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Abstract—We consider a family of simple flows in tori that display chaotic behavior in a wide
sense. But these flows do not have homoclinic nor heteroclinic orbits. They have only a fixed
point which is of parabolic type. However, the dynamics returns infinitely many times near the
fixed point due to quasi-periodicity. A preliminary example is given for maps introduced in a
paper containing many examples of strange attractors in [6]. Recently, a family of maps similar
to the flows considered here was studied in [9]. In the present paper we consider the case of 2D
tori and the extension to tori of arbitrary finite dimension. Some other facts about exceptional
frequencies and behavior around parabolic fixed points are also included.

MSC2010 numbers: 37C55, 37E35, 39A33

DOI: 10.1134/S1560354720020057

Keywords: chaos without homoclinic/heteroclinic points, chaotic flows on tori, the returning role
of quasi-periodicity, zero maximal Lyapunov exponents, the role of parabolic points, exceptional
frequencies

Dedicated to Prof. Valery Vasilievich Kozlov on the occasion of his 70th birthday

1. INTRODUCTION

Professor Kozlov is widely known for a large number of excellent publications on topics like
mechanics of particles and systems, global analysis, analysis on manifolds, dynamical systems and
ergodic theory, statistical mechanics, structure of matter, etc. These hundreds of publications, in
which he had around 100 coauthors, are being largely cited along the years.

In one of his papers [8], at the beginning of the journal, he considered a charged particle in T
2

under the action of a constant direction magnetic field. Later, when the field cancels but a lattice
of atoms exists in the torus, it is shown that the dynamics of the charged particle is chaotic.

In the present work we consider a flow in the torus with a constant direction, satisfying
nonresonance conditions. Only a parabolic fixed point exists at the origin but no homoclinic nor
heteroclinic orbits exist. However, the dynamics turns out to be chaotic. The present paper extends
to flows, in a more general context, some models for maps introduced in [9]. These models for
maps could be seen as a detailed study of one of the examples introduced in the prologue of the
proceedings of a conference in 1982, [6].

There are many different definitions of chaos, see, e. g., [1, 4, 12] and references therein.
Poincaré [11] knew about the existence and relevance of chaos a long time ago. And E. Lorenz
said about chaos “When the present determines the future, but the approximate present does not
approximately determine the future”, see [3].

In what follows we consider a flow defined on a torus, T2 first and T
n later. We denote the flow

time t as ϕt. We shall consider that the dynamics is chaotic if it has

• Sensitive dependence on initial conditions (SDIC): A point x is said to have SDIC if there
exists a fixed α > 0 such that for every ε > 0 there exists a point y in the ball Bε(x) and
a value t = t(ε, x, y) > 0 such that d(ϕt(y), ϕt(x)) � α, where d denotes the distance. This
implies lack of predictability. We shall require SDIC for a set of x of full measure.
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• Topological transitivity (TT): A flow is said to be TT if for every couple of open sets A,B
in the domain of definition of the flow there exists a t > 0 such that ϕt(A) ∩ B �= ∅.

We remark that SDIC appears in very simple, even Hamiltonian integrable systems. Kepler’s
problem is an example. But it misses the TT condition. A flow on a torus with a constant vector field
whose components are nonresonant satisfies the TT condition, but it misses the SDIC condition.

In Section 2 we introduce the models that we consider first in T
2 and then in T

n. They mainly
depend of a parameter γ � 1 which is responsible for the existence of a parabolic fixed point, giving
rise to stable and unstable branches. The exceptional value γ = 1 is also considered. Initially we
present very easy models and then we comment on modifications, adding some higher-order terms.
In Section 3 we proceed to the study of the Lyapunov exponents, in tori of dimension n � 2, but
excluding the case γ = 1. It is proved that in all cases the maximal Lyapunov exponent is zero.
Then, in Section 4 we consider the exceptional case γ = 1 for nonresonant frequencies, and show
anomalous behavior for some exceptional class of frequencies, the so-called ultra-Liouville ones. In
Section 5 we look at some other examples of maps whose fixed points are parabolic. In Section 6
we present some conclusions.

2. THE MODEL

We shall consider T
2 as the square Q = [−1/2, 1/2] × [−1/2, 1/2] identifying the opposite

boundaries of Q. In a similar way we consider Tn as [−1/2, 1/2]n.

Let ω ∈ (0, 1) be an irrational number and consider in T
2 the ODE

⎛
⎝ dx/dt

dy/dt

⎞
⎠ =

⎛
⎝ ωfγ(x, y)

fγ(x, y)

⎞
⎠ , fγ(x, y) = f(x, y)γ/2, f(x, y) = sin2(πx) + sin2(πy), (2.1)

and γ ∈ R with γ � 1. It is suitable, for the generalization to dimension n, that instead of the

vector (ω, 1)T as multipliers of fγ in (2.1) we use a normalized vector (ω1, ω2)
T = (ω, 1)T /

√
1 + ω2.

This can be easily generalized to T
n. To this end we consider a normalized vector Ω =

(ω1, ω2, . . . , ωn)
T such that the components are positive, they satisfy a nonresonance condition

((k,Ω) �= 0 for all k ∈ Z
n \ 0) and, for concreteness, we assume ωi < ωj if i < j. Let x =

(x1, . . . , xn)
T be the variables in T

n. The differential equations are

dx/dt = Ωfγ(x), i = 1, . . . , n, (2.2)

that is, dxi/dt = ωifγ(x), i = 1, . . . , n, where, as before, fγ(x) = f(x)γ/2 with f(x) =
∑n

i=1 fi(xi)

and fi(xi) = sin2(πxi). Later, when looking for the Lyapunov exponents, we shall use the derivatives
of f with respect to the xi variables. These will be odd functions in T

n and the effects on the
Lyapunov exponent will mostly cancel because of the antisymmetry. This could suggest changing
the contributions of the form sin2(πxi) by adding some higher-order terms, keeping the period 1
and such that the derivatives have some even part. For instance, one can include terms of the

form β̂ sin3(πxi) cos(πxi) with moderate values of β̂). In this way the contributions of fi(xi) satisfy
fi(xi) = (πxi)

2(1 +O(xi)). For simplicity we will assume that the functions fi are analytical, so
that the only possible loss of differentiability will come from the value of γ.

However, even not taking into account these possible cancellations, one can prove the results
for the Lyapunov exponent without the need to take into account the changes of sign. That
is, assuming all contributions to be positive. In the discrete 2D case, in the form (x, y)T �→
(x+ εωfγ(x, y), y + εfγ(x, y))i

T , using different values of γ, moderate values of ε (say 10−2 or 10−3),
several values of ω and thousands of initial conditions, the evidence is that the numerical estimates
of the Lyapunov exponents are below 10−9, see [9]. Note that, as remarked in this reference, for
the discrete map there is no exact symmetry. If a point P = (x, y) has P ∗ = (x∗, y∗) as image, the
symmetric (−x∗,−y∗) of P ∗ do not has (−x,−y) as image.

In the function f(x) one can assume that the role of all the xi is similar or it is different. It will
be enough to assume period 1 in all the variables and that it satisfies f(x) = π2||x||2(1 +O(||x||))
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for all x ∈ T
n, where the term O(||x||) has a size bounded in absolute value by some β < 1 not close

to 1. If in some expression one uses a value of x outside T
n, it has to be reduced to T

n modulus 1
before looking for the bound.

It is convenient to introduce variables that make the model simpler. To this end in T
2 we

introduce the vector V = (ω1, ω2)
T and the vector U = (ω2,−ω1)

T , also unitary and orthogonal
to V. We denote the coordinates as u and v using these two vectors as a basis, and have
x2 + y2 = u2 + v2. The equations become

du/dt = 0, dv/dt = fγ(ω2u+ ω1v,−ω1u+ ω2v). (2.3)

Figure 1 shows Q and the lines in the directions of U and V. As a basic domain, instead of
[−1/2, 1/2]2 we can use the one bounded by E, F, G and H, equivalent to Q modulus 1. The segment
bounded by E and H is obtained by moving the segment x ∈ [−1/2, 1/2], y = 0 in the direction of
V until it reaches y = −1/2. In a similar way the segment bounded by F and G is obtained when
we reach y = 1/2.

The variable u moves between A and B, the line where v = 0. On the line bounded by C and D
one has u = 0. Note that if, starting at some u0 = 0, v = 0 and moving in the direction of V, one
reaches a point between F and G of coordinates x, y = 1/2, it should be identified with x, y = −1/2,
and if x is to the right of H it should be shifted to x− 1. We can denote this domain as D2.

Fig. 1. The basic domains in the coordinates (x, y) and (u, v). See the text for details.

This can be generalized to T
n by constructing a domain to be denoted as Dn. We select the

vector Ω as V and should define the vectors Ui, i = 1, . . . , n− 1, so that U1, . . . ,Un−1,V form an
orthonormal basis. Let us denote the coordinates in this basis as u, v, where u = (u1, . . . , un−1).

We want to construct the vectors Ui in an easy way. Equivalently, we look for an n×n matrix A,
with entries ai,j , to pass from the u, v to the x coordinates. We take Ω as the last column in A:
ai,n = ωi, i = 1, . . . , n. In principle one can take random vectors for the first n− 1 columns and use

Gram– Schmidt orthonormalization. Instead, we shall use another method with a cost O(n2) and
producing a simpler A.

First, for i=1, . . . , n and j= i, . . . , n−1 we copy ai,j=ai,n. Then for j = 1, . . . , n− 1 we define

aj+1,j = −
∑j

i=1 a
2
i,n/aj+1,n. The elements ai,j, i � 3, j=1, . . . , i−2 are zero. Finally, we proceed

to normalize the first n− 1 columns.
For j = 1,. . ., n− 1 the vector Uj has the first j+1 entries different from zero (the first j ones

are >0 and the j +1 one is < 0) and the next ones are zero. To pass from x to the u, v coordinates,

we use AT and ||x||2 = ||u||2 + v2. Then Eq. (2.2) becomes

du/dt = 0, dv/dt = fγ , (2.4)

where we recall that fγ = fγ/2 and f = π2(||u||2 + v2)(1 +O((||u||2 + v2)1/2)). It is clear that
u = 0, v = 0 is the only fixed point in T

n and for γ > 1 the differential of the vector field in (2.4)
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is zero at the fixed point. The point is parabolic, and if we fix u = 0, the dominant term in the
dynamics of v is (π|v|)γ . As we shall see in Section 3, this allows us to study easily the passages
near the origin.

The case γ = 1 is exceptional. Still, the origin is fixed, but for v > 0 it behaves like πv(1 +O(v)),
while for v < 0 it behaves like −πv(1 +O(v)). Anyway, looking at the dynamics on u = 0 or nearby,
it has much in common with the case γ > 1, except for what concerns the time dependence. For
γ = 1 we can say that the point is dynamically parabolic. See Section 5 for additional comments
and examples of different parabolic points.

The points in u = 0 with v ∈ R, returning to T
n and taking the x coordinates modulus 1, are

dense due to the nonresonance condition on Ω (see the next subsection). The ones with v > 0 form
the unstable branch of the origin, to be denoted as W u, and the ones with v < 0 form the stable
branch W s. We can denote them as vu,s(t) to make explicit the dependence in t. For instance,
one can take vu(0) = 1/2 for W u and then limt→−∞ vu(t) = 0, and vs(0) = −1/2 for W s and then
limt→+∞ vs(t) = 0. For any t∗ ∈ R one has that the part {vu(t), t � t∗} of W u is also dense, and
similar for W s.

The larger γ, the slower is the dynamics in the vicinity of the origin. This implies that the flow
spends much more time near it. See Section 3.1 for details. And see also Section 2.2, Figs. 2, 4
and 5 and Table 1 in [9] for several statistical properties in the discrete case.

2.1. Chaoticity

Starting at a point with xn = 0, we return to xn = 0 and the values of the other X shift as
xi → xi + ωi/ωn modulus 1, for i = 1, . . . , n− 1. Thanks to H.Weyl’s theorem the values of the
coordinates xi, i = 1, . . . , n− 1 in the successive intersections tend to be equidistributed because
ωi/ωn i = 1, . . . , n− 1 are also nonresonant. In particular, they are dense, and this implies the
density of all the orbits when we consider t ∈ R. The projections of the points in xn = 0 in the V
direction give also density and tendency to equidistribution of the u coordinates in v = 0.

Here one proves that the flows that we consider satisfy the chaoticity conditions. The key points
are identical to the ones in [9] for maps.

Theorem 1. The flow defined by (2.2) with Ω nonresonant satisfies the SDIC and TT conditions
for chaoticity.

Proof. Let P1 be an arbitrary point in T
n. Assume P1 /∈ W s. As W s is dense, for any ε > 0 there

exists P2 ∈ W s such that d(P1, P2) < ε. But when t → ∞ one has ϕt(P2) → 0, while there are
infinite values of t such that the xn coordinate of ϕt(P1) reaches the value 1/2. Hence, the SDIC
condition is satisfied for any α � 1/2.

If P1 ∈ W s, it is enough to exchange the roles of P1 and P2. Furthermore, the SDIC condition
is satisfied by all the points in T

n.

Now consider two arbitrary open sets A and B. Due to the density of W u there are points in A
which belong to W u. Let t∗ be the time parameter in W u of one of these points. As the points
in W u with parameter t > t∗ are also dense, there exist values t∗∗ > t∗ such that the point in W u

with parameter t∗∗ belongs to B. Hence, ϕt∗∗−t∗(A) ∩ B �= ∅. �

3. BOUNDING THE MAXIMAL LYAPUNOV EXPONENT FOR γ > 1

As is well known for a flow ϕt and an initial point located at p0 for t = 0, one should look for
the maximal value, for all vectors w0, (one can assume ||w0||=1), of the limit

Λ = lim sup
t→∞

1

t
log (||Dϕt(p0)w0||) , (3.1)

where Dϕt denotes the differential of the flow with respect to the initial conditions, that is, the
first-order variational equations. It is clear that the value of Λ is the same for all points in the orbit
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of p0. Let us denote as M the matrix Dϕt of the variational equations. In the present case, using
the variables in (2.4) it satisfies the equation

dM

dt
=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 0

0 0 . . . 0 0

. . . . . . . . . . . . . . .

∂fγ
∂u1

∂fγ
∂u2

. . .
∂fγ

∂un−1

∂fγ
∂v

⎞
⎟⎟⎟⎟⎟⎟⎠

M, (3.2)

where the first n− 1 rows of the differential matrix are zero, as follows from (2.4), and one has
M(0) = Id. Due to the form of (3.2) one has mi,i(t) = 1 for i = 1, . . . , n− 1 and mi,j(t) = 0 for
i = 1, . . . , n− 1, j �= i, for all t. Only the elements mn,j, j = 1, . . . , n change with time.

The domain Dn in which the coordinates u and v move in T
n is a generalization of the

one displayed in Fig. 1. Instead of the segment on y = 0 in which x ∈ [−1/2, 1/2] now we have

the hyperplane xn = 0 with (x1, . . . , xn−1) moving in the hypercube Q̂ = [−1/2, 1/2]n−1 . The full
domain, that in the case n = 2 is bounded by the points E, F, G and H, is bounded in the upper

part of Tn by moving Q̂ in the direction of V until it reaches xn = 1/2 and in the lower part until

it reaches xn = −1/2. We can denote these upper and lower bounds of the domain as Q̂u and Q̂l.
Instead of the segment of u between A and B one has a parallelogram, which we denote as Pn−1,

obtained as the projection of Q̂ in the direction of V until it reaches the hyperplane generated by
the vectors U1, . . . ,Un−1.

We also note that in Fig. 1 the values of u between A and B are bounded by a value which

depends on the direction of V. The bound of |u| takes values between 1/2 and (1/2)/
√
2. But the

value 1/2 is inadmissible, because this would mean that ω1 = 0. One can check that in dimension n,
inside Pn−1, there is a sphere, to be denoted as Sn−1, whose radius ||u||, using the Euclidean norm,
has the same bounds. As in the case n = 2, the value 1/2 is inadmissible. However, it is clear that,

depending on V, one can have points in Pn−1, located at the boundary, with ||u|| =
√
n− 1/2.

For simplicity let us denote as fui the derivatives
∂fγ
∂ui

for i = 1, . . . , n− 1 and as fv the last one,
∂fγ
∂v . In a similar way we shall denote fγ as f , but in all cases we keep in mind that this f depends

on γ. Then the relevant part of (3.2) can be written as

dmn,i

dt
= fui + fvmn,i for i = 1, . . . , n− 1,

dmn,n

dt
= fvmn,n. (3.3)

Letting aside the irrelevant values mi,i = 1 for i = 1, . . . , n − 1, it is clear that one can bound the
norm of M(t) as

∑n
i=1 |mn,i|.

3.1. The Relevant Contributions to Λ

To have bounds for Λ one can consider a very large number of passages through Pn−1, to have
upper estimates of the norm of M and lower estimates of t and let the number of passages tend
to +∞.

We can assume that we start at some point in Q̂l, then we move in the direction of V until

we reach Q̂u. In this motion the value of u is constant. Then we identify the final point with the

corresponding one in Q̂l taking the values of the xi modulus 1. The process is repeated indefinitely.

Hence, we are crossing Pn−1 at different values of u. As mentioned above and according to

Weyl’s theorem, the crossings through Q̂ tend to be equidistributed, and the same happens with
the crossings of Pn−1. We want to see the contributions of the different passages to the norm of M
and to t.
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Obviously, we shall not take the initial point in W s. It turns out that it is more convenient to
use v instead of t as an independent variable and to consider the change of t as a function of v.
Then the equations in (2.4) and (3.3) become

dt

dv
=

1

f
,

dmn,i

dv
=

fui

f
+

fv
f
mn,i for i = 1, . . . , n− 1,

dmn,n

dv
=

fv
f
mn,n, (3.4)

beyond du/dv = 0.

From the last equation in (3.4) it follows immediately that mn,n = cf for some constant c. As
the equations for mn,i, i = 1, . . . , n− 1 are linear and the homogeneous part coincides with the
equation for mn,n, we look for solutions of the form mn,i = gi(v)f and obtain

dgi
dv

=
fui

f2
for i = 1, . . . , n− 1. (3.5)

We note that f in Q̂u and Q̂l has lower and upper bounds of the form (π2(1/2)2(1− β))γ/2

(when only |xn| = 1/2 and the remaining xi are zero) and (π2n(1/2)2(1 + β))γ/2 (when |xn| = 1/2
and the remaining |xi| are also 1/2). We recall that β is assumed to be a small value to bound the

effect of extra terms. Therefore, the relevant part of the change of the norm of M going from Q̂l

to Q̂u is
∑n−1

i=1 Δgi + 1 times a positive constant bounded from below and from above. In this last
sum we put simply Δgi to denote the change of this variable in the passage. As the constants we
mentioned before do not play any relevant role in Λ, it is enough to concentrate on bounding the
changes in the values of gi, i = 1, . . . , n− 1 and t in a passage through v = 0 for a given u. In the
case n = 2 we refer simply to g instead of g1.

In the next subsection we bound the values Δgi, Δt for passages from Q̂l to Q̂u for a given value
of u. As it follows from (3.4) and (3.5), only some simple integrals must be evaluated.

3.2. Evaluation of the Required Integrals

We consider first the case n = 2 and the effect of the terms which come from (u2 + v2)γ/2 in fγ .
Later we shall comment on the effect of the terms O(x) and in the cases n > 2.

We look at the case u > 0 and, in principle, we assume it to be small. The values obtained for
u < 0 can cancel the ones with u > 0 due to antisymmetry. Then we could consider the effect of
high-order symmetric terms, as mentioned at the beginning of Section 2, but it not necessary if we
do not take into account the cancellations. It is not required to obtain the desired results.

We assume that we start from a value u > 0 and v = 0 until we reach the maximal value of v,
say vm, when y = 1/2, see Fig. 1. The value vm is of the order of 1/2. In a similar way we can
consider the passage from v < 0 on y = −1/2 until we reach v = 0 and just look at the absolute
value of the contributions to the variation of g. In a similar way we look for the contributions to
the variation of t.

Proposition 1. The contribution to the variation of g of the terms (u2 + v2)γ/2 for u > 0 is of

the order of u−γ for γ � 1. The one for t is of the order of u−(γ−1) for γ > 1 and of the order of
log(1/u) for γ = 1. The values for γ = 1 will be used in the next section.

Proof. As dg/dv = γu/(u2 + v2)γ/2+1, it is suitable to introduce a new independent variable z = v/u
and, for γ � 1, one has the following approximation to the contribution of a given passage through
some value of u > 0 to the change in g:∫ vm

0

u dv

(u2 + v2)γ/2+1
=

∫ vm/u

0

dz

uγ(1 + z2)γ/2+1
≈ 1

uγ
Iγ+2, (3.6)

where for a > 1 we define Ia =
∫∞
0

dz
(1+z2)a/2

. If u is small, the value zm = vm/u is large, and the

integral from 0 to zm is close to Iγ+2. The contribution on the same u with v < 0 is similar, but
with negative sign. But, as mentioned above, we shall not consider these cancellations.

Now we proceed to compute the integrals which come from dt/dv :
∫ vm
0 dv(u2 + v2)−γ/2 for

small u. Due to the parity of the integrand, it is enough to have expressions for u > 0 and in a
range with v � 0. In contrast with the previous ones, one has to distinguish for γ > 1 and γ = 1.

REGULAR AND CHAOTIC DYNAMICS Vol. 25 No. 2 2020



SIMPLE FLOWS ON TORI WITH UNCOMMON CHAOS 205

• For γ > 1 and introducing again z = v/u we have∫ vm

0

dv

(u2 + v2)γ/2
=

∫ vm/u

0

dz

uγ−1(1 + z2)γ/2
≈ 1

uγ−1
Iγ . (3.7)

• For γ = 1 we introduce the change v = u sinh(z), define zm by vm = u sinh(zm) and obtain∫ vm

0

dv

(u2 + v2)1/2
=

∫ zm

0
dz = zm = log(1/u) +O(1). (3.8)

Clearly, if n > 2 the contributions of the gi have expressions like (3.6). �

Some remarks are relevant:

Remarks. Several comments are useful to help to bound the Lyapunov exponent. We list some of
them.

• From (3.1) it is clear that to bound Λ we can use upper bounds of the numerator and lower
bounds of the denominator. In the statement of Proposition 1 we do not include the upper
bounds Iγ+2 which appear in (3.6). As will be clear in the next subsection, these constants
are irrelevant in front of other arbitrary large contributions.

• The same thing happens for the lower bounds which should be included in the expression
of the change in t. For very small u the integral in (3.7) is very close to Iγ , because vm/u
is very large, and the term O(1) in (3.7) is very small compared to the dominant term. For
not so small values of u these contributions to the changes in t can be ignored because lower
bounds are enough.

• To look for the total contributions of the passages through Pn−1, one should integrate the
contributions through a given u (using u as ||u|| if n > 2). For upper bounds we can integrate

on a sphere Ŝn−1 which contains Pn−1 and for lower bounds we can use a sphere smaller
than Sn−1. To this end we should multiply the results in Proposition 1 by un−2 and integrate

between 0 and the radii of these spheres. The constant factors Am = 2π(m+1)/2/Γ((m+ 1)/2)
for the area element in dimension m, being in our case m = n− 2, can be neglected as done
before with other constants.

• As mentioned in Section 3.1, the increase in the norm of M contains the sum of the Δgi
plus 1. As we have in Proposition 1 the bound for one of the Δgi and it is larger that 1, it is
enough to bound by n times the value given in (3.6). As said for other constants, including
this constant is also irrelevant.

• Higher-order terms in the numerator of the function to be integrated in (3.6) can come from
higher-order terms in f , as mentioned in Section 2, to destroy antisymmetry. The addition
of terms like sin3(πxi) cos(πxi) produces that near the origin instead of u in the numerator
of (3.6) we can have u2, uv or v2. Similarly for the addition of other terms. The factors v
can simply be bounded by a constant and do not affect essentially the value of the integral.
The factors in u, or their absence, simply change the exponent −γ of u in the final value.

3.3. The Bounds of the Exponent

The goal of this subsection is to prove

Theorem 2. The flow defined by (2.2) with Ω nonresonant and γ > 1 has zero maximal Lyapunov
exponent.

Proof. It follows from Proposition 1 and the third of the previous comments that one of the things
to do is to integrate u−γ and u−γ+1 times un−2 until a radius rmax which contains Pn−1 in the first
case and contains in Sn−1 in the second one. In all cases it is of the order of 1. Concerning the inner
radius we take a very small value r0 to be specified later.

One has to evaluate the integrals from r0 to rmax of um−2−γ for the contributions to the norm
of M and to t. In the integrals one has to include a density D which increases towards ∞ as
t → ∞. We note that the density tends to have the same value in the full domain (again by Weil’s
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theorem), but as r0 can be rather small, the number of iterates inside the ball of radius r0 can be
quite different from the volume of the ball times D. We shall see that this is not relevant.

Let κ = −γ + n− 2 be the exponent of u when we integrate terms coming from (3.6) and
κ = −γ + n− 1 when we do the same with (3.7). Let us denote as Jκ the integral of uκ from r0 to

rmax = O(1). The integral is O(1), O(log(1/r0)), O(r−κ−1
0 ) if κ > −1, = −1, < −1, respectively.

Given a value of r0 to be specified, we consider the passages through Sn−1 divided into two parts:
the ones that have u = ||u|| � r0 and the ones with u < r0. The contributions of the first ones to
M and t can be estimated as C2 := Jn−2−γD and C4 := Jn−1−γD, respectively. Let us denote as
uk, k ∈ K = {1, 2, . . . , l} the values of u < r0, which we assume to be ordered: u1 � u2 � . . . � ul.
The passages through these values of uk give contributions (slipping irrelevant constants)

C1 :=

l∑
k=1

u−γ
k , C3 :=

l∑
k=1

u−γ+1
k . (3.9)

Therefore, we should estimate log(C1+C2)
C3+C4

< log(C1)+log(C2)
C3+C4

, taking into account that C1 and C2 are

large. Given an arbitrary value of ε > 0, to prove that the ratio is less than ε it is enough to
show that log(C1)/C3 < ε and log(C2)/C4 < ε. Let us introduce δk = uk/u1 � 1 for k = 1, . . . , l.
From (3.9) we can write

log(C1) = log(u−γ
1 ) + log(a), a =

l∑
k=1

δ−γ
k , C3 = u−γ+1

1 b, b =

l∑
k=1

δ−γ+1
k . (3.10)

It is clear that 1 � a � b and then log(a) < b. If r0 is small enough, one has rγ−1
0 � ε/2 and

then uγ−1
1 � ε/2. Hence, log(a)/C3 < ε/2. Also, log(r−γ

0 )rγ−1
0 tends to zero and is decreasing if

r0 < exp(−1/(γ − 1)). Then log(r−γ
0 )/C3 < ε/2 if r0 is sufficiently small. It follows from (3.10) that

log(C1)/C3 < ε.
When r0 has been fixed, the values of the constants Jn−2−γ , Jn−1−γ are known. This allows one

to use a value of D sufficiently large so that log(C2)/C4 < ε. Note that D → ∞ when the number
of passages through Sn−1 tends to ∞. This completes the proof. �

4. SOME EXAMPLES OF THE BEHAVIOR OF THE MAXIMAL LYAPUNOV
EXPONENT IN THE CASE n = 2 AND γ = 1

Here we shall consider some simple examples in dimension 2, concerning the limit case γ = 1.
We shall see that for very exceptional values of ω one finds changes.

For simplicity we shall assume that we start in the invariant branch of the origin under (2.1).
That is, in the successive passages through y = 0 the value of x increases by ω (taking mod 1 when

x � 1/2). This implies increments of u by ω/
√
1 + ω2 to be denoted as ω̄. If we reach or exceed

the point B in Fig. 1, we pass to A or to the right of A. Anyway we shall identify the successive
passages through y = 0 by the value of x. The related value of u needed to apply the results in
Proposition 1 is simply ω̄x.

This is not a too relevant assumption, because starting at any value of x we shall reach values
arbitrarily close to 0 after a sufficiently large number of passages through y = 0.

For the quotient in (3.1) we shall assume that for the estimate of the norm of M we use the
symmetric case without powers of u in the numerator of the integral in (3.6), as mentioned in the
last item of Remarks 1. This means that in (3.6) the integral is O(u−2). The contribution to t keeps
being log(1/u).

The basic idea is as follows: Assume we take a best approximant p/q of ω. Then |ω − p/q| is
less than 1/q2. Perhaps much less if the next quotient in the CFE of ω is large compared to q.
See, e. g., [7] as a basic reference and [5] for discussion and dynamical applications. Then the first
q − 1 iterates will be approximately equispaced in [−1/2,−1/(2q)) ∪ (1/(2q), 1/2] and the q iterate
will be the closest one to 0. Then we can estimate the contributions to the norm of M and to t by
integrating u−2 and log(1/u) in the ranges above and add the contribution of the iterate closest
to 0.
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Proposition 2. Assume ω satisfies a Diophantine condition |ω − p/q| > c/qτ , c > 0, τ � 2 for all
q > 0, p/q ∈ Q \ {0}. Then the maximal Lyapunov exponent in the present models is zero. The same

is true for the Liouville constant
∑∞

k=1 10
−k!.

Proof. First we consider the case ω Diophantine. For the norm of M we approximate the
contribution in (1/(2q), 1/2] by the integral of u−2 times the density q and multiply by 2 to take
into account the part of u < 0. Then we add the contribution of the last iterate, which satisfies the
condition that the distance to the origin is ≈ c/qτ−1. Skipping irrelevant constants, we obtain a
bound

4q2 +
q2(τ−1)

c2
. (4.1)

For t we obtain

q(1 + log(2)) +O(log(q)/q) + log

(
qτ−1

c

)
. (4.2)

Clearly the log of the expression in (4.1) divided by (4.2) tends to zero when q → ∞.

For the Liouville constant we can use as q a value of the form 10m! and then the distance to 0

of the q iterate is ≈ 10m!/10(m+1)!. The main changes appear in the last term in (4.1), of the order

of (10(m+1)!/10m!)2, and in the first term of (4.2) where q should be replaced by 10m!. Hence, the

dominant terms for Λ are 2 log(10(m+1)!)/10m!, which clearly tends to zero as m → ∞. �

Remark 1. As is well known, the set of Diophantine numbers with τ > 2 has full measure. One can
weak the condition to |ω − p/q| > c/(q2(log(q))τ ), c > 0, τ > 1, according to the Khinchin criterion
to keep full measure. The Liouville constant is clearly non-Diophantine, but it is relevant as used
by Liouville to show the existence of transcendental numbers.

As a curiosity we can consider some uncommon values of ω, like the so-called “ultra-Liouville”

numbers. See, e. g., [10] and references therein. As an example let us define tp[0](x) = x and

tp[m+1](x) = 2tp
[m](x) for m � 0. Of course, instead of the basis 2 we can use another integer

basis > 2.

We make a simple choice like

ω =
∑
k�0

1

tp[k](2)
=

1

2
+

1

4
+

1

16
+

1

65536
+

1

265536
+

1

2265536
+ . . . . (4.3)

Proposition 3. The maximal positive exponent if we use ω as in (4.3) is positive.

Proof. We can look at best approximants p/q taking q = tp[m](2). The minimal distance to 0 will be

≈ tp[m](2)/tp[m+1](2). In
∑p

i=1 u
−2
i the term which dominates comes from the passage at minimal

distance: (tp[m+1](2)/tp[m](2))2. In
∑p

i=1 log(1/ui) both the term (1 + log(2))tp[m](2), coming from

the equidistributed constributions, and the final one, log(tp[m+1](2)/tp[m](2)), are relevant. In both

cases, as tp[m+1](2) is much larger than tp[m](2) and we take logarithms, the part which is dividing

is negligible. Furthermore, log(tp[m+1](2)) = log(2)tp[m](2).

Hence, using in the quotient in (3.1) the dominant terms in t and in the norm of M , we obtain

2 log(2)tp[m](2)

log(2)tp[m](2) + (1 + log(2))tp[m](2)
, (4.4)

which gives the ratio 2 log(2)/(1 + 2 log(2)). It is clear that, if we define tp[m](x) by replacing the
basis 2 with any other integer basis > 2, we obtain a similar result. �
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5. SOME MAPS WITH PARABOLIC FIXED POINTS
AND POSITIVE LYAPUNOV EXPONENT

In the previous sections we have studied a model which has a parabolic point of a special type:
it has an invariant manifold through the origin, which is the only fixed point, with one unstable
branch and a stable one. We have shown that the Lyapunov exponent is zero in all cases for γ > 1.

In this section we want to consider a couple of examples (we shall use discrete 2D maps) to see
the effect of more general parabolic fixed points, not leading to zero Lyapunov exponents.

To begin with, and considering always x > 0, y > 0, we recall that for a differential equation
in the hyperbolic case, using as a simple model x′ = −λx, y′ = λy with initial conditions x(0)=
1, y(0)=y0, with y0 > 0 very small, one has the following trivial facts: a) the time to reach y = 1
is tf = log(1/y0)/λ and then x(tf ) = y0; the product xy is a first integral; c) the minimal distance
to the origin occurs when x = y =

√
y0; d) if in the expression of the Lyapunov maximal exponent

we look at the quotient when t = tf , instead of going to +∞, we obtain λ.

We note that letting t go to +∞ can produce a cancellation of this last value, as it happens if
we start inside an homoclinic loop to the fixed point in a conservative integrable system.

Now we consider parabolic cases with equations x′ = −xγ , y′ = yγ , where γ > 1. We can look
at similar properties, and with elementary computations we obtain the following

Proposition 4. In the passage near a parabolic fixed point which is dynamically hyperbolic one
has:

• The time to reach y = 1 is tf = (1/yγ−1
0 − 1)/(γ − 1) and then, as before, x(tf ) = y0.

• One has the first integral x−(γ−1) + y−(γ−1) = constant = 1 + y
−(γ−1)
0 .

• The minimal distance to the origin occurs when

x = y = y0

(
2

1 + yγ−1
0

)1/(γ−1)

.

• If we look at the contribution to the Lyapunov maximal exponent, but stopping at t = tf as
before, we obtain

γ log(1/y0)

(y
−(γ−1)
0 − 1)/(γ − 1)

,

which tends to zero if y0 → 0. As noted in the hyperbolic case, it is the dynamics which
appears for t → +∞ that gives the most important contribution to the Lyapunov exponent.

5.1. A Variant of the Standard Map

As a first example we consider a variant of the classical Chirikov standard map [2]. We can denote
it as “cubical standard map” CSM . It is the composition of two triangular maps CSM = F2F1
where

F1

⎛
⎝ x

y

⎞
⎠ =

⎛
⎝ x

y + κ sin3(x)

⎞
⎠ , F2

⎛
⎝ x

y

⎞
⎠ =

⎛
⎝ x+ sin3(y)

y

⎞
⎠ , (5.1)

κ being a real parameter that we shall consider positive. We assume (x, y) ∈ T
2 and reduce mod 2π

when required. The simple form as a composition of triangular maps allows us to obtain explicitly
the inverse map.

The map has 4 fixed points: (0, 0), (π, π), (0, π) and (π, 0). All of them are parabolic, the
differential of CSM at them being the identity. The first two can be named parabolic topologically
hyperbolic, because they have an unstable and a stable invariant manifold. The other two can be
named limit elliptic parabolic points. Let us consider first these second points.
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Let us shift the origin to (0, π) with u = x, v = y − π. Near the fixed point the map can be
approximated by the differential equation u′ = −v3, v′ = κu3. This system has the first integral
Ie(u, v) = κu4 + v4. For this approximation the point u = 0, v = 0 is surrounded by invariant curves
and most of them subsist for the discrete map. Assume that we start from a point u = u0 > 0, v = 0.

The orbit rotates counterclockwise. According to the first integral, it reaches u = 0 with v = κ1/4u0.
An elementary computation shows that the period for the flow is

T =
4

κ3/4u20
J3, J3 =

∫ 1

0

dz

(1− z4)3/4
≈ 1.8540746773. (5.2)

Different checks for many values of κ and small values of u0 show that using the map (5.1) gives
evidence that one obtains invariant curves and that the number of iterates coincides with T with
relative errors below 0.001. We note that the period (or the number of iterates) tends to ∞ as
u0 → 0. This is the reason to name it a limit elliptic parabolic point. If we look around (π, 0), the
behavior is identical, but the rotation is clockwise.

Figure 2 shows an example, in (u, v) coordinates, using κ = 0.0625, u0 = 0.04 on the left. For
better visualization the values of (u, v) have been multiplied by 100. On the right side one can see
the evolution of the first integral of the flow, Ie(u, v), evaluated on the iterates of the map. The
value for the flow is 1.6 × 10−7. In the plot the values on the iterates have been multiplied by 106

for better visualization. One checks that the maximal differences have a relative value of 0.0005.
The number of iterates to return very close to the initial point is 37105.

Fig. 2. Example of an approximate invariant curve of (5.1) around (0, π). Left: the curve with the central
point shifted to (0, 0). Right: evolution on the iterates of the map of the first integral of the approximation
flow. See the text for details.

As a curious thing, if for this example of invariant curves around (u, v) = (0, 0) we replace the
differential equations that we used by u′ = −sign(v)|v|γ , v′ = κ sign(u)|u|γ with γ > 1, which for
γ = 3 reduce to the equations that approximate (5.1), we obtain similar results, but the expression
of the period becomes

T =
4

κγ/(γ+1)uγ−1
0

Jγ , Jγ =

∫ 1

0

dz

(1− zγ+1)γ/(γ+1)
=

Γ(1/(γ + 1)2

(γ + 1)Γ(2/(γ + 1)
. (5.3)

The value of Jγ is not relevant, because it increases monotonically from π/2 to 2 as γ increases

from 1 to ∞. The relevant part of T is the factor u
−(γ−1)
0 which shows the behavior of the rotation

number ≈ 2π/T of the invariant curves around the limit elliptic parabolic points as a function of
the exponent γ > 1. For γ = 1 the value of T becomes 2π/

√
κ, of course.

Next, we pass to the behavior around (0, 0). In that case the ODE approximation that we have
is x′ = y3, y′ = κx3 and the related first integral is Ih(x, y) = κx4 − y4. Hence, the approximate
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invariant manifolds are y = κ1/4x (unstable, W u
0 ) and y = −κ1/4x (stable, W s

0 ). Shifting (π, π)
to the origin, one has similar results, but the roles of the manifolds are exchanged. One can use
an approximation of W u

0 , taking simple representations of the form y =
∑

i�3 αix
i and asking for

invariance, and compute a convenient number of iterates of a fundamental domain. The same can
be done with W s

π . Or, as it happens if we use κ = 1, one obtains W s
π from W u

0 via the symmetry
S(x, y) = (π − y, π − x). This gives the evidence of heteroclinic orbits, as illustrated in Fig. 3. As
we shall comment later, there are values of κ for which these heteroclinics points do not exist, but
there are homoclinics to (0, 0) and to (π, π).

Another fact that is easy to detect is the existence of periodic orbits in the chaotic zones
created by homo/heteroclinic points. For instance, for κ = 1 one finds a hyperbolic periodic
orbit of period 10 starting at ≈ (1.547515113214069, 0) or, in a symmetric way because κ = 1,
at ≈ (0, 1.547515113214069).

Fig. 3. The unstable invariant manifold of (0, 0) (red) and the stable one of (π, π) (blue) for the map (5.1)
and κ = 1, showing some heteroclinic points.

It is clear that if κ = 0, beyond the lines of fixed points y = 0 and y = π, and looking at what
happens between them (the upper part is symmetric but moving from right to left) all the other
lines y = c, for a constant c ∈ (0, π), are invariant rotational curves (IRC) with rotation number
ρ = sin3(c)/(2π). The value of ρ increases for c ∈ (0, π), has a maximum when c = π/2 and decreases
again towards zero as c → π.

Most of these IRC subsist when κ is small. These curves prevent the existence of heteroclinic
points related to (0, 0) and (π, π), but homoclinic points in W u

0 ∩W s
0 and in Wπu ∩W s

π certainly
exist. They give rise to two chaotic zones which are disconnected because of the IRC.

When κ increases, due to the fact that the twist condition is satisfied except close to the
maximum, many of the IRC subsist. But when κ is greater than κ∗ ≈ 0.60763, no IRC seem to exist,
and the chaotic zones related to (0, 0) and (π, π) are connected. But before κ∗ there are some ranges
of κ without IRC. The first one contains ≈ [0.5556, 0.5596]. In particular, for κ < κ∗, κ∗ ≈ 0.5555
there is evidence of the existence of IRC. Other intervals before κ∗ without IRC are approximately
[0.5845, 0.5860], [0.5962, 0.5974], [0.6022, 0.6030] and [0.6057, 0.6063] plus some other very narrow
intervals.

We can question how the IRC look like when κ is outside these excluded intervals but close to
them. As a first example, Fig. 4 shows one of these curves for κ = 0.56, starting at (0, 1.24). Other
similar IRC can be found for nearby initial points.

The shape can seem strange, but it is natural. Indeed, as these curves are close to a maximum
of ρ, one can lose the twist condition. Then non-Birkhoff invariant curves can appear (as the one
in Fig. 4) and even with more complicated shapes can appear. See [13] for details.

Just for fun we show in Fig. 5 an even wilder non-Birkhoff curve and a magnification. It appears
for κ = 0.6076, very close to κ∗, starting at (0, 1.145). Similar curves appear for very close initial
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Fig. 4. A non-Birkhoff invariant curve for κ = 0.56. Points on the bottom of it and not too far belong to the
chaotic zone associated to (0, 0). Nearby points on the top belong to the chaotic zone associated to (π, π).

points. As a check, for both figures one has repeated the computation after transients larger than
3× 109 for κ = 0.56 and larger than 6× 109 for κ = 0.6076, with identical results.

Fig. 5. A wild non-Birkhoff invariant curve for κ = 0.6076. The comments on the caption of Fig. 4 also apply.
Left: global view. Right: a magnification.

Finally, we compute the maximal Lyapunov exponent, Λ, for (5.1) and how it evolves as a
function of κ for κ between 0.01 and 1. The results are shown in Fig. 6. Typically one starts very
close to (0, 0). Every 106 iterations until 109 the log of the norm of the transported vector is stored.
The Lyapunov exponent is estimated from the last value of the log of the norm and also using the
slope of a fit. Both values are rather close for most of the values of κ. If the relative difference
exceeds 1/30, one uses more initial points and one takes the average.

5.2. A Discrete Perturbation of the Initial Quasi-periodic Flow

We can consider a discrete version of the initial flow and perturb it so that the lines in the
direction of the vector (ω, 1) are no longer invariant. To this end we use the map in T

2 = [−1/2, 1/2)2

defined by

P

⎛
⎝x

y

⎞
⎠=

⎛
⎝ωεp1(x, y)

εp2(x, y)

⎞
⎠ , p1(x, y)=sin2(πx)+sin2(πy), p2(x, y)=p1(x, y)+sin3(πx) cos(πx),

(5.4)
taking modulus 1 when we leave the domain. It is obvious that due to the inclusion of the last term
in p2(x, y) the points do not move in the direction of (ω, 1). But taking into account that near the
origin the dominant terms are the quadratic ones, both the contributions to the number of iterates
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Fig. 6. Evolution of Λ for (5.1) as a function of κ. See the text for details.

and to the Lyapunov exponents of passages very close to (0, 0) are of the same type as the ones
presented in Proposition 4.

As before, the origin is parabolic with an invariant manifold that has an unstable and a
stable branch. To obtain an approximation of the manifold, we look for y as a formal expansion
y = g(x) =

∑
i�1 αix

i, asking for invariance. If we denote as (x̄, ȳ)T the image under P of (x, y)T ,

we require (x̄, g(x̄))T = P ((x, g(x))T ). It is elementary to obtain the coefficients αi until the desired
order.

For (5.4) one has taken as parameters ω = golden number and ε = 0.1. Using the expansion to
order 9 and a fundamental domain D that in x goes from 0.01 to 0.0102219 . . ., one can compute
successive images of D. Figure 7 shows some of these images, namely, P 260(D), P 400(D) and
P 545(D). Up to P 260 the images reached 21 times either the upper or the right boundaries of
T
2 and all of them are very close to straight segments. For the successive iterates the images of D

start to fold and later, being folded, are very close to a straight segment that folds again and again
under iteration.

Fig. 7. Images of the fundamental domain D under 260, 400 and 545 iterations of P from left to right. For
better visualization the values of the coordinates x, y have been multiplied by 100. In all the plots the image
of the initial point in D is marked in red and that of the final point in blue.

Figure 8 shows, in a similar way, the image of the iterate P 1000, but for a better visualization of
the folds of folds we plot the variables x and y − 1.4x.

These results give evidence that the phenomena for (5.4) are similar to the ones which appear in
Section 5.1 due to homoclinic points. This gives rise to chaos and, in the present case, to a positive
Lyapunov exponent.

To have evidence of this, we have taken 100 initial conditions with y = 0, x = −0.495(0.01)0.495
and we did 1012 iterates for each one, storing the log of the norm of the transported vector every
108 iterates. The Lyapunov exponent is estimated in two ways, as before. But now the values using
the final value and the slope of the fit are not the main reason for the discrepancy. It turns out to
be related to the different initial points.
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Fig. 8. Images of the fundamental domain D after 1000 iterations. See the text and the previous caption for
details.

Using the average of the values computed for the 100 initial conditions, the relative differences
are small, of the order of 0.01. Both are close to 4.9× 10−4, small but nonnegligible, as was the case
with the maps in [9], where the values were below 10−9 and could be considered as irrelevant. The
reason for the discrepancy, depending on the initial point, is how close to (0, 0) come the successive
iterates.

When the distance to the origin is small and is mainly dominated by the quadratic terms, one
can use the bounds derived in Section 3 for γ = 2, denoting, as we did before, the minimal distance
to the origin as u. Then the contribution to the number of iterates is of the order of u−1, while the
contribution to the norm of the transported vector is O(u−2). This gives a “local contribution” to
the Lyapunov exponent of the order of u log(u), which is very small if u is small.

To check the passages near (0, 0) in every simulation, we have checked when the minimal distance
to the origin was achieved, for small values of this distance. The results, for the 100 points and 1012

iterates for each one of them, are that the minimal distances are below 10m, for m = 8, 9, 10 and
11 in 14392, 1400, 141 and 13 cases, respectively. A more detailed information is shown in Fig. 9.
It is not a surprise that, for some initial points for which a passage at distance < 10−11 from the
origin appears, it gives Lyapunov estimates of the order of one half of the average.

Furthermore, despite the lines of slope 1/ω are not preserved, the approximate equidensity of
passages through the minimal distance line is preserved, as the values above show. This is clearly
seen in Fig. 9 until values of the minimal distance ≈ 10−11. Below this value there are very few
cases.

Fig. 9. Abundance of passages at minimal distance. The horizontal variable, say r, shows log10 of the minimal
distance of the iterates to the origin. If there are m cases in which the minimal distance is below 10r, the
vertical variable is log10(m).

5.3. Some Comments

From the previous examples we see that in the case of Section 5.1 there are parabolic fixed
points which are topologically hyperbolic, with an unstable and a stable manifold, which despite
the passage close to the fixed points produces a decreasing effect in the Lyapunov exponent. But
this is not too relevant. Other truly hyperbolic objects (periodic orbits) play the role.
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In Section 5.2 the parabolic fixed point is of different type: it has a unique invariant manifold
with an unstable and a stable branch. In that case there are many passages very close to the fixed
point and they play a stronger role in the decrease of the Lyapunov exponent. Furthermore, the
estimates can differ by nonnegligible quantities depending on the initial point.

In systems with hyperbolic objects the passage close to them has a good contribution to the
Lyapunov exponent. Later the contribution can decrease when passing through domains which
reduce the contribution. A typical example appears in Hamiltonian systems if the orbit stays for a
long time in the vicinity of a sticky torus.

As an old example, the classical Hénon attractor (x, y) �→ (1− ax2 + y, bx) with a = 1.4, b = 0.3,
the effect of the dominant eigenvalue λm at the upper hyperbolic point is log |λm| ≈ 0.6542706.
Taking 100 initial points close to this hyperbolic point and doing 1010 iterates for each one, one
obtains an average value Λ ≈ 0.419216, which is almost identical for all of the points, with maximal
differences of the order of 10−5. The passages away from the fixed point play a small role.

6. CONCLUSIONS
We have presented some exceptional models that display chaos without any homoclinic or

heteroclinic point. They are based on quasi-periodicity. Also, despite exhibiting chaotic dynamics,
these models have zero maximal Lyapunov exponents. This can lead to asking for measures of weak
chaoticity. The models have been shown to change to positive Lyapunov exponent under higher-
order perturbations or in the case of some quite exceptional frequencies. Related topics, as the
effect of different types of parabolic points, have also been considered.
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