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Abstract—We derive necessary and sufficient conditions for periodic and for elliptic periodic
trajectories of billiards within an ellipse in the Minkowski plane in terms of an underlining
elliptic curve. We provide several examples of periodic and elliptic periodic trajectories with
small periods. We observe a relationship between Cayley-type conditions and discriminantly
separable and factorizable polynomials. Equivalent conditions for periodicity and elliptic
periodicity are derived in terms of polynomial-functional equations as well. The corresponding
polynomials are related to the classical extremal polynomials. In particular, the light-like
periodic trajectories are related to the classical Chebyshev polynomials. Similarities and
differences with respect to the previously studied Euclidean case are highlighted.
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1. INTRODUCTION

Billiards within quadrics in pseudo-Euclidean spaces were studied in [13, 14, 18]. In [15, 16], the
relationship between the billiards within quadrics in the Euclidean spaces and extremal polynomials
has been studied. The aim of this paper is to develop the connection between extremal polynomials
and billiards in the Minkowski plane. The paper is devoted to 150th anniversary of S.A.Chaplygin
and the conference proceedings contribution is [4].

This paper is organized as follows. In Section 2, we recall the basic notions connected with the
Minkowski plane, confocal families of conics, relativistic ellipses and hyperbolas, and billiards. In
Section 3, we give a complete description of the periodic billiard trajectories in algebro-geometric
terms. In Section 4, we use the conditions obtained in the previous section to study examples of
periodic trajectories with small periods.

We also emphasize an intriguing connection between the Cayley-type conditions and discrimi-
nantly separable polynomials. The notion of relativistic ellipses and hyperbolas enables definition
of Jacobi-type elliptic coordinates in the Minkowski setting. Since the correspondence between
Cartesian and elliptic coordinates is not one-to-one, there is a notion of elliptic periodicity which
refers to a weaker assumption that a trajectory is periodic in elliptic coordinates. In Section 5, we
provide an algebro-geometric characterization of trajectories to be n-elliptic periodic without being
n-periodic. Section 6 provides examples and connections with discriminantly separable polynomials.
In Section 7, we derive a characterization of elliptic periodic trajectories using polynomial equations.
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PERIODIC BILLIARDS WITHIN CONICS 465

In the last section (Section 8), we establish the connection between characteristics of periodic
billiard trajectories and extremal polynomials: the Zolotarev polynomials, the Akhiezer polynomials
on symmetric intervals, and the general Akhiezer polynomials on two intervals. We conclude our
study of the relationship of billiards in the Minkowski plane with the extremal polynomials by
relating the case of light-like trajectories to the classical Chebyshev polynomials, see Section 9.

Apart from similarities with previously studied Euclidean spaces, see [15, 16], there are also
significant differences: for example, among the obtained extremal polynomials are such with winding
numbers (3, 1), which was never the case in the Euclidean setting.

2. CONFOCAL FAMILIES OF CONICS AND BILLIARDS

The Minkowski plane is R2 with the Minkowski scalar product : 〈X,Y 〉 = X1Y1 −X2Y2.

The Minkowski distance between pointsX, Y is dist(X,Y ) =
√

〈X − Y,X − Y 〉. Since the scalar
product can be negative, notice that the Minkowski distance can have imaginary values as well. In
that case, we choose the value of the square root with the positive imaginary part.

Let � be a line in the Minkowski plane, and v its vector. � is called space-like if 〈v, v〉 > 0, time-
like if 〈v, v〉 < 0, and light-like if 〈v, v〉 = 0. Two vectors x, y are orthogonal in the Minkowski plane
if 〈x, y〉 = 0. Note that a light-like vector is orthogonal to itself.

Confocal families. Denote by

E :
x2

a
+

y2

b
= 1 (2.1)

an ellipse in the plane, with a, b being fixed positive numbers.
The associated family of confocal conics is

Cλ :
x2

a− λ
+

y2

b+ λ
= 1, λ ∈ R. (2.2)

The family is shown in Fig. 1.

Fig. 1. Family of confocal conics in the Minkowski plane. The solid lines represent relativistic ellipses, and
the dashed ones relativistic hyperbolas.
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We may distinguish the following three subfamilies in the family (2.2): for λ ∈ (−b, a), conic
Cλ is an ellipse; for λ < −b, conic Cλ is a hyperbola with x-axis as the major one; for λ > a, it is
a hyperbola again, but now its major axis is the y-axis. In addition, there are three degenerate
quadrics: Ca, Cb, C∞ corresponding to the y-axis, the x-axis, and the line at infinity, respectively.

The confocal family has three pairs of foci: F1(
√
a+ b, 0), F2(−

√
a+ b, 0); G1(0,

√
a+ b),

G2(0,−
√
a+ b); and H1(1 : −1 : 0), H2(1 : 1 : 0) on the line at infinity.

We notice four distinguished lines:

x+ y =
√
a+ b, x+ y = −

√
a+ b,

x− y =
√
a+ b, x− y = −

√
a+ b.

These lines are common tangents to all conics from the family.

Conics in the Minkowski plane have geometric properties analogous to the conics in the Euclidean
plane. Namely, for each point on conic Cλ, either sum or difference of its Minkowski distances from
the foci F1 and F2 is equal to 2

√
a− λ; either sum or difference of the distances from the other

pair of foci G1, G2 is equal to 2
√
−b− λ [13].

In the Minkowkski plane, it is natural to consider relativistic conics, which are suggested in [7].
In this section, we give a brief account of the related analysis.

Consider points F1(
√
a+ b, 0) and F2(−

√
a+ b, 0).

For a given constant c ∈ R+ ∪ iR+, a relativistic ellipse is the set of points X satisfying
dist(F1,X) + dist(F2,X) = 2c, while a relativistic hyperbola is the union of the sets given by the
following equations:

dist(F1,X)− dist(F2,X) = 2c,

dist(F2,X)− dist(F1,X) = 2c.

Relativistic conics can be described as follows.

0 < c <
√
a + b. The corresponding relativistic conics lie on ellipse Ca−c2 from family (2.2). The

ellipse Ca−c2 is split into four arcs by touching points with the four common tangent lines;
thus, the relativistic ellipse is the union of the two arcs intersecting the y-axis, while the
relativistic hyperbola is the union of the other two arcs.

c >
√
a + b. The relativistic conics lie on Ca−c2 – a hyperbola with x-axis as the major one. Each
branch of the hyperbola is split into three arcs by touching points with the common tangents;
thus, the relativistic ellipse is the union of the two finite arcs, while the relativistic hyperbola
is the union of the four infinite ones.

c is imaginary. The relativistic conics lie on hyperbola Ca−c2 – a hyperbola with y-axis as the
major one. As in the previous case, the branches are split into six arcs in total by common
points with the four tangents. The relativistic ellipse is the union of the four infinite arcs,
while the relativistic hyperbola is the union of the two finite ones.

Notice that all relativistic ellipses are disjoint with each other, as well as all relativistic
hyperbolas, see Fig. 1. Moreover, at the intersection point of a relativistic ellipse which is a part
of the geometric conic Cλ1 from the confocal family (2.2) and a relativistic hyperbola belonging
to Cλ2 , it is always λ1 < λ2.

Elliptic coordinates. Each point inside ellipse E has elliptic coordinates (λ1, λ2), such that
−b < λ1 < 0 < λ2 < a.

The differential equation of the lines touching a given conic Cγ is

dλ1√
(a− λ1)(b+ λ1)(γ − λ1)

+
dλ2√

(a− λ2)(b+ λ2)(γ − λ2)
= 0. (2.3)
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Billiards. Let v be a vector and p a line in the Minkowski plane. Decompose vector v into the
sum v = a+ np of a vector np orthogonal to p and a belonging to p. Then the vector v′ = a− np

is the billiard reflection of v on p. It is easy to see that v is also the billiard reflection of v′ with
respect to p. Moreover, since 〈v, v〉 = 〈v′, v′〉, vectors v, v′ are of the same type.

Note that v = v′ if v is contained in p and v′ = −v if it is orthogonal to p. If np is light-like,
which means that it belongs to p, then the reflection is not defined.

Line �′ is the billiard reflection of � off ellipse E if their intersection point � ∩ �′ belongs to E and
the vectors of �, �′ are reflections of each other with respect to the tangent line of E at this point.

The lines containing segments of a given billiard trajectory within E are all of the same type:
they are all either space-like, time-like, or light-like. For a detailed explanation, see [18].

Billiard trajectories within ellipses in the Minkowski plane have caustic properties: each segment
of a given trajectory will be tangent to the same conic confocal with the boundary, see [13]. For
more on the Minkowski plane and related integrable systems, see [7, 17, 21].

3. PERIODIC TRAJECTORIES

Sections 3–8 deal with the trajectories with nondegenerate caustic Cγ , which will mean that
γ ∈ R \ {−b, a}. Such trajectories are either space-like or time-like. The case of light-like trajectories
which correspond to the degenerate caustic C∞ is considered separately, in Section 9.

The periodic trajectories of elliptical billiards in the Minkowski plane can be characterized in
algebro-geometric terms using the underlying elliptic curve:

Theorem 1. The billiard trajectories within E with nondegenerate caustic Cγ are n-periodic if and
only if nQ0 ∼ nQγ on the elliptic curve:

C : y2 = ε(a− x)(b+ x)(γ − x), (3.1)

with Q0 being a point of C corresponding to x = 0, Qγ to x = γ, and ε = sign γ.

Proof. Along a billiard trajectory within E with caustic Cγ , the elliptic coordinate λ1 traces the
segment [α1, 0], and λ2 the segment [0, β1], where α1 is the largest negative and β1 the smallest
positive member of the set {a,−b, γ}.

Case 1. If Cγ is an ellipse and γ < 0, then α1 = γ, β1 = a. The coordinate λ1 takes the value
λ1 = γ at the touching points with the caustic and the value λ1 = 0 at the reflection points off the
arcs of E where the restricted metric is time-like. On the other hand, λ2 takes the value λ2 = a
at the intersections with y-axis, and λ2 = 0 at the reflection points off the arcs of E where the
restricted metric is space-like.

Case 2. If Cγ is an ellipse and γ > 0, then α1 = −b, β1 = γ. The coordinate λ1 takes the value
λ1 = −b at the intersections with x-axis and value λ1 = 0 at the reflection points off the arcs of
E where the restricted metric is time-like. On the other hand, λ2 takes the value λ2 = γ at the
touching points with the caustic, and λ2 = 0 at the reflection points off the arcs of E where the
restricted metric is space-like.

Case 3. If Cγ is a hyperbola, then α1 = −b, β1 = a. The coordinate λ1 takes the value λ1 = −b
at the intersections with x-axis and value λ1 = 0 at the reflection points off the arcs of E where the
restricted metric is time-like. On the other hand, λ2 takes the value λ2 = a at the intersections with
y-axis, and λ2 = 0 at the reflection points off the arcs of E where the restricted metric is space-like.

In each case, the elliptic coordinates change monotonously between their extreme values.
Consider an n-periodic billiard trajectory and denote by n1 the number of reflections off time-

like arcs, i. e., off relativistic ellipses, and by n2 the number of reflections off space-like arcs,
i. e., relativistic hyperbolas. Obviously, n1 + n2 = n. Integrating (2.3) along the trajectory, we get

n1

∫ 0

α1

dλ1√
ε(a− λ1)(b+ λ1)(γ − λ1)

+ n2

∫ 0

β1

dλ2√
ε(a− λ2)(b+ λ2)(γ − λ2)

= 0, (3.2)

i. e.,

n1(Q0 −Qα1) + n2(Q0 −Qβ1) ∼ 0.
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In Case 1, this is equivalent to

n1(Q0 −Qγ) + n2(Q0 −Qa) ∼ n(Q0 −Qγ),

since a closed trajectory crosses the y-axis an even number of times, i. e, n2 must be even, and
2Qa ∼ 2Qγ .

Similarly, in Case 2, it follows since n1 is even, and in Case 3 both n1 and n2 need to be even. �

From the proof of Theorem 1, we have:

Corollary 1. The period of a closed trajectory with hyperbola as caustic is even.

Theorem 2. The billiard trajectories within E with caustic Cγ are n-periodic if and only if:

C2 = 0,

∣
∣∣
∣
∣∣

C2 C3

C3 C4

∣
∣∣
∣
∣∣
= 0,

∣∣
∣∣
∣∣
∣∣
∣

C2 C3 C4

C3 C4 C5

C4 C5 C6

∣∣
∣∣
∣∣
∣∣
∣

= 0, . . . for n = 3, 5, 7, . . .

B3 = 0,

∣∣
∣∣
∣
∣

B3 B4

B4 B5

∣∣
∣∣
∣
∣
= 0,

∣
∣∣
∣∣
∣∣
∣∣

B3 B4 B5

B4 B5 B6

B5 B6 B7

∣
∣∣
∣∣
∣∣
∣∣

= 0, . . . for n = 4, 6, 8, . . . .

Here, we have denoted:
√

ε(a− x)(b+ x)(γ − x) = B0 +B1x+B2x
2 + . . . ,

√
ε(a− x)(b+ x)(γ − x)

γ − x
= C0 + C1x+ C2x

2 + . . . ,

the Taylor expansions around x = 0.

Proof. Denote by Q∞ the point of C (3.1) corresponding to x = ∞ and notice that

2Qγ ∼ 2Q∞. (3.3)

Consider first n even. Because of (3.3), the condition nQ0 ∼ nQγ is equivalent to nQ0 ∼ nQ∞,
which is equivalent to the existence of a meromorphic function of C with the unique pole at Q∞
and unique zero at Q0, such that the pole and the zero are both of multiplicity n. The basis of
L (nQ∞) is

1, x, x2, . . . , xn/2, y, xy, xn/2−2y, (3.4)

thus, a nontrivial linear combination of those functions with a zero of order n at x = 0 exists if and
only if

∣
∣∣
∣∣
∣
∣∣
∣∣
∣∣

Bn/2+1 Bn/2 . . . B3

Bn/2+2 Bn/2+1 . . . B4

. . .

Bn−1 Bn . . . Bn/2+1

∣
∣∣
∣∣
∣
∣∣
∣∣
∣∣

= 0.

Now suppose n is odd. Because of (3.3), the condition nQ0 ∼ nQγ is equivalent to nQ0 ∼
(n− 1)Q∞ +Qγ , which is equivalent to the existence of a meromorphic function of C with only
two poles: of order n− 1 at Q∞ and a simple pole at Qγ , and unique zero at Q0. The basis

L
(
(n− 1)Q∞ +Qγ

)
is

1, x, x2, . . . , x(n−1)/2,
y

γ − x
,

xy

γ − x
, . . . ,

x(n−1)/2−1y

γ − x
, (3.5)
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thus, a nontrivial linear combination of those functions with a zero of order n at x = 0 exists if and
only if

∣
∣∣
∣∣
∣
∣∣
∣∣
∣∣

C(n−1)/2+1 C(n−1)/2 . . . C2

C(n−1)/2+2 C(n−1)/2+1 . . . C3

. . .

Cn−1 Cn . . . C(n−1)/2+1

∣
∣∣
∣∣
∣
∣∣
∣∣
∣∣

= 0.

�

4. TRAJECTORIES WITH SMALL PERIODS AND DISCRIMINANTLY SEPARABLE
POLYNOMIALS

4.1. Examples of Periodic Trajectories: 3 � n � 8

3-periodic trajectories

There is a 3-periodic trajectory of the billiard within (2.1), with a nondegenerate caustic Cγ in
the Minkowski plane if and only if, according to Theorem 2, the caustic is an ellipse, i. e., γ ∈ (−b, a)
and C2 = 0.

We solve the equation

C2 =
3a2b2 + 2ab(a− b)γ − (a+ b)2γ2

8(ab)3/2γ5/2
= 0, (4.1)

which yields the following two solutions for the parameter γ for the caustic:

γ1 =
ab

(a+ b)2
(a− b+ 2

√
a2 + ab+ b2), γ2 = − ab

(a+ b)2
(−a+ b+ 2

√
a2 + ab+ b2). (4.2)

Notice that both caustics Cγ2 and Cγ1 are ellipses since −b < γ2 < 0 < γ1 < a.

Two examples of a 3-periodic trajectories are shown in Fig. 2.

Fig. 2. A 3-periodic trajectory with an ellipse along the y-axis as caustic (a = 3, b = 2, γ ≈ 2.332) is shown
on the left, while another trajectory with an ellipse along the x-axis as caustic (a = 7, b = 5, γ ≈ −4.589) is
on the right.
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4-periodic trajectories

There is a 4-periodic trajectory of the billiard within (2.1), with a nondegenerate caustic Cγ in
the Minkowski plane if and only if B3 = 0. We solve the equation

B3 = −(ab+ aγ + bγ)(ab+ aγ − bγ)(ab− aγ − bγ)

16(abγ)5/2
= 0, (4.3)

which yields the following solutions for the parameter γ for the caustic:

γ1 = − ab

a+ b
, γ2 = − ab

a− b
, γ3 =

ab

a+ b
. (4.4)

Since γ1 ∈ (−b, 0), γ3 ∈ (0, a) and γ2 /∈ (−b, a), therefore conic Cγ2 is a hyperbola, whereas conics
Cγ1 and Cγ3 are ellipses.

In Figs. 3 and 4, examples of 4-periodic trajectories with each type of caustic are shown.

Fig. 3. A 4-periodic trajectory with an ellipse along the y-axis as caustic (a = 2, b = 4, γ = 4/3) is shown on
the left, while another trajectory with an ellipse along the x-axis as caustic (a = 9, b = 3, γ = −9/4) is on the
right.

Fig. 4. A 4-periodic trajectory with a hyperbola along the x-axis as caustic (a = 5, b = 3, γ = −15/2).

5-periodic trajectories

There is a 5-periodic trajectory of the billiard within (2.1), with a nondegenerate caustic Cγ if

and only if, according to Theorem 2, the caustic is an ellipse, i. e., γ ∈ (−b, a), and C2C4 −C2
3 = 0,

which is equivalent to

0 = (a+ b)6 γ6 − 2ab (a− b) (a− 3b) (3a− b) (a+ b)2 γ5 − a2b2
(
29a2 − 54ab+ 29b2

)
(a+ b)2 γ4

− 36a3b3 (a− b) (a+ b)2 γ3 − a4b4
(
9a2 + 34ab+ 9b2

)
γ2 + 10a5b5 (a− b) γ + 5a6b6. (4.5)

Examples of 5-periodic billiard trajectories are shown in Figs. 5 and 6.
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PERIODIC BILLIARDS WITHIN CONICS 471

Fig. 5. 5-periodic trajectories with an ellipse along the y-axis as caustic. On the left, the particle is bouncing
4 times off the relativistic ellipse and once off relativistic hyperbola (a = 5, b = 2, γ ≈ 4.7375), while on the
right the billiard particle is reflected twice off relativistic ellipse and 3 times off relativistic hyperbola (a = 6,
b = 4, γ ≈ 1.4205).

Fig. 6. 5-periodic trajectories with an ellipse along the x-axis as caustic. On the left, the particle is bouncing
once off the relativistic ellipse and 4 times off the relativistic hyperbola (a = 6, b = 4, γ ≈ −3.9947), while on
the right the billiard particle is reflected twice off the relativistic hyperbola and 3 times off the relativistic
ellipse (a = 6, b = 4, γ ≈ −1.5413).

6-periodic trajectories

There is a 6-periodic trajectory of the billiard within (2.1), with a nondegenerate caustic Cγ if

and only if B3B5 −B2
4 = 0, which is equivalent to

0 =
(
−(a+ b)2γ2 + 2ab(a− b)γ + 3a2b2

)(
(a+ b)(a− 3b)γ2 + 2ab(a + b)γ + a2b2

)

×
(
(a+ b)2γ2 + 2ab(a− b)γ + a2b2

)(
− (a+ b)(3a− b)γ2 − 2ab(a + b)γ + a2b2

)
.

(4.6)

The first factor, −(a+ b)2γ2 + 2ab(a− b)γ + 3a2b2, is a constant multiple of C2 (see Eq. (4.1)),
thus it produces 3-periodic trajectories, which have already been studied.

The discriminant of the third factor (a+ b)2γ2 +2ab(a− b)γ + a2b2 is −16a3b3, which is negative,
therefore the expression has no real roots in γ.

Next, we consider the second factor: (a+ b)(a− 3b)γ2 + 2ab(a+ b)γ + a2b2 = 0, which has two
real solutions:

γ =
ab

(a+ b)(a− 3b)

(
− a− b± 2

√
ab+ b2

)
.
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Finally, we consider the fourth factor: −(a+ b)(3a− b)γ2 − 2ab(a+ b)γ + a2b2 = 0, which yields
two real solutions:

γ =
ab

(a+ b)(3a − b)

(
− a− b± 2

√
ab+ a2

)
.

Examples of 6-periodic trajectories with hyperbolas as caustics are shown in Fig. 7.

Fig. 7. A 6-periodic trajectory with a hyperbola along the x-axis as caustic (a = 5, b = 3, γ ≈ −3.2264 is
shown on the left, while another trajectory with a hyperbola along the y-axis as caustic (a = 3, b = 7 and
γ ≈ 3.1189) is on the right. On the left, the particle bounces off the relativistic ellipse twice and 4 times
the relativistic hyperbola, while on the right the particle bounces off the relativistic ellipse 4 times and the
relativistic hyperbola twice.

7-periodic trajectories

According to Theorem 2, there is a 7-periodic trajectory of the billiard within (2.1), with a
nondegenerate caustic Cγ if and only if the caustic is an ellipse, i. e., γ ∈ (−b, a), and

∣∣
∣∣
∣∣
∣
∣∣

C2 C3 C4

C3 C4 C5

C4 C5 C6

∣∣
∣∣
∣∣
∣
∣∣

= 0,

which is equivalent to

0 =− (a+ b)12 γ12 + 4ab (a− b) (a− 3b) (3a− b)
(
a2 − 6ab+ b2

)
(a+ b)6 γ11

+ 2a2b2
(
59a4 − 332a3b+ 626a2b2 − 332ab3 + 59b4

)
(a+ b)6 γ10

+ 28a3b3 (a− b)
(
13a2 − 38ab+ 13b2

)
(a+ b)6 γ9

+ a4b4
(
7a2 + 30ab + 7b2

) (
63a4 − 84a3b− 38a2b2 − 84ab3 + 63b4

)
(a+ b)2 γ8

− 8a5b5 (a− b)
(
21a4 − 420a3b− 50a2b2 − 420ab3 + 21b4

)
(a+ b)2 γ7

− 12a6b6
(
105a4 − 420a3b+ 422a2b2 − 420ab3 + 105b4

)
(a+ b)2 γ6

− 24a7b7 (a− b)
(
75a2 − 106ab+ 75b2

)
(a+ b)2 γ5

− 3a8b8
(
437a2 − 726ab+ 437b2

)
(a+ b)2 γ4 − 4a9b9 (a− b)

(
121a2 + 250ab + 121b2

)
γ3

− 14a10b10
(
3a2 + 14ab+ 3b2

)
γ2 + 28a11b11 (a− b) γ + 7a12b12.

(4.7)
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Examples of 7-periodic trajectories are shown in Fig. 8.

Fig. 8. A 7-periodic trajectory with an ellipse along the x-axis as caustic (a = 3, b = 7, γ ≈ −6.9712) is shown
on the left, while another trajectory with an ellipse along the y-axis as caustic (a = 7, b = 3 and γ ≈ 6.9712)
is on the right. On the left, the particle bounces once off the relativistic ellipse and 6 times off the relativistic
hyperbola, while on the right the particle bounces 6 times off the relativistic ellipse and once off the relativistic
hyperbola.

8-periodic trajectories

There is an 8-periodic trajectory of the billiard within ellipse (2.1), with a nondegenerate caustic
Cγ if and only if

∣∣
∣∣
∣∣
∣∣
∣

B3 B4 B5

B4 B5 B6

B5 B6 B7

∣∣
∣∣
∣∣
∣∣
∣

= 0,

which is equivalent to

0 = (ab− aγ − bγ) (ab+ aγ + bγ) (ab+ aγ − bγ)
(
(a+ b)4 γ4 − 4ab (a+ b) (−b+ a)2 γ3 − 2a2b2 (a+ b) (5a− 3b) γ2 − 4a3b3 (a+ b) γ

+ a4b4
)(

(a+ b)4 γ4 + 4ab (a+ b) (−b+ a)2 γ3 + 2a2b2 (a+ b) (3a− 5b) γ2

+ 4a3b3 (a+ b) γ + a4b4
)( (

a2 − 6ab+ b2
)
(a+ b)2 λ4 + 4ab (−b+ a) (a+ b)2 γ3

+ 2a2b2
(
3a2 + 2ab+ 3b2

)
γ2 + 4a3b3 (−b+ a) γ + a4b4

)
.

(4.8)

In Figs. 9 and 10, three examples of 8-periodic trajectories are shown.

Summary of numbers of touching points with relativistic ellipses and hyperbolas

In the table below, we summarize the examples given in this section. Here, n1 and n2
represent the numbers of bouncing points off the relativistic ellipses and the relativistic hyperbolas,
respectively.
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Fig. 9. On the left, an 8-periodic trajectory with a hyperbola along x-axis as caustic (a = 6, b = 3,
γ ≈ −3.0151), with 2 vertices on relativistic ellipses and 6 on relativistic hyperbolas. On the right, an 8-
periodic trajectory with a hyperbola along y-axis as caustic (a = 6, b = 3, γ ≈ 6.9168), with 6 vertices on
relativistic ellipses and 2 on relativistic hyperbolas.

Fig. 10. An 8-periodic trajectory with an ellipse along y-axis as caustic (a = 6, b = 3, γ ≈ 5.3707). There are
2 reflections off the relativistic hyperbola and 6 off the relativistic ellipses.

4.2. Cayley-type Conditions and Discriminantly Separable Polynomials

Similarly to the case of Euclidean plane [16], the Cayley-type conditions obtained above have
a very interesting algebraic structure. Namely, the numerators of the corresponding expressions
are polynomials in 3 variables. As examples below show, those polynomials have factorizable
discriminants which, after a change of variables, lead to discriminantly separable polynomials in
the sense of the following definition (see Remark 2 for more details).

Definition 1 ([8]). A polynomial F (x1, . . . , xn) is discriminantly separable if there exist polyno-
mials f1(x1), . . . , fn(xn) such that the discriminant DxiF of F with respect to xi satisfies

DxiF (x1, . . . , x̂i, . . . , xn) =
∏

j �=i

fj(xj),

for each i = 1, . . . , n.
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Period n1 + n2 Caustic n1 n2

n = 3 Ellipse along y-axis 2 1

Ellipse along x-axis 1 2

n = 4 Ellipse along x-axis 2 2

Ellipse along y-axis 2 2

Hyperbola along x-axis 2 2

n = 5 Ellipse along y-axis 2 3

Ellipse along x-axis 3 2

Ellipse along y-axis 4 1

Ellipse along x-axis 1 4

n = 6 Hyperbola along x-axis 2 4

Ellipse along y-axis 4 2

n = 7 Ellipse along x-axis 1 6

Ellipse along y-axis 6 1

n = 8 Hyperbola along x-axis 2 6

Hyperbola along y-axis 6 2

Ellipse along x-axis 6 2

Discriminantly factorizable polynomials were introduced in [9] in connection with n-valued
groups. Various applications of discriminantly separable polynomials in continuous and discrete
integrable systems were presented in [10–12]. The connection between Cayley-type conditions in
the Euclidean setting and discriminantly factorizable and separable polynomials has been observed
in [16]. As examples below show, the Cayley conditions in the Minkowski plane provide examples
of discriminantly factorizable polynomials which, after a change of variables, have separable
discriminants. It would be interesting to establish this relationship as a general statement.

Example 1. The expression (4.1) is

G2(γ, a, b) = − (a+ b)2 γ2 + 2 ab (a− b) γ + 3 a2b2,

and its discriminant with respect to γ is

DγG2 = 24
(
a2 + ab+ b2

)
a2b2,

which is obviously factorizable.

Example 2. The expression (4.3) is

G3(γ, a, b) = −(ab+ aγ + bγ)(ab+ aγ − bγ)(ab − aγ − bγ)

and its discriminant with respect to γ is factored as

DγG3 = 26a8b8 (a+ b)2 .

Example 3. The expression (4.5) is

G6(γ, a, b) = (a+ b)6 γ6 − 2ab (a− b) (a− 3b) (3a− b) (a+ b)2 γ5

− a2b2
(
29a2 − 54ab+ 29b2

)
(a+ b)2 γ4 − 36a3b3 (a− b) (a+ b)2 γ3

− a4b4
(
9a2 + 34ab+ 9b2

)
γ2 + 10a5b5 (a− b) γ + 5a6b6.

is discriminantly factorizable since its discriminant with respect to γ is

DγG6 = −5 · 244(27a6 + 81a5b+ 322 a4b2 + 509a3b3 + 322a2b4 + 81ab5 + 27b6) (a+ b)8 b38a38.
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Example 4. Let us denote the expression (4.6) as

G8(γ, a, b) =(3a− b)(a− 3b)(a+ b)6γ8 + 8ab(a− b)(a+ b)6γ7

− 4 a2b2(3 a4 − 24 a3b+ 10 a2b2 − 24 ab3 + 3 b4) (a+ b)2 γ6

− 8 a3b3 (a− b)
(
9 a2 − 14 ab+ 9 b2

)
(a+ b)2 γ5

− 10 a4b4
(
11 a2 − 18 ab+ 11 b2

)
(a+ b)2 γ4 − 72 a5b5 (a− b) (a+ b)2 γ3

− 4 a6b6 (a+ 3 b) (3 a+ b) γ2 + 8 a7b7(a− b)γ + 3 a8b8.

We find that the discriminant of G8 with respect to γ factors is

DγG8 = −288
(
a2 + ab+ b2

)
(a+ b)18 b74a74.

Example 5. The discriminant DγG12 of the expression in (4.7) is

DγG12 =− 2184 · 72 (a+ b)40 (ab)172×
× (84375a12 + 506250a11b+ 4266243 a10b2 + 16690590 a9b3 + 34989622 a8b4

+ 45383698 a7b5 + 46564971 a6b6 + 45383698 a5b7 + 34989622 a4b8 + 16690590 a3b9

+ 4266243 a2b10 + 506250 ab11 + 84375 b12),

thus, G12 is a discriminantly factorizable polynomial.

Example 6. The discriminant DγG15 of the expression (4.8) is

DγG15 =− 2246(ab)278
(
27 a2 + 46 ab+ 27 b2

)
(a+ b)8 ×

×
(
a5 + 5 a4b+ 10 a3b2 + 10 a2b3 + 5 ab4 + b5

)
×

× (a7 + 7 a6b+ 21 a5b2 + 35 a4b3 + 35 a3b4 + 21 a2b5 + 7 ab6 + b7)×
× (8 a26 + 27 b26 + 200 a25b+ 2427 a24b2 + 19048 a23b3 + 108652 a22b4 + 479688 a21b5

+ 1703702 a20b6 + 4993208 a19b7 + 12286692 a18b8 + 25688608 a17b9 + 46007797 a16b10

+ 70961808 a15b11 + 94556312 a14b12 + 108998288 a13b13 + 108671412 a12b14

+ 93545968 a11b15 + 69297712 a10b16+43955208 a9b17+23703317 a8b18+10761608 a7b19

+ 4059132 a6b20 + 1248808 a5b21 + 305302 a4b22 + 57048 a3b23 + 7652 a2b24 + 656 ab25)

× (27 a26 + 8 b26 + 656 a25b+ 7652 a24b2 + 57048 a23b3 + 305302 a22b4 + 1248808 a21b5

+ 4059132 a20b6 + 10761608 a19b7 + 23703317 a18b8 + 43955208 a17b9 + 69297712 a16b10

+ 93545968 a15b11 + 108671412 a14b12 + 108998288 a13b13 + 94556312 a12b14

+ 70961808 a11b15+46007797 a10b16+25688608 a9b17 + 12286692 a8b18+4993208 a7b19

+ 1703702 a6b20 + 479688 a5b21 + 108652 a4b22 + 19048 a3b23 + 2427 a2b24 + 200 ab25),

so G15 is a discriminantly factorizable polynomial.

Remark 1. Since the determinants obtained in Theorem 2 are symmetric in a, −b, and γ, the
discriminants with respect to a and b of the polynomials in Examples 1–6 will be also factorizable.

Remark 2. We observed in Examples 1–6 that all polynomials are discriminantly factorizable.
However, it is important to note that their factors are homogeneous, thus, by a change of

variables, say, (a, b) 
→ (a, b̂), with b̂ =
b

a
, transforms the polynomials into discriminantly separable

polynomials in new variables (a, b̂):

DγG2 = 24 a8b̂2
(
1 + b̂+ b̂2

)
,

DγG3 = 26 a18b̂8
(
1 + b̂

)2
,
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DγG6 = −5.244a90b̂38
(
27 + 81b̂+ 322b̂2 + 509b̂3 + 322b̂4 + 81b̂5 + 27b̂6

)(
1 + b̂

)8
,

DγG8 = −288 a168b̂74
(
1 + b̂+ b̂2

)(
1 + b̂

)18
.

5. ELLIPTIC PERIODIC TRAJECTORIES

Points of the plane which are symmetric with respect to the coordinate axes share the same
elliptic coordinates, and hence there is no bijection between the elliptic and the Cartesian
coordinates. Thus, we introduce a separate notion of periodicity in elliptic coordinates.

Definition 2. A billiard trajectory is n-elliptic periodic if it is n-periodic in elliptic coordinates
joined to the confocal family (2.2).

Now we will derive algebro-geometric conditions for elliptic periodic trajectories.

Theorem 3. A billiard trajectory within E with the caustic Cγ is n-elliptic periodic without being
n-periodic if and only if one of the following conditions is satisfied on C :

(a) Cγ is an ellipse, 0 < γ < a, and nQ0 − (n− 1)Qγ −Q−b ∼ 0;

(b) Cγ is an ellipse, −b < γ < 0, and nQ0 − (n− 1)Qγ −Qa ∼ 0;

(c) Cγ is a hyperbola, n is even and nQ0 − (n − 2)Qγ −Q−b −Qa ∼ 0;

(d) Cγ is a hyperbola, n is odd, and nQ0 − (n − 1)Qγ −Qa ∼ 0;

(e) Cγ is a hyperbola, n is odd, and nQ0 − (n − 1)Qγ −Q−b ∼ 0.

Moreover, such trajectories are always symmetric with respect to the origin in Case (c). They are
symmetric with respect to the x-axis in Cases (b) and (d), and with respect to the y-axis in Cases
(a) and (e).

Proof. Let M0 be the initial point of a given n-elliptic periodic trajectory, and M1 the next point
on the trajectory with the same elliptic coordinates. Then, integrating (2.3) M0 to M1 along the
trajectory, we get

n1(Q0 −Qα1) + n2(Q0 −Qβ1) ∼ 0,

where n = n1 + n2, and n1 is the number of times that the particle hits the arcs of E with time-like
metrics, and n2 the number of times it hits the arcs with space-like metrics. We denoted by α1 the
largest negative member of the set {a,−b, γ}, and by β1 its smallest positive member.

The trajectory is not n-periodic if and only if at least one of n1, n2 is odd, which then leads to
the stated conclusions. �

The explicit Cayley-type conditions for elliptic periodic trajectories are:

Theorem 4. A billiard trajectory within E with the caustic Qγ is n-elliptic periodic without being
n-periodic if and only if one of the following conditions is satisfied:

(a) Cγ is an ellipse, 0 < γ < a, and

D1 = 0,

∣
∣
∣∣
∣∣

D1 D2

D2 D3

∣
∣
∣∣
∣∣
= 0,

∣∣
∣∣
∣∣
∣∣
∣

D1 D2 D3

D2 D3 D4

D3 D4 D5

∣∣
∣∣
∣∣
∣∣
∣

= 0, . . . for n = 2, 4, 6, . . .

E2 = 0,

∣
∣∣
∣∣
∣

E2 E3

E3 E4

∣
∣∣
∣∣
∣
= 0,

∣
∣∣
∣∣
∣∣
∣
∣

E2 E3 E4

E3 E4 E5

E4 E5 E6

∣
∣∣
∣∣
∣∣
∣
∣

= 0, . . . for n = 3, 5, 7, . . . ;
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(b) Cγ is an ellipse, −b < γ < 0, and

E1 = 0,

∣
∣∣
∣∣
∣

E1 E2

E2 E3

∣
∣∣
∣∣
∣
= 0,

∣
∣∣
∣∣
∣∣
∣
∣

E1 E2 E3

E2 E3 E4

E3 E4 E5

∣
∣∣
∣∣
∣∣
∣
∣

= 0, . . . for n = 2, 4, 6, . . .

D2 = 0,

∣∣
∣∣
∣∣

D2 D3

D3 D4

∣∣
∣∣
∣∣
= 0,

∣∣
∣∣
∣∣
∣
∣∣

D2 D3 D4

D3 D4 D5

D4 D5 D6

∣∣
∣∣
∣∣
∣
∣∣

= 0, . . . for n = 3, 5, 7, . . . ;

(c) Qγ is a hyperbola, n even and

C1 = 0,

∣∣
∣
∣∣
∣

C1 C2

C2 C3

∣∣
∣
∣∣
∣
= 0,

∣
∣∣
∣∣
∣∣
∣∣

C1 C2 C3

C2 C3 C4

C3 C4 C5

∣
∣∣
∣∣
∣∣
∣∣

= 0, . . . for n = 2, 4, 6, . . .

(d) Qγ is a hyperbola, n is odd, and

D2 = 0,

∣∣
∣∣
∣∣

D2 D3

D3 D4

∣∣
∣∣
∣∣
= 0,

∣∣
∣∣
∣
∣∣
∣∣

D2 D3 D4

D3 D4 D5

D4 D5 D6

∣∣
∣∣
∣
∣∣
∣∣

= 0, . . . for n = 3, 5, 7, . . . .

(e) Qγ is a hyperbola, n is odd, and

E2 = 0,

∣
∣
∣∣
∣∣

E2 E3

E3 E4

∣
∣
∣∣
∣∣
= 0,

∣∣
∣∣
∣∣
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∣

E2 E3 E4

E3 E4 E5

E4 E5 E6

∣∣
∣∣
∣∣
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∣

= 0, . . . for n = 3, 5, 7, . . . .

Here, we have denoted:
√

ε(a− x)(b+ x)(γ − x)

a− x
= D0 +D1x+D2x

2 + . . . ,

√
ε(a− x)(b+ x)(γ − x)

b+ x
= E0 + E1x+ E2x

2 + . . . ,

the Taylor expansion around x = 0, while Bs and Cs are as in Theorem 2.

Proof. (a) Take first n even. Using Theorem 3, we have

nQ0 ∼ (n− 1)Qγ +Q−b ∼ (n− 2)Q∞ +Q−b +Qγ ∼ (n− 2)Q∞ +Q∞ +Qa ∼ (n− 1)Q∞ +Qa.

The basis of L
(
(n− 1)Q∞ +Qa

)
is

1, x, x2, . . . , xn/2−1,
y

x− a
,

xy

x− a
,
xn/2−1y

x− a
,

thus, a nontrivial linear combination of these functions with a zero of order n at x = 0 exists if and
only if

∣∣
∣∣
∣
∣∣
∣∣
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∣

Dn/2 Dn/2−1 . . . D1

Dn/2+1 Dn/2 . . . D2

. . .

Dn−1 Dn−2 . . . Dn/2

∣∣
∣∣
∣
∣∣
∣∣
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∣

= 0.
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For odd n, we have

nQ0 ∼ (n− 1)Qγ +Q−b ∼ (n− 1)Q∞ +Q−b.

The basis of L
(
(n− 1)Q∞ +Q−b

)
is

1, x, x2, . . . , x(n−1)/2,
y

x+ b
,

xy

x+ b
,
x(n−1)/2−1y

x+ b
,

thus, a nontrivial linear combination of these functions with a zero of order n at x = 0 exists if and
only if

∣∣
∣∣
∣∣
∣
∣∣
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∣

E(n−1)/2+1 E(n−1)/2 . . . E2

E(n−1)/2+2 E(n−1)/2+1 . . . E3

. . .

En−1 En−2 . . . E(n−1)/2+1

∣∣
∣∣
∣∣
∣
∣∣
∣∣
∣

= 0.

Case (b) is done similarly as (a).

(c) We have nQ0 ∼ (n− 2)Qγ +Q−b +Qa ∼ (n− 1)Q∞ +Qγ .

(d) We have nQ0 ∼ (n− 1)Qγ +Qa ∼ (n− 1)Q∞ +Qa.

(e) We have nQ0 ∼ (n− 1)Qγ +Q−b ∼ (n − 1)Q∞ +Q−b. �

6. EXAMPLES OF ELLIPTIC PERIODIC TRAJECTORIES: 2 � n � 5

2-elliptic periodic trajectories

There is a 2-elliptic periodic trajectory without being 2-periodic of the billiard within (2.1), with
a nondegenerate caustic Cγ if and only if, according to Theorem 4 one of the following is satisfied:

• the caustic is an ellipse, with γ ∈ (0, a) and D1 = 0;

• the caustic is an ellipse, with γ ∈ (−b, 0) and E1 = 0;

• the caustic is a hyperbola, n is even, and C1 = 0.

We consider the following equations:

D1 =
(a+ b)γ − ab

2
√

a3bγ
= 0, E1 = −(a+ b)γ + ab

2
√

ab3γ
= 0, C1 =

(a− b)γ + ab

2
√

abγ3
= 0,

which, respectively, yield the solutions for the parameter γ of the caustic:

γ =
ab

a+ b
, γ = − ab

a+ b
, γ = − ab

a− b
.

Some examples of 2-elliptic periodic trajectories without being 2-periodic are shown in Figs. 11
and 12.
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Fig. 11. A 2-elliptic periodic trajectories with ellipses as caustics. On the left, the caustic is an ellipse along
x-axis (a = 5, b = 3, γ = −15/8), and on the right an ellipse along y-axis (a = 5, b = 7 and γ = 35/12).

Fig. 12. A 2-elliptic periodic trajectory with a hyperbola as caustic (a = 7, b = 3, γ = −5.25).

3-elliptic periodic trajectories

There is a 3-elliptic periodic trajectory without being 3-periodic of the billiard within (2.1), with
a nondegenerate caustic Cγ if and only if one of the following is satisfied:

• E2 = 0 and either the caustic is an ellipse with γ ∈ (0, a) or the caustic is a hyperbola with
n even;

• D2 = 0 and either the caustic is an ellipse with γ ∈ (−b, 0) or the caustic is a hyperbola.

The equations E2 = 0 and D2 = 0 are, respectively, equivalent to

−(a+ b)(3a− b)γ2 − 2ab(a+ b)γ + a2b2 = 0, (6.1)

(a+ b)(a− 3b)γ2 + 2ab(a+ b)γ + a2b2 = 0, (6.2)

which, respectively, yield the pairs of solutions for the parameter γ of the caustic:

γ =
(−a− b± 2

√
a2 + ab)ba

(a+ b)(3a− b)
, γ =

(−a− b± 2
√
b2 + ab)ba

(a+ b)(a− 3b)
.

Examples of 3-elliptic periodic trajectories which are not 3-periodic are shown in Figs. 13–15.
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Fig. 13. 3-elliptic periodic trajectries with hyperbolas as caustics. On the left, the caustic is orientied along
the x-axis (a = 6, b = 3, γ ≈ −3.1595918), and on the right along y-axis (a = 3, b = 5, γ ≈ 3.2264236).

Fig. 14. A 3-elliptic periodic trajectory with an ellipse along x-axis as caustic (a = 9, b = 2, γ ≈ −0.8831827).

Fig. 15. A 3-elliptic periodic trajectory with an ellipse along y-axis as caustic (a = 4, b = 9, γ ≈ 1.312805).

4-elliptic periodic trajectories

There is a 4-elliptic periodic trajectory without being 4-periodic of the billiard within (2.1), with
a nondegenerate caustic Cγ if and only if, according to Theorem 4, one of the following is satisfied:

• the caustic is an ellipse, with γ ∈ (0, a) and D3D1 −D2
2 = 0, i.e.,

(a+ b)4γ4 − 4ab(a+ b)(a− b)2γ3 − 2a2b2(a+ b)(5a− 3b)γ2 − 4a3b3(a+ b)γ + a4b4 = 0;

• the caustic is an ellipse, with γ ∈ (−b, 0) and E3E1 − E2
2 = 0, i.e.,

(a+ b)4γ4 + 4ab(a+ b)(a− b)2γ3 + 2a2b2(a+ b)(3a− 5b)γ2 + 4a3b3(a+ b)γ + a4b4 = 0;
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• the caustic is a hyperbola and C3C1 − C2
2 = 0, i. e.,

(a2 − 6ab+ b2)(a+ b)2γ4 + 4ab(a− b)(a+ b)2γ3 + 2a2b2(3a2 + 2ab+ 3b2)γ2

+ 4a3b3(a− b)γ + a4b4 = 0.

Each real solution γ for the above equations for some fixed values of a and b will produce a
4-elliptic periodic trajectory which is not 4-periodic. Some examples are shown in Fig. 16.

Fig. 16. 4-elliptic periodic trajectories. On the left, the caustic is an ellipse (a = 5, b = 3, γ ≈ 4.6216), and it
is a hyperbola on the right (a = 5, b = 3, γ ≈ −3.0243).

5-elliptic periodic trajectories

According to Theorem 4, there is a 5-elliptic periodic trajectory without being 5-periodic of the
billiard within (2.1), with a nondegenerate caustic Cγ if and only if one of the following is satisfied:

• the caustic is an ellipse, with γ ∈ (0, a) or a hyperbola and E2E4 − E2
3 = 0, i.e.,

(5a2 − 10ab+ b2)(a+ b)4γ6 + 2ab(5a− 3b)(a + b)4γ5

− a2b2(a+ b)(9a3 − 45a2b− 5ab2 − 15b3)γ4 − 4a3b3(a+ b)(9a2 − 10ab+ 5b2)γ3

− a4b4(a+ b)(29a − 15b)γ2 − 6a5b5(a+ b)γ + a6b6 = 0;

• the caustic is an ellipse, with γ ∈ (−b, 0) or a hyperbola and D2D4 −D2
3 = 0, i. e.,

(a2 − 10ab + 5b2)(a+ b)4γ6 + 2ab(3a− 5b)(a + b)4γ5

+ a2b2(a+ b)(15a3 + 5a2b+ 45ab2 − 9b3)γ4 + 4a3b3(a+ b)(5a2 − 10ab+ 9b2)γ3

+ a4b4(a+ b)(15a − 29b)γ2 + 6a5b5(a+ b)γ + a6b6 = 0.

Each real solution γ for the above equations for some fixed values of a and b will produce a
5-elliptic periodic trajectory which is not 5-periodic. Some examples are shown in Fig. 17.

Discriminantly separable polynomials and elliptic periodicity

Since the case n = 2 is trivial, we start with the case n = 3.

From (6.1) and (6.2), we have

G1(a, b, γ) = −(a+ b)(3a− b)γ2 − 2ab(a+ b)γ + a2b2,

G2(a, b, γ) = (a+ b)(a− 3b)γ2 + 2ab(a+ b)γ + a2b2,
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Fig. 17. 5-elliptic periodic trajectories. On the left, the caustic is an ellipse (a = 7, b = 4, γ ≈ −3.3848) and
a hyperbola on the right (a = 3, b = 7, γ ≈ 3.4462).

and we calculate the discriminants, which factorize as follows:

DγG1 = 16a3b2(a+ b), DγG2 = 16b3a2(a+ b).

Similarly, for n = 4, we have

G3(a, b, γ) = (a+ b)4γ4 − 4ab(a+ b)(a− b)2γ3 − 2a2b2(a+ b)(5a− 3b)γ2 − 4a3b3(a+ b)γ + a4b4,

G4(a, b, γ) = (a+ b)4γ4 + 4ab(a+ b)(a− b)2γ3 + 2a2b2(a+ b)(3a− 5b)γ2 + 4a3b3(a+ b)γ + a4b4,

G5(a, b, γ) = (a2 − 6ab+ b2)(a+ b)2γ4 + 4ab(a− b)(a+ b)2γ3 + 2a2b2(3a2 + 2ab+ 3b2)γ2

+ 4a3b3(a− b)γ + a4b4.

The discriminants of these polynomials factorize as follows:

DγG3 = −216a16b14(8a2 + 8ab+ 27b2)(a+ b)4,

DγG4 = −216a14b16(27a2 + 8ab+ 8b2)(a+ b)4,

DγG5 = 212(32a6 − 491a5b− 439a4b2 + 194a3b3 − 62a2b4 − 39ab5 + 5b6)(a+ b)3b15a12.

Using the transformation (a, b) 
→ (a, b̂), where b̂ =
b

a
, we get

DγG1 = 16a6b̂2(1 + b̂),

DγG2 = 16a5b̂3(1 + b̂),

DγG3 = −216a36b̂14(8 + 8b̂+ 27b̂2)(1 + b̂)4,

DγG4 = −216a36b̂16(27 + 8b̂+ 8b̂2)(1 + b̂)4,

DγG5 = 212a36b̂15(32− 491b̂ − 439b̂2 + 194b̂3 − 62b̂4 − 39b̂5 + 5b̂6)(1 + b̂)3.

7. POLYNOMIAL EQUATIONS

Now we want to express the periodicity conditions for billiard trajectories in the Minkowski
plane in terms of polynomial functions equations.

Theorem 5. The billiard trajectories within E with caustic Cγ are n-periodic if and only if there
exists a pair of real polynomials pd1, qd2 of degrees d1, d2, respectively, and satisfying the following:
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(a) if n = 2m is even, then d1 = m, d2 = m− 2, and

p2m(s)− s

(
s− 1

a

)(
s+

1

b

)(
s− 1

γ

)
q2m−2(s) = 1;

(b) if n = 2m+ 1 is odd, then d1 = m, d2 = m− 1, and
(
s− 1

γ

)
p2m(s)− s

(
s− 1

a

)(
s+

1

b

)
q2m−1(s) = −sign γ.

Proof. We note first that the proof of Theorem 2 implies that there is a nontrivial linear combination
of the bases (3.4) for n even, or (3.5) for n odd, with the zero of order n at x = 0.

(a) For n = 2m, from there we get that there are real polynomials p∗m(x) and q∗m−2(x) of degrees
m and m− 2, respectively, such that the expression

p∗m(x)− q∗m−2(x)
√

ε(a− x)(b+ x)(γ − x)

has a zero of order 2m at x = 0. Multiplying that expression by

p∗m(x) + q∗m−2(x)
√

ε(a− x)(b+ x)(γ − x),

we get that the polynomial
(
p∗m(x)

)2 − ε(a− x)(b+ x)(γ − x)
(
q∗m−2(x)

)2
has a zero of order 2m at

x = 0. Since the degree of that polynomial is 2m, it follows that
(
p∗m(x)

)2 − ε(a− x)(b+ x)(γ − x)
(
q∗m−2(x)

)2
= cx2m,

for some constant c. Notice that c is positive, since it equals the square of the leading coefficient of
p∗m. Dividing the last relation by cx2m and introducing s = 1/x, we get the desired relation.

(b) On the other hand, for n = 2m+ 1, we find that there are real polynomials p∗m(x) and
q∗m−1(x) of degrees m and m− 1, respectively, such that the expression

p∗m(x)− q∗m−1(x)

√
ε(a− x)(b+ x)(γ − x)

γ − x

has a zero of order 2m+ 1 at x = 0. Multiplying that expression by

(γ − x)

(

p∗m(x) + q∗m−1(x)

√
ε(a− x)(b+ x)(γ − x)

γ − x

)

,

we get that the polynomial (γ − x)
(
p∗m(x)

)2 − ε(a− x)(b+ x)
(
q∗m−1(x)

)2
has a zero of order 2m+1

at x = 0. Since the degree of that polynomial is 2m+ 1, it follows that

(γ − x)
(
p∗m(x)

)2 − ε(a− x)(b+ x)
(
q∗m−1(x)

)2
= cx2m+1,

for some constant c. Notice that c is negative, since it equals the opposite of the square of the
leading coefficient of p∗m. Dividing the last relation by −εcx2m+1 and introducing s = 1/x, we get
the desired relation. �

Corollary 2. If the billiard trajectories within E with caustic Cγ are n-periodic, then there exist
real polynomials p̂n and q̂n−2 of degrees n and n− 2, respectively, which satisfy the Pell equation:

p̂2n(s)− s

(
s− 1

a

)(
s+

1

b

)(
s− 1

γ

)
q̂2n−2(s) = 1. (7.1)

Proof. For n = 2m, take p̂n = 2p2m − 1 and q̂n−2 = 2pmqm−2. For n = 2m+ 1, we set p̂n =
2 (γs− 1) p2m + sign γ and q̂n−2 = 2pmqm−1. �
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Theorem 6. The billiard trajectories within E with caustic Cγ are elliptic n-periodic without being
n-periodic if and only if there exists a pair of real polynomials pd1 , qd2 of degrees d1, d2, respectively,
and satisfying the following:

(a) Cγ is an ellipse, 0 < γ < a, and

– n = 2m is even, d1 = d2 = m− 1,

s

(
s− 1

a

)
p2m−1(s)−

(
s+

1

b

)(
s− 1

γ

)
q2m−1(s) = 1;

– n = 2m+ 1 is odd, d1 = m, d2 = m− 1,
(
s+

1

b

)
p2m(s)− s

(
s− 1

a

)(
s− 1

γ

)
q2m−1(s) = 1;

(b) Cγ is an ellipse, −b < γ < 0, and

– n = 2m is even, d1 = d2 = m− 1,

s

(
s+

1

b

)
p2m−1(s)−

(
s− 1

a

)(
s− 1

γ

)
q2m−1(s) = 1;

– n = 2m+ 1 is odd, d1 = m, d2 = m− 1,
(
s− 1

a

)
p2m(s)− s

(
s+

1

b

)(
s− 1

γ

)
q2m−1(s) = −1;

(c) Cγ is a hyperbola and n = 2m is even, d1 = d2 = m− 1,
(
s− 1

γ

)
p2m−1(s)− s

(
s− 1

a

)(
s+

1

b

)
q2m−1(s) = −sign γ;

(d) Cγ is a hyperbola, n = 2m+ 1 is odd, d1 = m, d2 = m− 1,
(
s− 1

a

)
p2m(s)− s

(
s+

1

b

)(
s− 1

γ

)
q2m−1(s) = −1;

(e) Cγ is a hyperbola, n = 2m+ 1 is odd, d1 = m, d2 = m− 1,
(
s+

1

b

)
p2m(s)− s

(
s− 1

a

)(
s− 1

γ

)
q2m−1(s) = 1.

Proof. (a) For n = 2m, the proof of Theorem 4 implies that there are polynomials p∗m−1(x) and
q∗m−1(x) of degrees m− 1, such that the expression

p∗m−1(x)− q∗m−1(x)

√
(a− x)(b+ x)(γ − x)

a− x

has a zero of order 2m at x = 0. Multiplying that expression by

(a− x)

(

p∗m−1(x) + q∗m−1(x)

√
(a− x)(b+ x)(γ − x)

a− x

)

,

we get that the polynomial (a− x)
(
p∗m−1(x)

)2 − (a− x)(b+ x)
(
q∗m−1(x)

)2
has a zero of order 2m

at x = 0. Since the degree of that polynomial is 2m, it follows that

(a− x)
(
p∗m−1(x)

)2 − (b+ x)(γ − x)
(
q∗m−1(x)

)2
= cx2m,

REGULAR AND CHAOTIC DYNAMICS Vol. 24 No. 5 2019



486 ADABRAH et al.

for some constant c. Notice that c is positive, since it equals the square of the leading coefficient of
q∗m−1. Dividing the last relation by cx2m and introducing s = 1/x, we get the desired relation.

For n = 2m+ 1, the proof of Theorem 4 implies that there are polynomials p∗m(x) and q∗m−1(x)
of degrees m and m− 1, such that the expression

p∗m(x)− q∗m−1(x)

√
(a− x)(b+ x)(γ − x)

b+ x

has a zero of order 2m+ 1 at x = 0. Multiplying that expression by

(b+ x)

(

p∗m(x) + q∗m−1(x)

√
(a− x)(b+ x)(γ − x)

b+ x

)

,

we get that the polynomial (b+ x)
(
p∗m(x)

)2 − (a− x)(γ − x)
(
q∗m−1(x)

)2
has a zero of order 2m+ 1

at x = 0. Since the degree of that polynomial is 2m+ 1, it follows that

(b+ x)
(
p∗m(x)

)2 − (a− x)(γ − x)
(
q∗m−1(x)

)2
= cx2m+1

for some constant c. Notice that c is positive, since it equals the square of the leading coefficient of
p∗m. Dividing the last relation by cx2m+1 and introducing s = 1/x, we get the desired relation.

(b) For n = 2m, the proof of Theorem 4 implies that there are real polynomials p∗m−1(x) and
q∗m−1(x) of degrees m− 1, such that the expression

p∗m−1(x)− q∗m−1(x)

√
−(a− x)(b+ x)(γ − x)

b+ x

has a zero of order 2m at x = 0. Multiplying that expression by

(b+ x)

(

p∗m−1(x) + q∗m−1(x)

√
−(a− x)(b+ x)(γ − x)

b+ x

)

,

we get that the polynomial (b+ x)
(
p∗m−1(x)

)2
+ (a− x)(γ − x)

(
q∗m−1(x)

)2
has a zero of order 2m

at x = 0. Since the degree of that polynomial is 2m, it follows that

(b+ x)
(
p∗m−1(x)

)2
+ (a− x)(γ − x)

(
q∗m−1(x)

)2
= cx2m,

for some constant c. Notice that c is positive, since it equals to the square of the leading coefficient
of q∗m−1. Dividing the last relation by cx2m and introducing s = 1/x, we get the desired relation.

For n = 2m+ 1, the proof of Theorem 4 implies that there are polynomials p∗m(x) and q∗m−1(x)
of degrees m and m− 1, such that the expression

p∗m(x)− q∗m−1(x)

√
−(a− x)(b+ x)(γ − x)

a− x

has a zero of order 2m+ 1 at x = 0. Multiplying that expression by

(a− x)

(

p∗m(x) + q∗m−1(x)

√
−(a− x)(b+ x)(γ − x)

a− x

)

,

we get that the polynomial (a− x)
(
p∗m(x)

)2
+ (b+ x)(γ − x)

(
q∗m−1(x)

)2
has a zero of order 2m+ 1

at x = 0. Since the degree of that polynomial is 2m+ 1, it follows that

(a− x)
(
p∗m(x)

)2
+ (b+ x)(γ − x)

(
q∗m−1(x)

)2
= cx2m+1

for some constant c. Notice that c is negative, since it is opposite to the square of the leading
coefficient of p∗m. Dividing the last relation by −cx2m+1 and introducing s = 1/x, we get the desired
relation.
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For (c), the proof of Theorem 4 implies that there are polynomials real p∗m(x) and q∗m−1(x) of
degrees m and m− 1, such that the expression

p∗m(x)− q∗m−1(x)

√
ε(a− x)(b+ x)(γ − x)

γ − x

has a zero of order 2m+ 1 at x = 0. Multiplying that expression by

(γ − x)

(

p∗m(x) + q∗m−1(x)

√
ε(a− x)(b+ x)(γ − x)

γ − x

)

,

we get that the polynomial (γ − x)
(
p∗m(x)

)2 − ε(a− x)(b+ x)
(
q∗m−1(x)

)2
has a zero of order 2m+1

at x = 0. Since the degree of that polynomial is 2m+ 1, it follows that

(γ − x)
(
p∗m(x)

)2 − ε(a− x)(b+ x)
(
q∗m−1(x)

)2
= cx2m+1

for some constant c. Notice that c is negative, since it is opposite to the square of the leading
coefficient of p∗m. Dividing the last relation by −εcx2m+1 and introducing s = 1/x, we get the
desired relation.

(d) The proof of Theorem 4 implies that there are real polynomials p∗m(x) and q∗m−1(x) of degrees
m and m− 1, such that the expression

p∗m(x)− q∗m−1(x)

√
ε(a− x)(b+ x)(γ − x)

a− x

has a zero of order 2m+ 1 at x = 0. Multiplying that expression by

(a− x)

(

p∗m(x) + q∗m−1(x)

√
ε(a− x)(b+ x)(γ − x)

a− x

)

,

we get that the polynomial (a− x)
(
p∗m(x)

)2 − ε(b+ x)(γ − x)
(
q∗m−1(x)

)2
has a zero of order 2m+1

at x = 0. Since the degree of that polynomial is 2m+ 1, it follows that

(a− x)
(
p∗m(x)

)2 − ε(b+ x)(γ − x)
(
q∗m−1(x)

)2
= cx2m+1

for some constant c. Notice that c is negative, since it is opposite to the square of the leading
coefficient of p∗m. Dividing the last relation by −cx2m+1 and introducing s = 1/x, we get the desired
relation.

(e) For n = 2m+ 1, the proof of Theorem 4 implies that there are real polynomials p∗m(x) and
q∗m−1(x) of degrees m and m− 1, such that the expression

p∗m(x)− q∗m−1(x)

√
ε(a− x)(b+ x)(γ − x)

b+ x

has a zero of order 2m+ 1 at x = 0. Multiplying that expression by

(b+ x)

(

p∗m(x) + q∗m−1(x)

√
ε(a− x)(b+ x)(γ − x)

b+ x

)

,

we get that the polynomial (b+ x)
(
p∗m(x)

)2 − ε(a− x)(γ − x)
(
q∗m−1(x)

)2
has a zero of order 2m+1

at x = 0. Since the degree of that polynomial is 2m+ 1, it follows that

(b+ x)
(
p∗m(x)

)2 − ε(a− x)(γ − x)
(
q∗m−1(x)

)2
= cx2m+1

for some constant c. Notice that c is positive, since it equals the square of the leading coefficient
of p∗m. Dividing the last relation by cx2m+1 and introducing s = 1/x, we get the desired relation. �

After Corollary 2 and relation (7.1), we see that the Pell equations arise as the functional
polynomial conditions for periodicity. Let us recall some important properties of the solutions of
the Pell equations.

REGULAR AND CHAOTIC DYNAMICS Vol. 24 No. 5 2019



488 ADABRAH et al.

8. CLASSICAL EXTREMAL POLYNOMIALS AND CAUSTICS

8.1. Fundamental Properties of Extremal Polynomials

From the previous section we know that the Pell equation plays a key role in functional-
polynomial formulation of periodicity conditions in the Minkowski plane. The solutions of the
Pell equation are the so-called extremal polynomials. Denote {c1, c2, c3, c4} = {0, 1/a,−1/b, 1/γ}
with the ordering c1 < c2 < c3 < c4. The polynomials p̂n are the so-called generalized Chebyshev
polynomials on two intervals [c1, c2] ∪ [c3, c4], with an appropriate normalization. Namely, one can
consider the question of finding the monic polynomial of certain degree n which minimizes the

maximum norm on the union of two intervals. Denote such a polynomial as P̂n and its norm Ln. The
fact that polynomial p̂n is a solution of the Pell equation on the union of intervals [c1, c2] ∪ [c3, c4]
is equivalent to the following conditions:

(i) p̂n = P̂n/± Ln

(ii) the set [c1, c2] ∪ [c3, c4] is the maximal subset of R for which P̂n is the minimal polynomial
in the sense above.

Chebyshev was the first who considered a similar problem on one interval, and this was how
celebrated Chebyshev polynomials emerged in the 19th century. Let us recall a fundamental result
about generalized Chebyshev polynomials [5, 6].

Theorem 7 (A corollary of the Krein – Levin –Nudelman Theorem [19]). A polynomial
Pn of degree n satisfies a Pell equation on the union of intervals [c1, c2] ∪ [c3, c4] if and only if there
exists an integer n1 such that the equation holds:

n1

∫ c3

c2

f̂(s)ds = n

∫ ∞

c4

f̂(s)ds, f̂(s) =
C

√∏4
i=1(s− ci)

. (8.1)

(Here C is a nonessential constant.) The modulus of the polynomial reaches its maximal values Ln

at the points ci : |Pn(ci)| = Ln.
In addition, there are exactly τ1 = n− n1 − 1 internal extremal points of the interval [c3, c4] where
|Pn| reaches the value Ln, and there are τ2 = n1 − 1 internal extremal points of [c1, c2] with the
same property.

Definition 3 ([15, 16, 20]). We call the pair (n, n1) the partition and (τ1, τ2) the signature of
the generalized Chebyshev polynomial Pn.

Now we are going to formulate and prove the main result of this section, which relates n1, n2 the
numbers of reflections off relativistic ellipses and off relativistic hyperbolas, respectively, with the
partition and the signature of the related solution of a Pell equation.

Theorem 8. Given a periodic billiard trajectory with period n = n1 + n2, where n1 is the number
of reflections off relativistic ellipses, n2 the number of reflections off the relativistic hyperbolas, then
the partition corresponding to this trajectory is (n, n1). The corresponding extremal polynomial p̂n
of degree n has n1 − 1 internal extremal points in the first interval and n− n1 − 1 = n2 − 1 internal
extremal points in the second interval.

Proof. Recall that c1 < c2 < c3 < c4. From equation (3.2), one has

n1

∫ 0

α1

f(x)dx+ n2

∫ 0

β1

f(x)dx = 0, (8.2)

where α1 is the largest negative value in {a,−b, γ} and β1 the smallest positive value in {a,−b, γ}.
The proof decomposes to the following cases:

• Case 1: Cγ is an ellipse and γ < 0, shown in Fig. 18;

• Case 2: Cγ is an ellipse and γ > 0, shown in Fig. 19;

• Case 3(i): Cγ is a hyperbola and γ < −b, shown in Fig. 20;

• Case 3(ii): Cγ is a hyperbola and γ > a, shown in Fig. 21.
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−b aγ 0

1

γ

1

a
−1

b
0

c1 c4c2 c3

Fig. 18. Case 1: α1 = γ, β1 = a.

−b a0 γ

−1

b

1

γ
0

1

a

c1 c4c2 c3

Fig. 19. Case 2: β1 = γ, α1 = −b.

γ a−b 0

−1

b

1

a

1

γ
0

c1 c4c2 c3

Fig. 20. Case 3(i): β1 = a, α1 = −b.

−b γ0 a

−1

b

1

a
0

1

γ

c1 c4c2 c3

Fig. 21. Case 3(ii): β1 = a, α1 = −b.

We provide a proof in Case 1. The proofs for other cases are analogous.

Equation (8.2) is equivalent to

0 = n1

∫ 0

γ
f(x)dx+ n1

∫ a

0
f(x)dx+ n2

∫ 0

a
f(x)dx− n1

∫ a

0
f(x)dx

= n1

∫ a

γ
f(x)dx+ (n1 + n2)

∫ 0

a
f(x)dx,
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thus

n1

∫ a

γ
f(x)dx = (n1 + n2)

∫ a

0
f(x)dx.

Since the cycles around the cuts on the elliptic curve are homologous:
∫ a

γ
f(x)dx =

∫ −b

−∞
f(x)dx,

(8.2) is equivalent to

n1

∫ −b

−∞
f(x)dx = (n1 + n2)

∫ a

0
f(x)dx.

Substituting: s =
1

x
, c1 =

1

γ
, c2 = −1

b
, c3 = 0, c4 =

1

a
(see Fig. 18), we get that

n1

∫ 0

−1/b
f̃(s)ds = (n1 + n2)

∫ ∞

1/a
f̃(s)ds

is equivalent to

n1

∫ c3

c2

f̃(s)ds = (n1 + n2)

∫ ∞

c4

f̃(s)ds, (8.3)

where f̃(s)ds is obtained from f(x)dx by the substitution. �

In particular, for n = 3, if the caustic Cγ is an ellipse with γ < 0, then n1 = 1. Such polynomials
and corresponding partitions (3, 1) do not arise in the study of Euclidean billiard trajectories. On
the other hand, if the caustic Cγ is an ellipse with γ > 0, we have n1 = 2. Such polynomials for
γ > 0 can be explicitly expressed in terms of the Zolatarev polynomials, see Proposition 1. Since
their partition is (3, 2), they appeared before in the Euclidean case (see [16]). The corresponding
extremal polynomials p̂3 in both cases γ < 0 and γ > 0 are shown in Fig. 22. We will provide in
Proposition 6 explicit formulae for such polynomials in terms of the general Akhiezer polynomials.

Let us recall that the Chebyshev polynomials Tn(x), n = 0, 1, 2, . . . defined by the recursion:

T0(x) = 1, T1(x) = x, Tn+1(x) + Tn−1(x) = 2xTn(x), (8.4)

for n = 1, 2 . . . can be parameterized as

Tn(x) = cosnφ, x = cosφ, (8.5)

or, alternatively,

Tn(x) =
1

2

(
vn +

1

vn

)
, x =

1

2

(
v +

1

v

)
. (8.6)

Denote L0 = 1 and Ln = 21−n, n = 1, 2, . . . . Then the Chebyshev theorem states that the polyno-
mials LnTn(x) are characterized as the solutions of the following minmax problem:

find the polynomial of degree n with the leading coefficient equal to 1 which minimizes the uniform
norm on the interval [−1, 1].

8.2. Zolotarev Polynomials

Following the ideas of Chebyshev, his student Zolotarev posed and solved a handful of problems,
including the following ([5, 16]):

For the given real parameter σ and all polynomials of degree n of the form

p(x) = xn − nσxn−1 + p2x
n−2 + . . . pn, (8.7)

find the one with the minimal uniform norm on the interval [−1, 1].
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1

−1

c1 c2 c3 c4

1

−1

c1 c2 c3 c4

Fig. 22. On the left: the polynomial p̂3 corresponding to n = 3, n1 = 1, n2 = 2, γ < 0. On the right: the
polynomial p̂3 corresponding to n = 3, n1 = 2, n2 = 1, γ > 0.

Denote this minimal uniform norm as Ln = L(σ, n).

For σ > tan2(π/2n), the solution zn has the following property ([5], p. 298, Fig. 9):
Π1 – The equation zn(x) = Ln has n− 2 double solutions in the open interval (−1, 1) and simple

solutions at −1, 1, α, β, where 1 < α < β, while in the union of the intervals [−1, 1] ∪ [α, β] the
inequality z2n � Ln is satisfied and zn > Ln in the complement.

The polynomials zn are given by the following explicit formulae:

zn = �n

(
v(u)n +

1

v(u)n

)
, x =

sn2u+ sn2Kn
sn2u− sn2Kn

, (8.8)

where

�n =
1

2n

( √
κθ23(0)

θ2
(
K
n

)
θ3

(
K
n

)

)2n

, v(u) =
θ1

(
K
n − u

)

θ1
(
K
n + u

)

and

σ =
2 snK

n

cnK
n dnK

n

(
1

sn2K
n

−
θ′0

(
K
n

)

θ0
(
K
n

)

)

− 1.

Here θi, i = 0, 1, 2, 3 are the classical Riemannian theta functions and

K =

∫ 1

0

d t
√

(1− t2)(1 − κt2)
.

The formulae for the endpoints of the second interval are

α =
1 + κ2 sn2K

n

dn2K
n

, β =
1 + sn2K

n

cn2K
n

, (8.9)
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with

κ2 =
(α− 1)(β + 1)

(α+ 1)(β − 1)
.

According to Cayley’s condition, for n = 3 and γ ∈ (0, a) we have

γ =
ab(a− b) + 2ab

√
a2 + ab+ b2

(a+ b)2
.

In order to derive the formulas for p̂3 in terms of z3, let us construct an affine transformation:

h : [−1, 1] ∪ [α, β] → [−b−1, 0] ∪ [a−1, γ−1], h(x) = âx+ b̂.

We immediately get

â = −b̂, â =
1

2b

and

α = 2t+ 1, (8.10)

γ =
2b

β − 1
, (8.11)

where t = b/a.

Now we get the following

Proposition 1. The polynomial p̂3 can be expressed in terms of the Zolotarev polynomial z3 up to
a nonessential constant factor:

p̂3(s) ∼ z3(2bs+ 1).

To verify the proposition, we need to make sure that the definition of α and β from (8.9) for
n = 3 and relations (8.10), (8.11) are compatible with the formula for γ we have obtained before
as Cayley’s condition, see (4.2).

In order to do that, we will use well-known identities for the Jacobi elliptic functions:

sn2u+ cn2u = 1, (8.12)

κ2 sn2u+ dn2u = 1, (8.13)

sn(u+ v) =
snu cn v dn v + sn v cnudnu

1− κ2 sn2u sn2v
, (8.14)

sn(K − u) =
cnu

dnu
. (8.15)

In particular, we get

sn

(
2K

3

)
=

2 sn K
3 cn K

3 dn K
3

1− κ2 sn4K3
, (8.16)

sn

(
2

3
K

)
= sn

(
K − K

3

)
=

cn K
3

dn K
3

. (8.17)

Let us denote

Y = sn

(
K

3

)
,

then from the previous two relations we get as in [16]:

1− 2Y + 2κ2Y 3 − κ2Y 4 = 0.
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We can express κ in terms of Y and get

κ2 =
2Y − 1

Y 3(2− Y )
. (8.18)

By plugging the last relation into (8.9) for n = 3, we get

α =
Y 2 − 4Y + 1

Y 2 − 1
.

Since at the same time from the Cayley condition we have α = 2t+ 1, with t = b/a, we can express
Y in terms of t:

tY 2 + 2Y − (t+ 1) = 0,

and

Y =
−1±

√
1 + t+ t2

t
. (8.19)

We plug the last relation into the formula for β from (8.9) for n = 3

β =
1 + Y 2

1− Y 2
,

and we get another formula for β in terms of t:

β =
2t2 + t+ 2−±2

√
t2 + t+ 1

−t− 2± 2
√
t2 + t+ 1

. (8.20)

We see that the last formula with the choice of the + sign corresponds to a formula for β from
(8.11). This formula relates β and γ from the Caley condition (4.2). From (8.20), taking the positive
sign in β yields

β =
2t2 + t+ 2− 2

√
t2 + t+ 1

−t− 2 + 2
√
t2 + t+ 1

. (8.21)

Substituting (8.21) into (8.11) produces

γ =
2b

β − 1
= b

−2− t+ 2
√
1 + t+ t2

2 + t+ t2 − 2
√
1 + t+ t2

. (8.22)

On the other hand, from the Cayley formula (4.2) we have

γ =
ab

(a+ b)2
(a− b+ 2

√
a2 + ab+ b2).

Knowing that t =
b

a
, the equation is equivalent to

γ = b
1− t+ 2

√
1 + t+ t2

(1 + t)2
. (8.23)

In order to show that the two expressions in (8.22) and (8.23) are identical, we simplify their
difference that yields zero. This finalizes the verification. (One can observe that the − sign option
from the formula (8.20) would correspond to the − sign in the formula for γ (4.2).

Among the polynomials p̂n the property of type Π1 can be attributed only to those with
n = 2k+1 and winding numbers (2k+1, 2k), in other words, to those with the signature (0, 2k− 1).
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8.3. Akhiezer Polynomials on Symmetric Intervals [−1,−α] ∪ [α, 1]

The problem of finding polynomials of degree n with the leading coefficient 1 and minimizing the
uniform norm on the union of two symmetric intervals [−1,−α] ∪ [α, 1], for given 0 < α < 1, turned
out to be of significant interest in radio engineering applications. Following the ideas of Chebyshev
and Zolotarev, Akhiezer derived in 1928 the explicit formulae for such polynomials An(x;α) with
the deviation Ln(α) [5, 6].

These formulas are especially simple in the case of even degrees n = 2m, when Akhiezer
polynomials A2m are obtained by a quadratic substitution from the Chebyshev polynomial Tm:

A2m(x;α) =
(1− α2)m

22m−1
Tm

(
2x2 − 1− α2

1− α2

)
, (8.24)

with

L2m(α) =
(1− α2)m

22m−1
.

We are going to construct p̂4(s) up to a nonessential constant factor as a composition of A4(x;α)
for certain α and an affine transformation. We are going to study the possibility of having an affine
transformation

g : [−1,−α] ∪ [α, 1] → [−b−1, γ−1] ∪ [0, a−1], g(x) = âx+ b̂,

which corresponds to the case when γ < −b ie a > b. For n = 4 such a caustic is (4.4):

γ =
ab

b− a
.

From g(−1) = −b−1, g(1) = a−1 we get

â =
a+ b

2ab
, b̂ =

b− a

2ab
.

Then, from g(α) = 0 we get

α =
a− b

a+ b
.

Finally, we calculate:

g(−α) =
a+ b

2ab

b− a

a+ b
+

b− a

2ab
=

b− a

ab
.

We recognize γ−1 on the right-hand side of the last relation.
This proves the following:

Proposition 2. In this case the polynomial p̂4(s) is equal, up to a constant multiplier, to

p̂4(s) ∼ T2(2abs
2 + 2(a− b)s+ 1), (8.25)

where T2(x) = 2x2 − 1 is the second Chebyshev polynomial and x =
1

a+ b

(
2abs+ a− b

)
.

Let us study the possibility of having an affine transformation

f : [−1,−α] ∪ [α, 1] → [−b−1, 0] ∪ [γ−1, a−1], f(x) = âx+ b̂,

which corresponds to the case when γ > a, i. e., a < b. For n = 4 such a caustic is

γ =
ab

b− a
.
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From f(−1) = −b−1, f(1) = a−1 we get

â =
a+ b

2ab
, b̂ =

b− a

2ab
.

Then, from f(−α) = 0 we get

α =
b− a

a+ b
.

Finally, we calculate:

f(α) =
a+ b

2ab

b− a

a+ b
+

b− a

2ab
=

b− a

ab
.

We recognize γ−1 on the right-hand side of the last relation.
This proves the following proposition, which is the same as (8.25).

Proposition 3. In this case the polynomial p̂4(s) is equal, up to a constant multiplier, to

p̂4(s) ∼ T2(2abs
2 + 2(a− b)s+ 1), (8.26)

where T2(x) = 2x2 − 1 is the second Chebyshev polynomial and x =
1

a+ b

(
2abs+ a− b

)
.

Let us study the possibility to have an affine transformation

h : [−1,−α] ∪ [α, 1] → [γ−1,−b−1] ∪ [0, a−1], h(x) = âx+ b̂,

which corresponds to the case when γ ∈ (−b, 0). For n = 4 such a caustic is

γ = − ab

a+ b
.

From h(1) = a−1, h(α) = 0 we get

â =
1

1− α

1

a
, b̂ = − α

1− α

1

a
.

Then, from h(−α) = −1
b we get

α

1− α
=

a

2b
.

i. e.,

α =
a

a+ 2b
.

Finally, we calculate:

h(−1) = −
(
1 +

α

1− α

)1
a
− α

1− α

1

a
,

h(−1) = −
(
1 +

a

2b

)1
a
− a

2b

1

a
= −1

a
− 1

b
= −a+ b

ab
.

We recognize γ−1 on the right-hand side of the last relation.
This proves the following:

Proposition 4. In this case the polynomial p̂4(s) is equal, up to a constant multiplier, to

p̂4(s) ∼ T2

(
2a2bs2 + 2a2s− (a+ b)

a+ b

)
, (8.27)

where T2(x) = 2x2 − 1 is the second Chebyshev polynomial.
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Let us study the possibility to have an affine transformation

l : [−1,−α] ∪ [α, 1] → [−b−1, 0] ∪ [a−1, γ−1], l(x) = âx+ b̂,

which corresponds to the case when γ ∈ (0, a). For n = 4 such a caustic is

γ =
ab

a+ b
.

From l(−1) = −b−1, l(−α) = 0 we get

â =
1

1− α

1

b
, b̂ =

α

1− α

1

b
.

Then, from l(α) =
1

a
we get

α

1− α
=

b

2a
.

i. e.,

α =
b

b+ 2a
.

Finally, we calculate:

l(1) =
(
1 +

α

1− α

)1
b
+

α

1− α

1

b
,

l(1) =
(
1 +

b

2a

)1
b
+

b

2a

1

b
=

1

a
+

1

b
=

a+ b

ab
.

We recognize γ−1 on the right-hand side of the last relation.
This proves the following:

Proposition 5. In this case the polynomial p̂4(s) is equal, up to a constant multiplier, to

p̂4(s) ∼ T2

(
2ab2s2 − 2b2s− (a+ b)

a+ b

)
, (8.28)

where T2(x) = 2x2 − 1 is the second Chebyshev polynomial.

8.4. General Akhiezer Polynomials on Unions of Two Intervals

Following Akhiezer [1–3], let us consider the union of two intervals [−1, α] ∪ [β, 1], where

α = 1− 2 sn2(
m

n
K), β = 2 sn2

(
n−m

n
K

)
− 1. (8.29)

Define

TAn(x,m, κ) = L

(
vn(u) +

1

vn(u)

)
, (8.30)

where

v(u) =
θ1
(
u− m

nK
)

θ1
(
u+ m

nK
) , x =

sn2(u) cn2(mn K) + cn2(u) sn2(mn K)

sn2(u)− sn2(mn K)
,

and

L =
1

2n−1

(
θ0(0)θ3(0)

θ0(
m
nK)θ3(

m
n K)

)
, κ2 =

2(β − α)

(1− α)(1 + β)
.

Akhiezer proved the following result:
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Theorem 9 (Akhiezer).

(a) The function TAn(x,m, κ) is a polynomial of degree n in x with the leading coefficient 1 and
the second coefficient equal to −nτ1, where

τ1 = −1 + 2
sn(mnK) cn(mn K)

dn(mn K)

(
1

sn(2mn K)
−

θ′(mn K)

θ(mnK)

)

.

(b) The maximum of the modulus of TAn on the union of the two intervals [−1, α] ∪ [β, 1] is L.

(c) The function TAn takes values ±L with alternating signs at μ = n−m+1 consecutive points
of the interval [−1, α] and at ν = m+ 1 consecutive points of the interval [β, 1]. In addition,

TAn(α,m, κ) = TAn(β,m, κ) = (−1)mL,

and for any x ∈ (α, β) the following inequality holds:

(−1)mTAn(x,m, κ) > L.

(d) Let F be a polynomial of degree n in x with the leading coefficient 1, such that:

i) max|F (x)| = L for x ∈ [−1, α] ∪ [β, 1];

ii) F (x) takes values ±L with alternating signs at n−m+ 1 consecutives points of the interval
[−1, α] and at m+1 consecutive points of the interval [β, 1].

Then F (x) = TAn(x,m, κ).

Let us determine the affine transformations when the caustic is an ellipse.

Case γ ∈ (−b, 0). For h : [−1, α] ∪ [β, 1] → [γ−1,−b−1] ∪ [0, a−1], h(x) = âx+ b̂, we get

â =
1

β − α

1

b
, b̂ =

−β

β − α

1

b
,

1− β

β − α
=

b

a
.

Thus,

γ =
β − 1

1 + β
a =

α− β

β + 1
b. (8.31)

Example 7. For n = 3 and m = 2. From (8.29), one gets

α = 1− 2 sn2
2

3
K, β = 2 sn2

K

3
− 1.

It follows that

b

a
= t =

1− β

β − α
=

1− sn2K3
sn2 23K + sn2K3 − 1

. (8.32)

Thus,

γ = b
α− β

β + 1
= b

1− sn2K
3 − sn2 2

3K

sn2K
3

. (8.33)

From the addition formula:

sn
2

3
K = sn

(
K − K

3

)
=

snK cn−K
3 dn−K

3 + sn−K
3 cnK dnK

1− κ2 sn2−K
3 sn2K

.
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Hence,

sn2
2

3
K =

1− sn2K3
1− κ2 sn2K

3

=
sn2 23K − 1

κ2 sn2 2
3K − 1

.

Let sn
K

3
= Z:

κ2 =
2Z − 1

Z3(2− Z)
.

Also,

α = 2Z2 − 4Z + 1, β = 2Z2 − 1.

Equation (8.32) implies that

t =
1− Z2

2Z − 1
. (8.34)

Thus, we have two expressions for γ. One is from the Cayley condition (4.2) and the other is from
(8.31). We want to show that these two expressions are identical, that is,

b
α− β

β + 1
= − ab

(a+ b)2
(−a+ b+ 2

√
a2 + ab+ b2). (8.35)

In order to do so, we first express both the left-hand side and the right-hand side of the above

equation in terms of t =
b

a
and then transform both sides in terms of Z. We show that the left-

and the right-hand sides yield the same expression:

Z2 − Z + 1

2Z − 1
,

therefore, (8.35) holds.

Case γ ∈ (0, a). For l : [−1, α] ∪ [β, 1] → [−b−1, 0] ∪ [a−1, λ−1], l(x) = âx+ b̂, we get

â =
1

α+ 1

1

b
, b̂ =

−α

α+ 1

1

b
,

α+ 1

β − α
=

a

b
.

Thus,

γ =
α+ 1

1− α
b. (8.36)

Example 8. For n = 3, and m = 1. From (8.29), one gets

α = 1− 2 sn2
K

3
, β = 2 sn2

2K

3
− 1.

b

a
= t =

β − α

α+ 1
=

sn2 23K + sn2K3 − 1

1− sn2K3
. (8.37)

Thus,

γ =
1− sn2K3

sn2K
3

b.

From the addition formula:

sn
2K

3
= sn

(
K − K

3

)
=

snK cn−K
3 dn−K

3 + sn−K
3 cnK dnK

1− κ2 sn2−K
3 sn2K

.
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Hence,

sn2
2

3
K =

1− sn2K
3

1− κ2 sn2K
3

.

Let snK
3 = Z:

κ2 =
2Z − 1

Z3(2− Z)
.

Also, β = −2Z2 + 4Z − 1, and α = 1− 2Z2. Equation (8.37) implies that

t = −2Z − 1

Z2 − 1
, (8.38)

Thus, we have two expressions for γ. One is from the Cayley condition (4.2) and the other is from
(8.36). Similarly, as in Example 7, we can show that these two expressions are identical.

Proposition 6. For n = 3 and γ ∈ (−b, 0), the polynomial p̂3 is up to a nonessential factor equal
to

p̂3 ∼ TA3

(
2a

(
1− sn2

K

3

)
s+ 2 sn2

K

3
− 1; 2, κ

)
.

For n = 3 and γ ∈ (0, a), the polynomial p̂3 is up to a nonessential factor equal to

p̂3 ∼ TA3

(
2b

(
1− sn2

K

3

)
s+ 1− 2 sn2

K

3
; 1, κ

)
.

Now, using the Akhiezer theorem, part (c) (see Theorem 9), one can compare and see that the
number of internal extremal points coincides with n1 − 1 and n2 − 1 as proposed in Theorem 8.
These numbers match Fig. 22 and the table from Section 4.1.

9. PERIODIC LIGHT-LIKE TRAJECTORIES AND CHEBYSHEV POLYNOMIALS

The light-like billiard trajectories, by definition, have at each point the velocity v satisfying
〈v, v〉 = 0. Their caustic is the conic at infinity C∞. Since successive segments of such trajectories
are orthogonal to each other, the light-like trajectories can close only after an even number of
reflections. In [13]*Theorem 3.3, it is proved that a light-like billiard trajectory within E is periodic
with even period n if and only if

arccot

√
a

b
∈
{
kπ

n
| 1 � k <

n

2
,
(
k,

n

2

)
= 1

}
. (9.1)

For k not being relatively prime with n/2, the corresponding light-like trajectories are also periodic,
and their period is a divisor of n.

Applying the limit γ → +∞ in Corollary 2, we get the following proposition.

Proposition 7. A light-like trajectory within ellipse E is periodic with period n = 2m if and only
if there exist real polynomials p̂m(s) and q̂m−1(s) of degrees m and m− 1, respectively, if and only
if

• p̂2m(s)−
(
s− 1

a

)(
s+

1

b

)
q̂2m−1(s) = 1; and

• q̂m−1(0) = 0.

The first condition from Proposition 7 is the standard Pell equation describing extremal
polynomials on one interval [−1/b, 1/a], thus, the polynomials p̂m can be obtained as Chebyshev
polynomials composed with an affine transformation [−1/b, 1/a] → [−1, 1]. The additional condition
q̂m−1(0) = 0, which is equivalent to p̂′m(0) = 0 implies an additional constraint on parameters a
and b. We have the following
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Proposition 8. The polynomials p̂m and the parameters a, b have the following properties:

• p̂m(s) = Tm

(
2ab

a+ b
s+

a− b

a+ b

)
, where Tm is defined by (8.5);

• the condition q̂m−1(0) = 0 is equivalent to (9.1).

Proof. The increasing affine transformation h : [−1/b, 1/a] → [−1, 1] is given by the formula h(s) =
(2abs + a− b)/(a + b). The internal extremal points of the Chebyshev polynomial Tm of degree m
on the interval [−1, 1] are given by

xk = cos

(
k

m
π

)
, k = 1, . . . ,m− 1,

according to the formula (8.5). The second item follows from h(0) = xk. This is equivalent to

a− b

a+ b
∈
{
cos

(
k

m
π

)
| k = 1, . . . ,m− 1

}
,

which is equivalent to (9.1). �
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