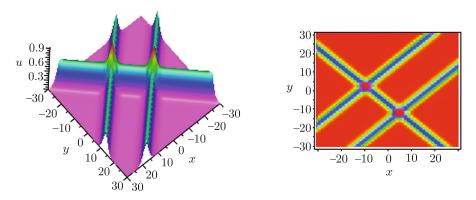
#### 3.2. Lump-type Solutions

To retrieve lump-type solutions of the new 3D-HB equation, we exert a test function as follows:

$$f = g^2 + h^2 + a_{11}, (3.1)$$

where

$$g = a_1x + a_2y + a_3z + a_4t + a_5$$
,  $h = a_6x + a_7y + a_8z + a_9t + a_{10}$ ,



**Fig. 3.** Special 3-soliton on the x-y plane for  $k_1=-1,\ \tau_1=1,\ \xi_1=2,\ k_2=1,\ \tau_2=-1,\ \xi_2=1,\ k_3=1,\ \tau_3=1,\ \xi_3=1,\ c_1=1,\ c_2=1,\ c_3=1,\ z=10,\ \text{and}\ t=1.$ 

and  $a_i, 1 \le i \le 11$  are real constants to be computed later. By setting (3.1) in (2.4) and adopting specific operations, we find the following results:

$$a_1 = -\frac{a_6 a_7}{a_2}, \quad a_4 = -\frac{a_2^2 c_2 + a_3^2 c_3}{a_2}, \quad a_8 = \frac{a_3 a_7}{a_2}, \quad a_9 = -\frac{a_7 \left(a_2^2 c_2 + a_3^2 c_3\right)}{a_2^2}.$$

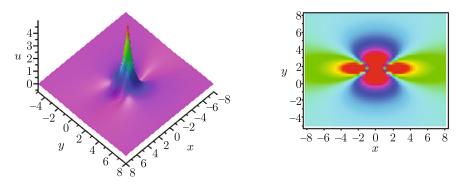
Now, a lump-type solution is obtained as

$$u = 2(\ln f)_{xx}, \quad v = 2(\ln f)_{xy},$$
 (3.2)

such that

$$f = \left(-\frac{a_6 a_7}{a_2}x + a_2 y + a_3 z - \frac{a_2^2 c_2 + a_3^2 c_3}{a_2}t + a_5\right)^2 + \left(a_6 x + a_7 y + \frac{a_3 a_7}{a_2}z - \frac{a_7 (a_2^2 c_2 + a_3^2 c_3)}{a_2^2}t + a_{10}\right)^2 + a_{11}.$$

The lump-type solution of the new 3D-HB equation given by (3.2) is demonstrated in Fig. 4 for a special choice of free parameters.



**Fig. 4.** Lump-type solution on the x - y plane for  $a_2 = 2$ ,  $a_3 = -1$ ,  $a_5 = -1$ ,  $a_6 = 1$ ,  $a_7 = 1$ ,  $a_{10} = -0.5$ ,  $a_{11} = 1$ ,  $a_{21} = 1$ ,  $a_{12} = 1$ ,  $a_{13} = 1$ , and  $a_{13} = 1$ .

#### 3.3. Interaction Solutions

To derive interaction solutions of the new 3D-HB equation, we employ the following test function:

$$f = g^2 + h^2 + ke^{k_1x + k_2y + k_3z + k_4t} + a_{11}, (3.3)$$

where

$$g = a_1x + a_2y + a_3z + a_4t + a_5$$
,  $h = a_6x + a_7y + a_8z + a_9t + a_{10}$ ,

REGULAR AND CHAOTIC DYNAMICS Vol. 25 No. 4 2020

and  $a_i, 1 \le i \le 11$  and  $k_j, 1 \le j \le 4$  are real constants to be calculated, and k is a positive real constant. By substituting (3.3) into (2.4) and applying specific operations, we find

$$a_1 = -\frac{a_6 a_7}{a_2}, \quad a_4 = -\frac{a_2^2 c_2 + a_3^2 c_3}{a_2}, \quad a_8 = \frac{a_3 a_7}{a_2}, \quad a_9 = -\frac{a_7 \left(a_2^2 c_2 + a_3^2 c_3\right)}{a_2^2},$$

$$k_2 = 0, \quad k_3 = 0, \quad k_4 = -c_1 k_1^3.$$

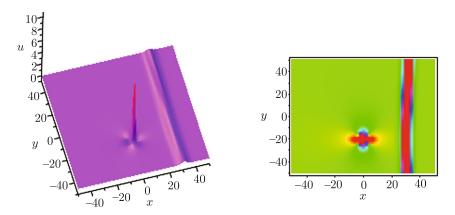
Now we find the following interaction solution:

$$u = 2(\ln f)_{xx}, \quad v = 2(\ln f)_{xy},$$
 (3.4)

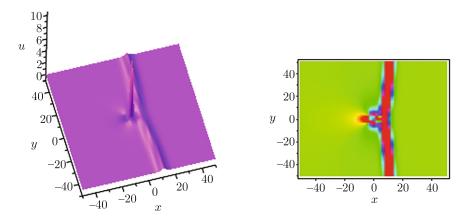
in which

$$f = \left(-\frac{a_6 a_7}{a_2}x + a_2 y + a_3 z - \frac{a_2^2 c_2 + a_3^2 c_3}{a_2}t + a_5\right)^2 + \left(a_6 x + a_7 y + \frac{a_3 a_7}{a_2}z - \frac{a_7 (a_2^2 c_2 + a_3^2 c_3)}{a_2^2}t + a_{10}\right)^2 + ke^{k_1 x - c_1 k_1^3 t} + a_{11}.$$

Three-dimensional and density plots of the interaction solution (3.4) are illustrated in Figs. 5 and 6 for different choices of t.



**Fig. 5.** Interaction solution on the x - y plane for  $a_2 = -5$ ,  $a_3 = 1$ ,  $a_5 = -1$ ,  $a_6 = 5$ ,  $a_7 = 0.1$ ,  $a_{10} = 1$ ,  $a_{11} = 1$ ,  $a_{12} = 1$ ,  $a_{13} = 1$ ,  $a_{14} = 1$ ,  $a_{15} = 1$ ,  $a_{17} = 1$ ,  $a_{18} = 1$ ,  $a_{19} = 1$ ,  $a_{19} = 1$ ,  $a_{19} = 1$ , and  $a_{19} = 1$ ,  $a_{19}$ 



**Fig. 6.** Interaction solution on the x - y plane for  $a_2 = -5$ ,  $a_3 = 1$ ,  $a_5 = -1$ ,  $a_6 = 5$ ,  $a_7 = 0.1$ ,  $a_{10} = 1$ ,  $a_{11} = 1$ , k = 1,  $k_1 = 1$ ,  $k_1 = 1$ ,  $k_2 = 0.2$ ,  $k_3 = 0.1$ ,  $k_3 = 0.1$ ,  $k_4 = 0.2$ ,  $k_5 = 0.1$ ,  $k_6 = 0.2$ ,  $k_7 = 0.2$ ,  $k_8 = 0.2$ ,

It is worthy of note that when  $-c_1k_1^3 > 0$  and  $t \to +\infty$ , the lump-type solution vanishes and the 1-soliton solution stays.

3.4. Breather-wave and Rogue-wave Solutions

To obtain breather-wave solutions of the new 3D-HB equation, we use the following ansatz:

$$f = e^{-kg} + b_0 \cos(\tau h) + b_1 e^{kg}, \tag{3.5}$$

where

$$g = a_1x + a_2y + a_3z + a_4t + a_5, \quad h = a_6x + a_7y + a_8z + a_9t + a_{10}.$$

By setting (3.5) in (2.4) and applying specific operations, we derive

$$a_2 = 0, \ a_4 = -\frac{k^2 a_1^3 a_7 c_1 + 2a_3 a_8 c_3}{a_7}, \ a_6 = 0, \ a_9 = -\frac{\tau^2 a_7^2 c_2 + \tau^2 a_8^2 c_3 - k^2 a_3^2 c_3}{\tau^2 a_7}, \ b_1 = \frac{1}{4} b_0^2.$$

Now a breather-wave solution is found as

$$u = 2(\ln f)_{xx}, \quad v = 2(\ln f)_{xy},$$

where

$$f = e^{-k(a_1x + a_3z - \frac{k^2a_1^3a_7c_1 + 2a_3a_8c_3}{a_7}t + a_5)} + b_0\cos\left(\tau\left(a_7y + a_8z - \frac{\tau^2a_7^2c_2 + \tau^2a_8^2c_3 - k^2a_3^2c_3}{\tau^2a_7}t + a_{10}\right)\right) + \frac{1}{4}b_0^2e^{k(a_1x + a_3z - \frac{k^2a_1^3a_7c_1 + 2a_3a_8c_3}{a_7}t + a_5)}.$$

Now, by assuming  $b_0 = -2, \tau = k$ , and  $k \to 0$ , the following rogue-wave solution can be obtained:

$$u(x,y,z,t) = \frac{4a_1^2}{\theta^2 + \nu^2} - \frac{8a_1^2\theta^2}{(\theta^2 + \nu^2)^2}, \quad v(x,y,z,t) = -\frac{8a_1a_7\theta\nu}{(\theta^2 + \nu^2)^2},$$

where

$$\theta = a_1 x + a_3 z - \frac{2a_3 a_8 c_3}{a_7} t + a_5, \quad \nu = a_7 y + a_8 z - \frac{a_7^2 c_2 + a_8^2 c_3 - a_3^2 c_3}{a_7} t + a_{10}.$$

The breather-wave and rogue-wave solutions are formally plotted in Fig. 7 for a special choice of free parameters.

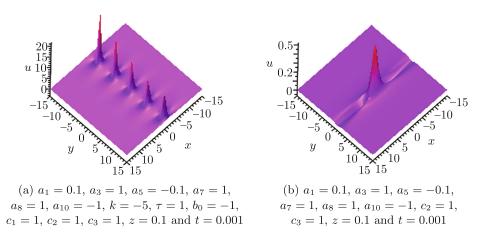


Fig. 7. (a) Breather-wave solution on the x-y plane; (b) Rogue-wave solution on the x-y plane.

#### 4. CONCLUSION

In the present paper, a new (3+1)-dimensional Hirota bilinear equation has been developed and its rational-type solutions have been obtained successfully. In this respect,

- the truncated Painlevé expansion was utilized to derive the Bäcklund transformation and Hirota bilinear form of the model;
- soliton solutions were extracted by applying the simplified Hirota method and the 3-soliton condition;
- the lump-type solution was established by considering two positive quadratic functions as an ansatz:
- the interaction solution was retrieved by exerting an ansatz composed of two positive quadratic functions and an exponential function;
- the breather-wave solution and its corresponding rogue-wave solution were constructed by adopting the homoclinic test technique.

In the end, the interaction of lump-type and 1-soliton solutions was studied and some interesting and useful results were presented.

#### CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

#### REFERENCES

- 1. Wazwaz, A.-M. and El-Tantawy, S. A., Solving the (3 + 1)-Dimensional KP-Boussinesq and BKP-Boussinesq Equations by the Simplified Hirota's Method, *Nonlinear Dynam.*, 2017, vol. 88, no. 4, pp. 3017–3021.
- 2. Manukure, S., Zhou, Y., and Ma, W.-X., Lump Solutions to a (2+1)-Dimensional Extended KP Equation, Comput. Math. Appl., 2018, vol. 75, no. 7, pp. 2414–2419.
- 3. Zhao, H.-Q. and Ma, W.-X., Mixed Lump-Kink Solutions to the KP Equation, Comput. Math. Appl., 2017, vol. 74, no. 6, pp. 1399–1405.
- 4. Lan, Zh., Periodic, Breather and Rogue Wave Solutions for a Generalized (3+1)-Dimensional Variable-Coefficient B-Type Kadomtsev-Petviashvili Equation in Fluid Dynamics, *Appl. Math. Lett.*, 2019, vol. 94, pp. 126–132.
- 5. Cheng, W. and Xu, T., N-th Bäcklund Transformation and Soliton-Cnoidal Wave Interaction Solution to the Combined KdV-Negative-Order KdV Equation, Appl. Math. Lett., 2019, vol. 94, pp. 21–29.
- 6. Zhao, Zh., Bäcklund Transformations, Rational Solutions and Soliton-Cnoidal Wave Solutions of the Modified Kadomtsev-Petviashvili Equation, Appl. Math. Lett., 2019, vol. 89, pp. 103–110.
- 7. Ren, B. and Ma, W.-X., Rational Solutions of a (2+1)-Dimensional Sharma—Tasso—Olver Equation, Chinese J. Phys., 2019, vol. 60, pp. 153–157.
- 8. Wazwaz, A.M., Two New Integrable Fourth-Order Nonlinear Equations: Multiple Soliton Solutions and Multiple Complex Soliton Solutions, *Nonlinear Dynam.*, 2018, vol. 94, pp. 2655–2663.
- 9. Wazwaz, A. M., The Integrable Vakhnenko-Parkes (VP) and the Modified Vakhnenko-Parkes (MVP) Equations: Multiple Real and Complex Soliton Solutions, *Chinese J. Phys.*, 2019, vol. 57, pp. 375–381.
- 10. Wazwaz, A. M., New (3+1)-Dimensional Nonlinear Equations with KdV Equation Constituting Its Main Part: Multiple Soliton Solutions, *Math. Methods Appl. Sci.*, 2016, vol. 39, no. 4, pp. 886–891.
- 11. Chen, Sh.-T. and Ma, W.-X., Lump Solutions of a Generalized Calogero–Bogoyavlenskii–Schiff Equation, *Comput. Math. Appl.*, 2018, vol. 76, no. 7, pp. 1680–1685.
- 12. Ma, W.-X., A Search for Lump Solutions to a Combined Fourth-Order Nonlinear PDE in (2+1)-Dimensions, J. Appl. Anal. Comput., 2019, vol. 9, no. 4, pp. 1319–1332.
- 13. Ma, W. X., Li, J., and Khalique, C. M., A Study on Lump Solutions to a Generalized Hirota Satsuma Ito Equation in (2 + 1)-Dimensions, *Complexity*, 2018, vol. 2018, Art. ID 9059858, 7 pp.
- 14. Ma, W.-X. and Zhou, Y., Lump Solutions to Nonlinear Partial Differential Equations via Hirota Bilinear Forms, J. Differential Equations, 2018, vol. 264, no. 4, pp. 2633–2659.
- 15. Ma, W.-X., Interaction Solutions to Hirota Satsuma Ito Equation in (2 + 1)-Dimensions, Front. Math. China, 2019, vol. 14, no. 3, pp. 619–629.
- 16. Ma, W.-X., Yong, X., and Zhang, H.-Q., Diversity of Interaction Solutions to the (2 + 1)-Dimensional Ito Equation, *Comput. Math. Appl.*, 2018, vol. 75, no. 1, pp. 289–295.
- 17. Batwa, S. and Ma, W.-X., A Study of Lump-Type and Interaction Solutions to a (3 + 1)-Dimensional Jimbo-Miwa-Like Equation, *Comput. Math. Appl.*, 2018, vol. 76, no. 7, pp. 1576–1582.

- 18. Tang, Y., Tao, S., and Guan, Q., Lump Solitons and the Interaction Phenomena of Them for Two Classes of Nonlinear Evolution Equations, *Comput. Math. Appl.*, 2016, vol. 72, no. 9, pp. 2334–2342.
- 19. Liu, J.-G. and He, Y., Abundant Lump and Lump-Kink Solutions for the New (3 + 1)-Dimensional Generalized Kadomtsev-Petviashvili Equation, *Nonlinear Dynam.*, 2018, vol. 92, pp. 1103–1108.
- 20. Osman, M.S. and Wazwaz, A.M., A General Bilinear Form to Generate Different Wave Structures of Solitons for a (3 + 1)-Dimensional Boiti-Leon-Manna-Pempinelli Equation, *Math. Methods Appl. Sci.*, 2019, vol. 42, no. 18, pp. 6277–6283.
- 21. Tan, W., Dai, H., Dai, Zh., and Zhong, W., Emergence and Space-Time Structure of Lump Solution to the (2 + 1)-Dimensional Generalized KP Equation, *Pramana*, 2017, vol. 89, no. 5, Art. ID 77, 7 pp.
- 22. Du, X.-X., Tian, B., and Yin, Y., Lump, Mixed Lump-Kink, Breather and Rogue Waves for a B-Type Kadomtsev-Petviashvili Equation, Waves Random Complex Media, 2019, 16 pp.
- 23. Liu, W., Zhang, Y., Luan, Z., Zhou, Q., Mirzazadeh, M., Ekici, M., and Biswas, A., Dromion-Like Soliton Interactions for Nonlinear Schrödinger Equation with Variable Coefficients in Inhomogeneous Optical Fibers, *Nonlinear Dynam.*, 2019, vol. 96, pp. 729–736.
- 24. Yang, Ch., Zhou, Q., Triki, H., Mirzazadeh, M., Ekici, M., Liu, W.-J., Biswas, A., and Belic, M., Bright Soliton Interactions in a (2 + 1)-Dimensional Fourth-Order Variable-Coefficient Nonlinear Schrödinger Equation for the Heisenberg Ferromagnetic Spin Chain, *Nonlinear Dynam.*, 2019, vol. 95, pp. 983–994.
- 25. Liu, X., Triki, H., Zhou, Q., Mirzazadeh, M., Liu, W., Biswas, A., and Belic, M., Generation and Control of Multiple Solitons under the Influence of Parameters, *Nonlinear Dynam.*, 2019, vol. 95, pp. 143–150.
- Hosseini, K. and Ansari, R., New Exact Solutions of Nonlinear Conformable Time-Fractional Boussinesq Equations Using the Modified Kudryashov Method, Waves Random Complex Media, 2017, vol. 27, no. 4, pp. 628–636.
- 27. Hosseini, K., Korkmaz, A., Bekir, A., Samadani, F., Zabihi, A., and Topsakal, M., New Wave Form Solutions of Nonlinear Conformable Time-Fractional Zoomeron Equation in (2+1)-Dimensions, *Waves Random Complex Media*, 2019, 11 pp.
- 28. Hosseini, K., Mayeli, P., and Ansari, R., Bright and Singular Soliton Solutions of the Conformable Time-Fractional Klein Gordon Equations with Different Nonlinearities, *Waves Random Complex Media*, 2018, vol. 28, no. 3, pp. 426–434.
- 29. Hosseini, K., Ma, W. X., Ansari, R., Mirzazadeh, M., Pouyanmehr, R., and Samadani, F., Evolutionary Behavior of Rational Wave Solutions to the (4+1)-Dimensional Boiti-Leon-Manna-Pempinelli Equation, *Phys. Scripta*, 2020, vol. 95, no. 6, 065208.
- 30. Inc, M., Hosseini, K., Samavat, M., Mirzazadeh, M., Eslami, M., Moradi, M., and Baleanu, D., N-Wave and Other Solutions to the B-Type Kadomtsev-Petviashvili Equation, *Therm. Sci.*, 2019, vol. 23, pp. 2027–2035.
- 31. Pouyanmehr, R., Hosseini, K., Ansari, R., and Alavi, S. H., Different Wave Structures to the (2 + 1)-Dimensional Generalized Bogoyavlensky–Konopelchenko Equation, *Int. J. Appl. Comput. Math.*, 2019, vol. 5, no. 6, Paper No. 149, 12 pp.
- 32. Hosseini, K., Aligoli, M., Mirzazadeh, M., Eslami, M., and Gómez-Aguilar, J. F., Dynamics of Rational Solutions in a New Generalized Kadomtsev-Petviashvili Equation, *Modern Phys. Lett. B*, 2019, vol. 33, no. 35, 1950437, 11 pp.
- 33. Biswas, A., Milovic, D., and Ranasinghe, A., Solitary Waves of Boussinesq Equation in a Power Law Media, Commun. Nonlinear Sci. Numer. Simul., 2009, vol. 14, no. 11, pp. 3738–3742.
- 34. Razborova, P., Kara, A.H., and Biswas, A., Additional Conservation Laws for Rosenau–KdV–RLW Equation with Power Law Nonlinearity by Lie Symmetry, *Nonlinear Dynam.*, 2015, vol. 79, no. 1, pp. 743–748.
- 35. Razborova, P., Triki, H., and Biswas, A., Perturbation of Dispersive Shallow Water Waves, *Ocean Eng.*, 2013, vol. 63, pp. 1–7.
- 36. Mirzazadeh, M., Eslami, M., and Biswas, A., Soliton Solutions of the Generalized Klein-Gordon Equation by Using  $\left(\frac{G'}{G}\right)$ -Expansion Method, Comput. Appl. Math., 2014, vol. 33, no. 3, pp. 831–839.
- 37. Hua, Y.-F., Guo, B.-L., Ma, W.-X., and Lü, X., Interaction Behavior Associated with a Generalized (2+1)-Dimensional Hirota Bilinear Equation for Nonlinear Waves, *Appl. Math. Model.*, 2019, vol. 74, pp. 184–198.
- 38. Hosseini, K., Mirzazadeh, M., Aligoli, M., Eslami, M., and Liu, J.G., Rational Wave Solutions to a Generalized (2+1)-Dimensional Hirota Bilinear Equation, *Math. Model. Nat. Pheno.*, 2020 (in press).
- 39. Hietarinta, J., A Search for Bilinear Equations Passing Hirota's Three-Soliton Condition: 1. KdV-Type Bilinear Equations, J. Math. Phys., 1987, vol. 28, no. 8, pp. 1732–1742.
- 40. Ma, W.-X., Comment on the 3 + 1-Dimensional Kadomtsev Petviashvili Equations, Commun. Nonlinear Sci. Numer. Simul., 2011, vol. 16, no. 7, pp. 2663–2666.