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Abstract—We consider the dynamics and symplectic reduction of the 2-body problem on a
sphere of arbitrary dimension. It suffices to consider the case when the sphere is 3-dimensional.
As the 3-sphere is a group it acts on itself by left and right multiplication and these together
generate the action of the SO(4) symmetry on the sphere. This gives rise to a notion of left and
right momenta for the problem, and allows for a reduction in stages, first by the left and then
the right, or vice versa. The intermediate reduced spaces obtained by left or right reduction are
shown to be coadjoint orbits of the special Euclidean group SE(4). The full reduced spaces are
generically 4-dimensional and we describe these spaces and their singular strata.
The dynamics of the 2-body problem descend through a double cover to give a dynamical
system on SO(4) which, after reduction and for a particular choice of Hamiltonian, coincides
with that of a 4-dimensional spinning top with symmetry. This connection allows us to “hit two
birds with one stone” and derive results about both the spinning top and the 2-body problem
simultaneously. We provide the equations of motion on the reduced spaces and fully classify the
relative equilibria and discuss their stability.
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BACKGROUND AND OUTLINE OF THE PAPER

The 2-body problem in ordinary flat Euclidean space enjoys not only the symmetries of rotation
and translation, but also the larger group of Galilean transformations. It is through such a
transformation into a centre of mass frame that the problem reduces to the ordinary Kepler problem.
For quite some time now people have been interested in the generalisation of the 2-body problem to
spaces of constant non-zero curvature, where it is no longer the case that it reduces to the problem
of one body. Principal contributions in this area include, but are not limited to, the numerous
works of Diacu, see in particular the book [13], the papers of Borisov, Mamaev and others in [7–9],
and the work of Shchepetilov in [29]. Recently the case for the 2-dimensional surfaces of constant
curvature, the sphere and the hyperbolic/Lobachevsky plane, has been comprehensively treated
in [6]. Therein they perform Poisson reduction restricted to the subset where the action is free, and
fully classify the relative equilibria. This paper is written in response to open problems presented
at the end of that work, in particular, we aim to address the generalisation of their results to the
3-sphere.

Typically, when discussing the 2-body problem in spaces with non-zero curvature one begins by
highlighting that, unlike in the Euclidean case, the symmetry of the problem no longer includes
translations. For positive curvatures this is indeed true for all but the two cases when the sphere is
itself a group; that is, for when it is the circle or the 3-sphere. Consequently, for this very special case
translations do exist, and in a sense there are more than in the flat case: as the group is non-abelian,
there is a difference between translations given by group multiplication on the left and right. The
entire group SO(4) of symmetries is generated in this way. This establishes the well-known double
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cover of SO(4) and allows us to identify both the configuration space for the 2-body problem on
the 3-sphere with its group of symmetries. It is this curious aspect of the problem which underlies
the work contained in this paper, an outline of which we now provide.

We begin by casting the problem entirely in terms of quaternions. This is a natural setting
for the 3-sphere which may be taken to be the set of elements of unit-length, and where group
multiplication is simply given by multiplication of quaternions. As left and right multiplication
commute, we set out a plan to reduce the problem in stages: first reducing by either the left or
right translations to obtain an intermediate reduced space, and then by the other to obtain the
full reduced space. We conclude the introduction by demonstrating how, for a particular choice of
Hamiltonian, the dynamics project under the SO(4) double cover to give the symmetric heavy top
in 4-dimensional space. To be precise, the Hamiltonian is that of two particles of equal mass, and
for a potential proportional to cos θ where θ is the angle subtended by the two particles.

By drawing an analogy with the reduction of the Lagrange top, where reduction is also done
in stages by first reducing in the body frame and then in the space frame about the axes of
symmetry, we invoke the Semidirect Product Reduction by Stages Theorem to express the left and
right reduced spaces as coadjoint orbits of SE(4). This is entirely analogous to the situation for the
Lagrange top, whose intermediate reduced spaces are coadjoint orbits of SE(3). As the actions of left
and right translation are free, these reduced spaces are well-behaved smooth manifolds. However,
to complete the full reduction by the residual left or right action we necessarily have to handle
non-free and singular points of the momentum. We employ the methods of singular and universal
reduction through the use of some invariant theory to describe these reduced spaces, which are
generically 4-dimensional. We give the corresponding equations of motion on the full reduced space
for both the 2-body problem and the spinning top, and explicitly exhibit an additional integral for
the symmetric spinning top demonstrating complete integrability.

We then turn our attention to the relative equilibria. Instead of classifying these by finding
fixed points in the reduced space directly, we instead find solutions in the intermediate left and
right reduced spaces which are the orbits of one-parameter subgroups. This pleasantly turns out
to be comparatively easy, amounting to an entirely linear problem in Euclidean geometry. Having
classified the solutions in the left reduced space, it is then only a matter of reconstruction to obtain
the full classification of relative equilibria on the original space. We then explore the stability of the
corresponding fixed points in the full reduced space by linearising the flow at these points. In this
way, for the Hamiltonians corresponding to the gravitational 2-body problem and the Lagrange top,
we derive the linear stability results for the relative equilibria. We also provide the images of the
energy-Casimir map, and in doing so, obtain a picture for the bifurcations of the relative equilibria.
Finally, in an effort to strengthen the stability results, we give the signature of the Hessian at the
fixed points for the relative equilibria for the 2-body problem, and obtain the strongest possible
stability result, that of Lyapunov stability, for linearly stable points of the Lagrange top.

1. INTRODUCTION

1.1. The Problem Setting

Consider the motion of two interacting particles of mass m1 and m2 constrained to move on
the unit sphere Sn ⊂ R

n+1. The interaction is governed by a potential V which is a function of the
distance between the two particle positions, where R

n+1 is equipped with the standard Euclidean
metric.

The initial position and velocity vectors of the two particles span at most a 4-dimensional linear
subspace (for n > 2). The intersection of this with the sphere is an equatorial 3-sphere. Reflection
in this subspace is a symmetry of the dynamics and therefore, the motion must be forever contained
to this 3-sphere. Consequently, it suffices to consider the case n = 3. This case also encompasses
those for n = 1 and n = 2.

The space R
4 may be identified with the algebra H = Span{1, i, j, k} of real quaternions. The

standard inner product is written in terms of quaternionic multiplication by

〈p, q〉 = 1

2

(
pq† + qp†

)
(1.1)

where q† is the complex conjugate of the quaternion q. We will denote the unit sphere by the letter
G to highlight that it forms a group with respect to quaternionic multiplication. The Hamiltonian
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formulation of the problem has phase space T ∗(G1 ×G2). Strictly speaking, one should subtract
the collision set from this space, but we will not concern ourselves with this for now. By identifying
tangent spaces with their duals using the inner product in H, the phase space may be identified
with the set

M =
{
(g1, p1, g2, p2) ∈ H

4 | g1, g2 ∈ G, 〈p1, g1〉 = 〈p2, g2〉 = 0
}
. (1.2)

The position vectors for both particles are g1 and g2, and the linear momenta p1 and p2 dynamically
given by m1ġ1 and m2ġ2, respectively. The dynamics are determined by the Hamiltonian

H(g1, p1, g2, p2) =
|p1|2
2m1

+
|p2|2
2m2

+ V (g1, g2). (1.3)

Here |p|2 = 〈p, p〉, and V (g1, g2) is a function of the distance |g2 − g1|.

1.2. Symmetries and One-parameter Subgroups

Owing to the reformulation of the problem in terms of quaternions, the SO(4)-symmetry on the
configuration space may be realised by the action of its well-known double cover, G×G. Explicitly
this is given by Φ: G×G → SO(4), where

Φ(l, r) · q = lqr−1 (1.4)

for q ∈ H ∼= R
4. The cotangent lift of this action to M acts diagonally on each component, and

a quick check confirms that it indeed preserves the Hamiltonian. We will from now on write the
symmetry group as GL ×GR to distinguish it from the configuration space G1 ×G2.

The Lie algebra g of G is the space ImH of purely imaginary quaternions. The adjoint action is
given by Φ(g, g), and the infinitesimal adjoint action obtained by differentiating g is

adωq = ωq − qω = [ω, q] (1.5)

for q, ω ∈ ImH. By identifying ImH with R
3 in the obvious sense, the adjoint action is related to

the cross-product by [ω, q] = 2(ω × q).

The adjoint action of G acts transitively on each sphere of imaginary quaternions of a given
length. It follows that every one-parameter subgroup of GL ×GR is conjugate to one of the form
{(eitη , eitξ), t ∈ R} for some η, ξ � 0. With the aid of (1.4) one sees that the action of this subgroup
on H preserves the mutually orthogonal, oriented planes C = Span{1, i} and Cj = Span{j, k}. This
action rotates C and Cj through an angle of ξ − η and ξ + η, respectively, with each unit of time.

Given any one-parameter subgroup conjugate to that given above, we categorise it into one of
the following four types: trivial for when ξ = η = 0; a simple rotation for ξ = η �= 0; an isoclinic
rotation for when precisely one of either ξ or η is equal to zero; and finally, the generic subgroup is
called a double rotation for when ξ, η �= 0 and ξ �= η.

1.3. Reduction and Relative Equilibria

It is curious that the symmetry group and configuration space are both the same. This is identical
to the familiar situation of cotangent bundle reduction of a group under left or right multiplication.
However, for our example the essential difference is that the group action is given by simultaneous
left and right diagonal multiplication. This complicates the picture somewhat; in particular, this
group action is not free. The points at which the action is not free may be characterised with the
following argument: g1 and g2 belong to some plane and thus, the isotropy group fixing these two
points includes rotations in the orthogonal plane. The action therefore fails to be free if and only
if the momenta p1 and p2 have no component in this orthogonal plane, and thus, all vectors are
coplanar. We will call such points cocircular as the resulting motion remains inside a great circle
on the sphere.

Nonetheless, the actions of left and right multiplication, given by restriction to one of the GL
or GR subgroups is free. For a group acting on its cotangent bundle by left or right cotangent lift,
the momentum map is given by right or left translation back to the origin, respectively [3]. As the
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GL- and GR-actions are the product of two copies of left and right multiplication, respectively, the
left momentum map is given by

JL(g1, p1, g2, p2) = p1g
−1
1︸ ︷︷ ︸

L1

+ p2g
−1
2︸ ︷︷ ︸

L2

= λ ∈ g
∗
L, (1.6)

and the right momentum map by

JR(g1, p1, g2, p2) = g−1
1 p1︸ ︷︷ ︸
R1

+ g−1
2 p2︸ ︷︷ ︸
R2

= ρ ∈ g
∗
R. (1.7)

We write Li = pig
−1
i and Ri = g−1

i pi to denote the left and right momentum of the ith-particle,
respectively. The total left and total right momenta λ and ρ are both first integrals. As the actions
of left and right multiplication are each free and proper, we may safely define the symplectic left
and right reduced spaces Mλ and Mρ, respectively.

The left and right reduced spaces both inherit a group action from the residual right and left
symmetry. These reduced spaces can therefore be reduced again. From the Commuting Reduction
Theorem [23], the momentum map for the full symmetry group is JL,R = JL × JR, and for when the
action is free and proper, the staged reduced spaces (Mλ)ρ and (Mρ)λ are both symplectomorphic
to the ‘one-shot’ full reduced space Mλ,ρ. We would therefore like to understand the set of critical
values and points of JL,R.

Proposition 1. The set of critical values of JL,R are those (λ, ρ) with |λ| = |ρ|. The pre-image
of this set consists of all (g1, p1, g2, p2) belonging to a common 3-dimensional subspace, and thus
corresponds to solutions contained within an equatorial 2-sphere. For this reason we will refer to
such critical points as being cospherical.

Proof. The momentum map has critical values on points at which the action is not locally free [2].
As we have seen, these are the cocircular points. One may suppose the momenta and positions of
such a point are contained to the complex plane in H, from which it follows from the definitions
that λ = ρ. As the momentum map is equivariant, taking the orbit through these values gives us
the desired set of critical values.

From the definition of λ and ρ, we may write

|λ|2 − |ρ|2 = 2〈L1, L2〉 − 2〈R1, R2〉. (1.8)

We may suppose g1 = 1 and p1 is purely imaginary. By writing the imaginary part of g2 as g2 the
expression above may be rewritten as

4〈p1, g2 × p2〉.
This is equal to zero if and only if p1, p2 and g2 span a common plane in ImH. However, this is
equivalent to g1, p1, g2 and p2 belonging to a common 3-dimensional subspace given by the span
of this plane together with the real line. Hence, by equivariance, the set of cospherical points is
exactly the set of critical points of the momentum map. �

A relative equilibria (RE) in a symplectic manifold with a Hamiltonian group action is a solution
which is also the orbit under the action of a one-parameter subgroup of the group of symmetries [22].
Equivalently, it is a solution which projects to a point in the reduced space. For our problem, the
right and left multiplication naturally descend to give well-defined actions on the left and right
reduced spaces, respectively. It follows that RE in M with respect to the GL ×GR-action project
into RE in both the left and right reduced spaces. In fact, the converse is also true.

Proposition 2. Any RE in M projects to RE in both the left and right reduced spaces. Conversely,
any RE in any of the left or right reduced spaces is the projection of a RE in M .

Proof. The proof follows from commutativity of the diagram in Fig. 1 which consists of canonical
projection maps onto orbit quotients, and the definition of a RE as a fixed point in a reduced
space. �

The task of classifying RE in M is therefore equivalent to that of finding all RE in any one of
the left or right reduced spaces. This will turn out to be more tractable than trying to equivalently
classify all of the fixed points on the full reduced space.
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M/(GL ×GR)
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πGL
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πGL

Fig. 1.

1.4. The Lagrange Top

The double cover in (1.4) is a local diffeomorphism and so lifts to a double cover of cotangent
bundles which is a local symplectomorphism. Furthermore, as the Hamiltonian factors through
this double cover, the dynamics factor through as well. One may also see from (1.4) that the left
and right G-symmetry descends through the double cover to give the left and right multiplication
of SO(3) on SO(4), where SO(3) is the subgroup fixing the real line in H ∼= R

4. We thus have
a dynamical system on SO(4) with a left and right SO(3)-symmetry. This situation should feel
familiar: it is exactly the same situation we have for a symmetric spinning top in 4 dimensions, as
we now recall.

The configuration of a rigid body with a fixed material point at the origin in R
4 may be

determined by an element in SO(4), that element being the transformation which sends the body
from a given initial state to its current one. For when the body is under the influence of a potential
which is a function of ‘height’ in R

4, for which the direction of increasing height we will call
the vertical, the dynamical system is that of the heavy top. This system is invariant under left
multiplication of the SO(3) subgroup which fixes the vertical. If the body is also invariant under
rotations through a line within the body and through the origin, which we shall call the body axis,
then we have the 4-dimensional generalisation of the Lagrange top. We may suppose that the body
axis and the vertical are aligned when the body is in its initial identity configuration. In this way,
the full symmetry of the system is both left and right multiplication of the SO(3) subgroup fixing
the vertical.

The study of the ordinary Lagrange top in 3 dimensions is old and well understood. We
recommend the modern accounts of the problem given in [12, 20, 26]. There has been some attention
given to the higher-dimensional generalisations of the spinning top [14]. The higher-dimensional
version of the Lagrange top, as we have defined it, was studied by Belyaev in [4] and shown to be
integrable. We note that an alternative generalisation is given in [25] which is also shown to be
integrable.

The aim now is to find the Hamiltonian on M whose dynamics project through the double cover
to give the Lagrange top dynamics on SO(4). To do this, we describe the Hamiltonian on T ∗SO(4)
and pull it back under the double cover. When the potential is linear in height the Hamiltonian is
given by

1

2
〈L, I−1(L)〉+ γ〈ac0, v0〉. (1.9)

Here a ∈ SO(4) is the configuration of the body, c0 and v0 are the initial centre of mass and vertical
vectors, γ > 0 a constant, and I : so(4) → so(4)∗ is the inertia tensor of the body, where L is the
angular momentum in the body frame. Identify R

4 with H by associating the vector (x, y, z, t) with
the quaternion t+ ix+ yj + zk. We will suppose that both the initial vertical and centre of mass
vectors coincide with the real unit 1. By identifying so(4) with its dual using the standard trace
form allows us to write the inertia tensor as

I(ω) =
1

2
(Aω + ωA) (1.10)
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for A a diagonal matrix which, in an appropriate choice of units, has the form diag(1, 1, 1, I4).
Differentiating Φ in (1.4) at the identify gives the well-known isomorphism g1 × g2 → so(4). The
identification of R4 with H allows us to write the pullback of this isomorphism as

Φ∗;L =

⎛
⎝ Ω̂ η

−ηT 0

⎞
⎠ 	−→ (Ω + η,Ω− η). (1.11)

Here Ω̂ denotes the element of so(3) with Ω̂v = Ω× v for all v ∈ R
3. It is a routine exercise to

show that the right momenta (R1, R2) and the body angular momentum L, both obtained by left
translation to the identity, are related through the double cover by (R1, R2) = Φ∗(L). Using this
identity along with a = Φ(g1, g2) allows us to pull back the Hamiltonian in (1.9) to obtain

1 + α

4
(|p1|2 + |p2|2) +

1− α

2
〈R1, R2〉+ γ〈g1, g2〉 (1.12)

where α = 2(1 + I4)
−1. Note that this is in the same form of the 2-body Hamiltonian in (1.3)

except for the presence of the 〈R1, R2〉 term. We will see later that, although these Hamiltonians
are different, on the full reduced space they differ by a Casimir, and thus, give the same flow.

2. REDUCTION

2.1. The Left and Right Reduced Spaces

Motivated by the connection between the symmetry of the problem with that of the Lagrange
top, we will emulate a method used for reducing the Lagrange top by the left or right symmetry by
using the Semidirect Product Reduction by Stages Theorem as demonstrated in [24]. In standard
treatments of the Lagrange top this theorem identifies the reduced spaces with coadjoint orbits of
the special Euclidean group.

Theorem 1 (Semidirect Product Reduction by Stages, [24]). Let V be a representation of
H and consider the semidirect product S = H � V with Lie algebra s. For a given p ∈ V ∗ let Hp

denote the stabiliser of this element with respect to the contragradient representation and consider
the action of Hp on T ∗H by cotangent lift on the left or right. There is a Poisson immersion of
T ∗H/Hp into s∗± = h∗ × V ∗ given by sending the orbit through η ∈ T ∗

aH to
(
L∗
a−1η, a

−1p
)
∈ s

∗
+ or

(
R∗

a−1η, ap
)
∈ s

∗
− (2.1)

for the left and right case, respectively. Here the ± sign indicates that the Poisson structure differs
by a sign between the spaces, and the L and R denote the left and right cotangent lifts on T ∗H.
Moreover, if we let O denote a coadjoint orbit through μ ∈ h∗p and J : T ∗H → h∗p the momentum

map for the action of Hp on T ∗H, then the immersion restricted to J−1(O)/Hp establishes a
symplectomorphism between this symplectic orbit-reduced space and a coadjoint orbit in s∗.

We apply this theorem directly to the task of reducing T ∗(G1 ×G2) by the diagonal subgroup
G acting on either the left or right. To do this, we set H in the theorem to G1 ×G2 with the
representation in (1.4) on V = H. This semidirect product S is the simply-connected double cover
over the special Euclidean group SE(4). Thanks to the inner product on H we are free to identify
spaces with their duals, and verify that the isotropy subgroup of 1 ∈ H

∗ is indeed the diagonal
subgroupG. Implementing (2.1) demonstrates that the left and right Poisson reduced spaces consist
of the elements

(R1, R2, gL) and (L1, L2, gR) (2.2)

inside s∗+ and s∗−, respectively. Here we have introduced the respective left- and right-invariant

quantities gL = g−1
1 g2 and gR = g1g

−1
2 . The left reduced space Mλ written as an orbit-reduced

space is J−1
L (O)/GL, where O is the coadjoint orbit in g∗L through λ. Therefore, this reduced space

is equal to the set of (R1, R2, gL) in s+ with |L1 + L2|2 = |λ|2. This may be rewritten in terms of
the left-invariant variables as

|L1 + L2|2 = |p1g−1
1 + p2g

−1
2 |2 = |(g−1

1 p1)(g
−1
1 g2) + (g−1

1 g2)(g
−1
2 p2)|2 = |R1gL + gLR2|2. (2.3)
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The symplectic reduced space Mλ is thus the subset of (R1, R2, gL) in s∗+ with |gL|2 = 1 and

|R1gL + gLR2|2 = |λ|2. These two functions are the only Casimirs of s∗+. The geometry of the orbits
is made clearer by applying the following transformation on s∗+ for gL �= 0:

(R1, R2, gL) 	−→
(
(R1gL + gLR2)g

−1
L ,−R1 + gLR2g

−1
L , gL

)
. (2.4)

One may now see that the reduced space is diffeomorphic to O × g∗ ×G. An entirely similar
argument can be made for the right reduced space as that above.

Proposition 3. Let typical elements in s∗± = g∗1 × g∗2 ×H
∗ be denoted by (A1, A2, gD). There are

two Casimir functions given by

C1 = |gD|2,
C2 = |A1gD + gDA2|2.

The left and right reduced spaces Mλ and Mρ are symplectomorphic to the coadjoint orbits in s∗±
given by setting C1 to 1, and C2 to |λ|2 and |ρ|2, respectively. In each case, the typical elements of the
orbit may be identified with the left- or right-invariant dynamic variables by setting the ambidextrous
dummy variables (A,D) to either (R,L) or (L,R) for the left and right reduced spaces, respectively.
The coadjoint orbits in question are generically diffeomorphic to S2 ×R

3 × S3 for C2 �= 0, and to
R
3 × S3 for C2 = 0.

In both the left and right reduced spaces the Hamiltonian in (1.3) descends through the reduction
procedure to give the reduced Hamiltonian on s∗±

H(A1, A2, gD) =
|A1|2
2m1

+
|A2|2
2m2

+ V (gD). (2.5)

The function V (gD) is the reduced potential defined by V (gD) = V (1, gD), which for both the
left and right-reduced spaces is equal to V (1, gL) = V (gR, 1) = V (g1, g2) using the left- and right-
invariance of V . This function is currently only defined on G, and so for the reduced Hamiltonian
above to make sense we must extend its definition to all of H. For gD ∈ G, the potential V (1, gD)
is a function of the distance from 1 to gD, and so it is only a function of the real part r of gD. We
will therefore choose an extension of V to H such that it remains a function V (r) of the real part
alone.

We wish to highlight an interesting feature for when one of the left or right momenta is zero.
The corresponding reduced space R

3 × S3 is in fact symplectomorphic to T ∗S3 with the canonical
symplectic form [23, Chapter 4]. Furthermore, when the masses are equal, the reduced Hamiltonian
on T ∗S3 gives the same dynamical system as the Kepler one-body problem with the second body
fixed at 1 ∈ S3. This should be contrasted with what was said at the beginning: in Euclidean space
the 2-body problem may be reduced to the Kepler problem by transforming into a centre of mass
frame. Here we have a kind of analogue to this, that when one of the left or right momenta is zero,
the corresponding reduced space gives the standard Kepler problem on the sphere.

2.2. The Full Reduced Space

Now we consider the task of reducing the left/right reduced space by the residual right/left
symmetry. Without any loss of generality, we focus on reducing the left Poisson reduced space
M/GL by the group GR of right translations. From the definitions of the left-invariant variables
this group action descends to s∗+ as

a · (R1, R2, gL) = (aR1a
−1, aR2a

−1, agLa
−1) (2.6)

for r ∈ GR. From the Commuting Reduction Theorem the momentum map for this action is also
given by the total right momentum ρ = R1 +R2.

We must now confront the issue that this action is not free. By writing an element as
(R1, R2, gL, r), where we have decomposed gL into its imaginary and real parts, the GR-action
on s∗+ decomposes into the irreducible pieces g1 × g2 × g3 × R; that is, three copies of the adjoint
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representation of G, and the trivial representation. The adjoint representation of G factors through
the double cover G → SO(3) to give the standard vector representation of SO(3) on g = ImH ∼= R

3.
It follows that this action fails to be free whenever R1, R2 and gL are colinear. In order to handle
these singular cases we will employ the method of universal reduction from [1] via the use of invariant
theory to obtain the orbit quotient as a semialgebraic variety. This technique is demonstrated in,
for example [18], and similarly in [12] for the second stage of reduction for the ordinary Lagrange
top.

Temporarily denote elements in g1 × g2 × g3 by (v1, v2, v3). The First Fundamental Theorem of
Invariant Theory for the special orthogonal group [17] tells us that the invariant ring is generated
by the pairwise inner products kij = 〈vi, vj〉 for i � j, and the determinant δ = 〈v1 × v2, v3〉. These
are not independent as they satisfy the algebraic relation δ2 = det(kij). As the group GR is compact
the orbits are separated by the values taken by the generators of the invariant ring, and hence, the
quotient s∗+/GR may be identified with the image of the Hilbert map

σ : s∗+ −→ R
8; (v1, v2, v3, r) 	−→ ({kij}i�j , δ, r) .

The image of this map is the semialgebraic variety defined by those points satisfying δ2 = det(kij),

and the inequalities k2ij � kiikjj for each (i, j)-pair.

Since the momentum ρ = R1 +R2 is conserved, the GR-invariant quantity |ρ|2 descends to
s∗+/GR to give an additional Casimir

C3 = |R1 +R2|2 = k11 + 2k12 + k22.

The two Casimirs C1 and C2 in Proposition 3 also descend to the full reduced space. The first of
these is easily seen to be

C1 = |gL|2 = k33 + r2.

The second, however, requires a special effort to express in terms of the invariant generators.

Lemma 1. The Casimir C2 = |R1gL + gLR2|2 may be expressed in terms of the generators of the
GR-invariant ring on s∗+ as

C2 = (k33 + r2)(k11 + k22) + 2k12(r
2 − k33) + 4k13k23 − 4rδ.

Proof. Expanding C2 gives

|R1gL|2 + |gLR2|2 + 2〈R1gL, gLR2〉 = (k33 + r2)(k11 + k22) + 2〈R1gL, gLR2〉.
Rewriting gL as r + gL, the final term above may be written as

2r2〈R1, R2〉+ 2r (〈R1gL, R2〉+ 〈R1, gLR2〉) + 2〈R1gL, gLR2〉 = 2r2k12 − 4rδ + 2〈R1gL, gLR2〉.
By multiplying out the cross-product terms, it is possible to establish the following identity:

2〈R1gL, gLR2〉 = 4〈R1 × gL, gL ×R2〉+ 2〈gL, gL〉〈R1, R2〉.

Finally, using the vector quadruple product 〈a× b, c× d〉 = 〈a, c〉〈b, d〉 − 〈a, d〉〈b, c〉 in the expression
above gives the desired result. �

Theorem 2. The Poisson reduced space s∗+/GR is the semialgebraic variety given by coordinates

({kij}i�j, δ, r) in R
8 satisfying δ2 = det(kij) and k2ij � kiikjj. There are three Casimirs,

C1 = k33 + r2,

C2 = (k33 + r2)(k11 + k22) + 2k12(r
2 − k33) + 4k13k23 − 4rδ,

C3 = k11 + k22 + 2k12.

The full reduced space (Mλ)ρ is obtained by setting C1 = 1, C2 = |λ|2, and C3 = |ρ|2.
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For |λ|, |ρ| �= 0, these typical reduced spaces are 4-dimensional. The algebraic awkwardness of the
Casimir C2 together with the relation δ2 = det(kij) makes it difficult to grasp the geometry of these
reduced spaces. Indeed, it would be of considerable interest to be able to say more about them.
Nonetheless, below we describe the degenerate 2-dimensional reduced spaces.

Consider the full reduced space (Mλ)ρ for ρ = 0. By applying the algebraic inequalities in
Theorem 2 for C3 = 0 we obtain an additional two constraints: k11 = k22 and k13 = −k23. After
eliminating variables the reduced space is found to be homeomorphic to the set of points (k11, k13, θ)
satisfying

4k11 =
|λ|2 + 4k213

sin2 θ
, (2.7)

where we write k33 = sin2 θ. When |λ| is non-zero this leaf is homeomorphic to R
2. On the other

hand, if λ = 0 this leaf degenerates into the singular canoe shown in Fig. 2. As we have previously
remarked, the reduced spaces M0 are symplectomorphic to T ∗S3, and when the masses are equal
the resulting dynamical system is the Kepler problem on the sphere. These reduced spaces we have
described therefore coincide with those for the Kepler problem.

Fig. 2. The full reduced spaces (Mλ)ρ when ρ = 0. These spaces are 2-dimensional and homeomorphic to the
plane for λ �= 0 as shown in the figure on the left. The leaf degenerates at λ = 0 into the canoe as shown on
the right. The contours are the level sets of the altered Hamiltonian in (2.13) for the Lagrange top.

2.3. The Singular Strata

An advantage of using invariants to describe the reduced space as a semialgebraic variety is that
it includes those points at which the action is not free. Consequently, these reduced spaces are not
smooth in general, but stratified symplectic spaces. The theory of such stratified spaces is detailed
in [31]. It is shown that the strata of a reduced space, which are invariant under the dynamics,
correspond to the different possible isotropy subgroups of the action. We now discuss each of the
possible isotropy subgroups for the GR-action in (2.6) and their corresponding strata in turn.

From Proposition 1, the action is free whenever |λ| �= |ρ| and not free precisely on those points
which are cocircular. It follows that the reduced spaces Mλ,ρ for |λ| �= |ρ| consist of a single stratum
and are thus bonafide smooth manifolds. For when |λ| = |ρ|, the reduced space contains an open
dense stratum corresponding to the non-cocircular points at which the action is free.

The stratum corresponding to when the isotropy subgroup is all of GR is for when R1 = R2 =
gL = 0, and thus consists solely of the two points r = ±1, where the other generators are zero.
These two points are the corners of the canoe in M0,0 in Fig. 2, and correspond to the states where
the two particles are motionless and either antipodal, or in the same position.

The strata corresponding to when the isotropy subgroup is SO(2) are for those points where
(R1, R2, gL) are colinear and not all zero. It follows that the generators of the invariant ring satisfy
three further relations, given by changing the inequalities in Theorem 2 into equalities. In fact, as
δ = 0, and since |λ| = |ρ| at this point, the relation k11k33 = k213 is not independent and so we have
6 constraints in total. Indeed, after eliminating variables one may show that there are two degrees
of freedom given by k11 + k22 and θ, where we are writing r = cos θ. For when |λ| = |ρ| �= 0 this
stratum is homeomorphic to a cylinder and degenerates into the canoe, minus the corners, when
the momentum is zero. These strata correspond to the cocircular configurations of the particles.
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2.4. The Equations of Motion and the Poisson Structure

We will now derive Hamilton’s equations, first on the left and right reduced spaces, and then on
the full reduced space. To begin with, we need the Poisson structure between two functions f and
g on s∗±. By the definition of the Lie –Poisson structure, {f, g} evaluated at (A1, A2, gD) in s∗± is
given in [16] by

±〈A1, [∇1f,∇1g]〉 ± 〈A2, [∇2f,∇2g]〉 ± 〈gD, (∇1f∇3g −∇3g∇2f)− (∇1g∇3f −∇3f∇2g)〉. (2.8)

Here we have written ∇i for i = 1, 2, 3 to mean the gradient of a function on s∗ = g∗1 × g∗2 ×H
∗ with

respect to the three component spaces. The equations of motion may be derived from the Poisson
bracket, where the convention we use is ϕ̇ = {H,ϕ}. Before doing this, we pause to consider the
term ∇3V from the Hamiltonian in (2.5). In the definition for the reduced potential we chose an
extension of the function V (1, gL) from G to H which remained a function of the real part alone.
The gradient ∇3V is therefore the purely real quaternion dV/dr. Armed with this foresight, we
may proceed to write down Hamilton’s equations on each of s∗+ and s∗−:

Ṙ1 = +f(r)gL, L̇1 = −f(r)gR,

Ṙ2 = −f(r)gL, L̇2 = +f(r)gR,

ġL = −R1

m1
gL + gL

R2

m2
, ġR = +

L1

m1
gR − gR

L2

m2
.

(2.9)

Here we are writing gD to mean the imaginary part of gD, and suggestively abbreviating −dV/dr
with f(r) for force. Using these equations together with the definitions of the generators of the
invariant ring, we can write the full reduced equations of motion in s∗+/GR which are given below:

k̇11 = fk13, ṙ =
k13
m1

− k23
m2

,

k̇12 = f(k23 − k13), δ̇ =

(
k12k13 − k11k23

m1

)
+

(
k13k22 − k12k23

m2

)
,

k̇13 = fk33 − r

(
k11
m1

− k12
m2

)
− δ

m2
,

k̇22 = −2fk23,

k̇23 = −fk33 − r

(
k12
m1

− k22
m2

)
+

δ

m1
,

k̇33 = 2r

(
k23
m2

− k13
m1

)
.

(2.10)

These equations give the flow generated by the Hamiltonian in (2.5), which descends to s∗+/GR as

k11
2m1

+
k22
2m2

+ V (r). (2.11)

It is important to appreciate that although these reduced spaces are considerably smaller than the
original phase space, the dimension dropping from 12 to 4, there is a trade-off: the Poisson bracket
on s∗+/GR between the generators is extremely cumbersome. By definition, this Poisson bracket
descends from the bracket on s∗+ as given in (2.8). The difficulty lies in the fact that the invariants
are typically quadratic in s∗+ and thus the bracket between them is cubic. This makes deriving a
general formula for the Poisson bracket on s∗+/GR a rather Herculean task, and one that this author
has failed to complete. As consolation, we offer instead the structure matrix in Table 1 listing the
Poisson bracket between the generators of the invariant ring. It should be emphasised that this
Poisson bracket should only be expected to satisfy the Jacobi identity and form a Lie algebra when
the generators satisfy the algebraic relations in Theorem 2.
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Table 1. The Poisson bracket between generators of the GR-invariant ring on s∗+ and thus the Poisson
structure on the full reduced space s∗+/GR.

{ , } k11 k12 k13 k22 k23 k33

k11 · 0 −2rk11 0 2δ − 2rk12 −4rk13

k12 · · r(k11 − k12) 0 r(k12 − k22) 2r(k13 − k23)

k13 · · · 2δ − 2rk12 −r(k13 + k23) −2rk33

k22 · · · · 2rk22 4rk23

k23 · · · · · 2rk33

k23 · · · · · ·

{kij , r} 1 2 3

1 2k13 k23 − k13 k33

2 · −2k23 −k33

3 · · 0

{kij , δ} 1 2 3

1 2(k12k13 − k11k23) (k11 + k12)k23 − (k12 + k22)k13 (k11 + k12)k33 − (k13 + k23)k13

2 · 2(k13k22 − k12k23) (k13 + k23)k23 − (k12 + k22)k33

3 · · 0

{ , } δ

r 0

2.5. A Reprise of the Lagrange Top

The Hamiltonian given in (1.12) for the Lagrange top descends through this whole reduction
procedure to give

H =
1 + α

4
(k11 + k22) +

1− α

2
k12 + γr. (2.12)

This is, of course, as we have already remarked, different to the 2-body Hamiltonian in (2.11).
However, the two Hamiltonians differ by a constant multiple of C3. Since a Casimir trivially
generates a stationary flow, the flow on the full reduced space for the Lagrange top is equivalently
the flow generated by the altered Hamiltonian

H̃ = H +
(α− 1)

4
C3 =

α

2
(k11 + k22) + γr. (2.13)

Rather remarkably, one sees that although the flows on the left and right reduced spaces for the
Lagrange top and the 2-body problem are different, they are identical on the full reduced space when
m1 = m2 = α−1, and V (r) = γr. We can therefore continue in generality to consider a Hamiltonian
of the form in (2.11), and in doing so, will simultaneously treat both the 2-body problem and the
Lagrange top.

Finally, we highlight one further remarkable feature of the Lagrange top: that it is completely
integrable. Indeed, in [4] it is shown that the n-dimensional generalisation of the Lagrange top
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admits a complete set of independent integrals which commute with the left and right SO(n− 1)
symmetry. For the case n = 4, this single extra integral is defined on the left reduced space s∗+ by

ηT Ω̂2η +

(
2γ

α

)
gTLΩ̂η. (2.14)

Here we are using the isomorphism in (1.4) to identify s∗+ with se(4)∗ and using the notation for the
body angular momentum in (1.11). After a scaling, this may be expressed in terms of the invariant
generators as

I = α(k212 − k11k22)− 2γδ. (2.15)

One may verify directly from the reduced equations in (2.10) that this is constant for the flow
generated by the altered Hamiltonian in (2.13). Conversely, for the 2-body problem on a sphere,
in the case of equal masses and of a potential proportional to cos θ, the function I is an additional
first integral.

3. RELATIVE EQUILIBRIA

3.1. A Classification of the Relative Equilibria on the Left Reduced Space

To classify the RE we could, of course, find the fixed points of the system of full reduced
equations in (2.10). However, this is easier said than done, and following Proposition 2, we may
equivalently classify the solutions in, say, the left reduced space M/GL which are the orbits under
a one-parameter subgroup of GR. From the GR-action in (2.6) we see that such an orbit in g∗ is
of the form q(t) = etηq(0)e−tη for the generator η ∈ gR. By differentiating this to find the velocity
vector, and comparing with the left reduced equations in (2.9), one sees that a solution through
(R1, R2, gL) in s∗+ is the orbit of a one-parameter subgroup etη of GR if and only if the following
holds:

2(η ×R1) = +f(r)gL, (3.1)

2(η ×R2) = −f(r)gL, (3.2)

2(η × gL) = −R1gL/m1 + gLR2/m2. (3.3)

We suppose without any loss of generality that η is of the form |η|j, recalling that j is an imaginary
quaternion in ImH = g. The real part of gL is fixed by the action of GR. We write this real part
as r = cos θ for θ ∈ [0, π] and classify the solutions of the form above according to the angle θ.
Furthermore, from now on we will suppose that the potential is such that f(r) is never zero.

Case 1: θ = 0, π. In this case, gL is equal to ±1, and consequently gL = 0. It follows from the
equations above that |η| � 0 is arbitrary, and that R1 and R2 are scalar multiples of j which satisfy
m2R1 = m1R2.

Case 2: 0 < θ < π, θ �= π/2. Equations (3.1) and (3.2) imply that R1, R2 and η are orthogonal

to gL. We may also suppose without any loss of generality that gL = i sin θ, and thus, that gL = eiθ.
It then follows that R1 and R2 must be of the form

R1 = x1j + yk and R2 = x2j − yk (3.4)

for x1 and x2 to be determined, and

y =
f sin θ

2|η| . (3.5)

It now remains to solve Eq. (3.3), which can be expanded using quaternionic multiplication to give

−2|η| sin θ k = − 1

m1
(x1j + yk)eiθ +

1

m2
eiθ(x2j − yk)

= − 1

m1
x1e

−iθj − 1

m1
ye−iθk +

1

m2
x2e

iθj − 1

m2
yeiθk.
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Multiplying both sides of this equation on the right by k gives an equation purely in terms of
complex numbers. Separating this into real and imaginary parts results in a linear equation in x1
and x2 which may be written as

− 1

m1m2

⎛
⎝sin θ sin θ

cos θ − cos θ

⎞
⎠

⎛
⎝x1

x2

⎞
⎠ =

⎛
⎝2|η| sin θ − y

(
1
m1

+ 1
m2

)
cos θ

y
(

1
m1

− 1
m2

)
sin θ

⎞
⎠ . (3.6)

This linear system is non-degenerate for θ �= π/2 and has unique solutions

x1 = y

(
cot 2θ +

m1

m2
csc 2θ

)
−m1|η|, and x2 = y

(
cot 2θ +

m2

m1
csc 2θ

)
−m2|η|. (3.7)

Case 3: θ = π/2. For θ = π/2 the linear system in (3.6) becomes degenerate. Solutions of the
system can only exist when m1 and m2 are both equal to, say, m. There is then an entire line’s
worth of solutions given by

x1 + x2 = −2m2|η|. (3.8)

3.2. Reconstruction and the Full Relative Equilibria Classification

In accordance with Proposition 2, having classified all RE solutions in M/GL, it remains to
reconstruct the corresponding solutions in M . Clearly, the action of GL on M/GL is trivial, and
thus we may safely suppose that the corresponding one-parameter subgroup of GL is generated by
ξ = |ξ|j ∈ gL.

From the definitions, the real part of gL and gR must each be equal to r = cos θ, where θ is the
angular separation between the two particles

cos θ = 〈g1, g2〉 = 〈g1g−1
2 , 1〉 = 〈1, g−1

1 g2〉 = r.

A similar set of equations to (3.1)–(3.3) also hold in the right reduced space, and it follows from these
that gR must also be orthogonal to ξ and hence j. Therefore, we may suppose that gR = −i sin θ,

and hence, that gR = e−iθ and gL = eiθ. The definitions of gL and gR give g2 = g1e
iθ = eiθg1. When

θ is not equal to 0 or π, this implies that g1 commutes with i. This is only the case when g1 belongs
to the complex plane C ⊂ H. This forces g1 and g2 to be of the form

g1 = e−iφ1 , and g2 = eiφ2 (3.9)

where φ1 + φ2 = θ. We may additionally suppose that φ2 ∈ [0, π], since (g1, g2) 	→ (−g1,−g2) is an
element of SO(4). The orbit of a point q in H under the one-parameter subgroup of GL ×GR is

etξqe−tη. For each particle gi we can differentiate this motion to obtain the momentum pi = miġi,
and then find the right momentum Ri = g−1

i pi as below

R1 = m1

(
|ξ| cos 2φ1 − |η|

)
j +m1

(
|ξ| sin 2φ1

)
k, (3.10)

R2 = m2

(
|ξ| cos 2φ2 − |η|

)
j −m2

(
|ξ| sin 2φ2

)
k.

These expressions must agree with those in (3.4) for the forms of R1 and R2, and therefore the
following must hold:

m1 sin 2φ1 = m2 sin 2φ2 =
y

|ξ| .

When θ �= π/2, this equation uniquely determines φ1 and φ2. When θ = π/2, and therefore
m1 = m2, the angles are not unique: when y is positive the solutions are for all φ1 ∈ (0, π/2),
and all φ1 ∈ (−π/2, 0) for y negative. Finally, for the exceptional cases, we have g1 = g2 for θ = 0,
and g1 = −g2 for θ = π. As θ is constant, it follows from consideration of Case 1 above that these
motions correspond to the two particles moving together around a great circle arbitrarily quickly,
either occupying the same position or antipodal to each other.
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Theorem 3. For the 2-body problem on the 3-sphere with an either strictly attractive or repulsive
potential, all relative equilibria solutions are completely classified, up to conjugacy, according to
the angle θ ∈ [0, π] subtended by both particles in the sense listed below. In each of these cases we
suppose, without loss of generality, that the corresponding one-parameter subgroup of GL ×GR is
generated by (|ξ|j, |η|j) ∈ gL × gR.

– For θ = 0 and π, we will call these solutions singular. For θ = 0 we may take the initial
positions to be g1 = g2 = 1, and g1 = −g2 = 1 for θ = π. Both |ξ| and |η| are arbitrary.

– For θ < π/2 we will call the solutions acute, and obtuse when π/2 < θ < π. In both cases

we may take the initial positions of the particles to be at g1 = e−iφ1 and g2 = eiφ2 where the
angles φ1 and φ2 are determined by φ1 + φ2 = θ and by

m1 sin 2φ1 = m2 sin 2φ2. (3.11)

– Solutions for θ = π/2 will be called right-angled and only exist for m1 = m2. In this case, φ1

and φ2 are not uniquely determined by (3.11) and may be any angles satisfying φ1 + φ2 = π/2
where φ1 ∈ (0, π/2) for a strictly attractive potential (f > 0), or φ1 ∈ (−π/2, 0) for a strictly
repulsive potential (f < 0). In the case of equal masses, we will call the RE for any θ isosceles
if φ1 = φ2.

For all of the non-singular cases, the angular velocities satisfy

2|ξ||η| = f(θ) sin θ/ζ (3.12)

where ζ = m1 sin 2φ1 = m2 sin 2φ2, and where f(θ) = −dV/dr for V = V (1, eiθ) and r = cos θ.

To understand these rigid motions, one can show that a one-parameter subgroup generated by
(|ξ|j, |η|j) in gL × gR acts by rotating the oriented planes Span{1, j} and Span{k, i} through
the angle |ξ| − |η| and |ξ|+ |η| with each unit of time, respectively. When |ξ| = |η|, this gives a
simple rotation, and the two particles carry out a cospherical motion contained to the 2-sphere
in Span{1, i, k} rotated about the real line with angular velocity ω = 2|ξ| = 2|η|. In this case, the
theorem above coincides with the RE classification given in [6] for the situation on the 2-sphere.

We conclude this classification by remarking that, if we use the expressions in (3.7) and (3.8)
for x1 and x2, one can express (although this is a fairly unremitting calculation) the explicit values
of the generators of the invariant ring in s∗+/GR at the given RE. It is then possible to verify that
the full reduced equations in (2.10) do indeed yield a fixed point for these values, as expected.

3.3. Linearisation and the Energy-momentum Map
Although the RE were classified by first finding the solutions in the left reduced space, the

stability results will be derived by directly working in the full reduced space. As a RE is precisely
a fixed point of the full reduced equations of motion, we may linearise the system in (2.10) at such
a point. Noting that R1 and R2 are orthogonal with gL at a RE, and thus, that k13 = k23 = 0,
this linear system may be written as the following 8× 8 matrix in R

8 with coordinates ordered as
(k11, k12, k13, k22, k23, k33, r, δ):⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 2f 0 0 0 0 0

0 0 −f 0 f 0 0 0

−r/m1 r/m2 2f 0 0 f A1 −1/m2

0 0 0 0 −2f 0 0 0

0 −r/m1 0 r/m2 0 −f A2 1/m1

0 0 −2r/m1 0 2r/m2 0 0 0

0 0 1/m1 0 −1/m2 0 0 0

0 0 A3 0 A4 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.13)
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We have used the abbreviations

A1 = +
df

dr
k33 −

(
k11
m1

− k12
m2

)
,

A2 = −df

dr
k33 −

(
k12
m1

− k22
m2

)
,

A3 = +
k12
m1

+
k22
m2

,

A4 = −k11
m1

− k12
m2

.

As one might expect, the characteristic polynomial of such a large symbolic matrix is fairly
horrendous. For this reason, we are forced to make a choice for the force f . The two potentials we
will consider are the gravitational potential

V = −m1m2 cot θ with f = m1m2 csc
3 θ (3.14)

for the planetary 2-body problem, and

V = γ cos θ with f = −γ (3.15)

for the potential of the 4-dimensional Lagrange top as in (2.12). With these choices of f computing
the characteristic polynomial becomes feasible, although we have enjoyed the aid of software which
can handle such symbolic calculations. Before presenting these polynomials, we remark that we
should expect at least four of the eigenvalues to be zero. This is because the generic symplectic
leaves are 4-dimensional, and the fixed points of the flow should vary continuously as we move
through the leaves.

For the 2-body potential the characteristic polynomial in the variable t is given by

t4(c0 + c2t
2 + t4) (3.16)

where

c2 = 2

(
k11
m2

1

+
k22
m2

2

+ (m1 +m2) cot θ csc
2 θ

)

and

c0 =

(
k11
m2

1

− k22
m2

2

)2

+ 2cot θ csc2 θ

[
k11
m1

(
1 +

m2

m1

)
+

k22
m2

(
1 +

m1

m2

)]
+

[
(m1 +m2) cot θ csc

2 θ
]2

.

Before proceeding to give the characteristic polynomial for the Lagrange top, we note that it
follows from (3.7) that |R1| = |R2| for when θ �= π/2. We will therefore first give the polynomial for
the case where θ �= π/2 and where we set k11 = k22 = |R|2. This characteristic polynomial is then

t4
(
t2 − 2αγ cos(θ)

) (
t2 + 4α2|R|2 − 8αγ cos(θ)

)
. (3.17)

When θ = π/2, it is no longer the case that k11 = k22. The resulting polynomial is then

t4
(
t4 + 2α2(k11 + k22)t

2 + α4(k11 − k22)
2
)
. (3.18)

In the next two subsections we analyse the roots of these characteristic polynomials accompanied
by images of the energy-momentum map. The RE are equivalently defined to be critical points of
this map, and the set of critical values helps illuminate the study of the RE by understanding how
they bifurcate and change in nature.

We have opted to omit the full details of how the images of the energy-momentum (actually
the energy-Casimir) map are obtained. Ultimately this task is pure calculation, but it does deserve
some comments on how to obtain it in practice. Following Theorem 3, one can parameterise the
families of RE by θ and |η| alone, or φ1 and |η| for the right-angled RE. One can then acquire
explicit formulae for H, |λ|2 and |ρ|2 in terms of these. This statement conceals an implicit exercise
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in elementary geometry to express ζ and relate the angles φ1, φ2 to θ in (3.12). The energy-Casimir
map simplifies considerably upon introducing the reparameterisation

2eτ |η|2 = f sin θ/ζ. (3.19)

For our purposes it will be enough to state that the image of each family of RE under the energy-
Casimir map can be parameterised by θ and τ alone, or φ1 and τ for the right-angled RE.

3.4. Stability of Relative Equilibria for the 2-body Problem

Surprisingly, despite the complicated appearance of the coefficients in (3.16), all four roots may
be solved and compactly written as

z1,2 = ±

√
−
(√

k11
m1

+

√
k22
m2

)2

− (m1 +m2) cot θ csc2 θ, (3.20)

w1,2 = ±

√
−
(√

k11
m1

−
√
k22
m2

)2

− (m1 +m2) cot θ csc2 θ. (3.21)

It is clear that these eigenvalues are all purely imaginary when θ is acute. Furthermore, by writing
k11 and k22 in terms of θ and |η| using the forms in (3.4) and (3.7), one can show that

k11
m2

1

+
k22
m2

2

+ (m1 +m2) cot θ csc θ =
1

8|η|2
(
16|η|4 cos2 θ sin6 θ + (m2

1 +m2
2 + 2m1m2 cos 2θ)

)
.

This expression is always greater than zero, and so the eigenvalue pair z1,2 is always purely imaginary
and non-zero. On the other hand, the eigenvalue pair w1,2 does undergo a transition from imaginary
to real. For when the masses are equal, it follows from (3.7) that k11 = k22 for the isosceles RE, and
therefore, that w1,2 is a non-zero real pair for θ obtuse, and zero for θ = π/2. For the remaining
right-angled RE which are not isosceles, as k11 �= k22 the w1,2 roots are a non-zero imaginary pair.

Fig. 3. The energy-Casimir bifurcation diagram for the case of equal masses separated into the isosceles
component on the left, and the right-angled on the right. The axes for both diagrams are to the same scale. For
the isosceles component, the coordinate lines running from left to right are of constant θ, and those transversal
to them are for constant τ . The line θ = π/2 is thickened, and it is along this line that the component for the
right-angled RE is attached.

For non-equal masses it becomes more difficult to describe the transition in reality of the w1,2

pair. Unlike the case for motion on the 2-sphere in [6], this transition is not determined solely by a
critical angle. With reference to the energy-Casimir diagram in Fig. 4, we argue that this transition
occurs along the fold in the obtuse component. A rigorous proof of this requires extremely lengthy
calculations and so we will merely sketch it here. The image of the energy-Casimir map is given as
a surface parameterised by θ and τ . As this surface is folded, the curves of constant |λ|2 and |ρ|2
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in (θ, τ)-space generically intersect at two points. Along the fold where such a pair of |λ|2 and |ρ|2
occurs only once, these two curves must intersect tangentially at a point. The fold may then be
characterised by the condition that the Jacobian of |λ|2 and |ρ|2 with respect to θ and τ vanishes.
This condition turns out to give a quadratic in cosh τ . As the pair z1,2 is always imaginary, the
reality of w1,2 is determined by the sign of c0 in (3.16): the pair is imaginary when c0 � 0, and
real for c � 0. The expression for c0 may be written in terms of θ and τ using (3.7) and the
reparameterisation in (3.19). Setting c0 to zero then gives an expression for cosh τ in terms of θ,
and upon substituting this into the Jacobian, yields zero as desired. It is the portion of the surface
above the fold for which w1,2 is imaginary, and after crossing the fold, the portion below for which
w1,2 is real.

Now that we have a picture for the eigenvalues of the linearisation at the RE, we have sufficient
conditions for instability but not stability. A helpful result in this direction would be the signature of
the Hessian for the Hamiltonian at the RE restricted to a leaf. A definite Hessian implies Lyapunov
stability, however, we should be pessimistic about this prospect since the Hessian obtained in [6]
for the linearly stable RE on the 2-sphere has mixed signature. In this situation, stability is again
ambiguous. We encourage the reader to observe that the energy-momentum diagrams given in [6]
coincide with our figures when |λ| = |ρ|. This is not a coincidence, but instead a consequence
of Sjamaar’s Principle [31] which, roughly speaking, establishes a symplectomorphism between the
reduced spaces with the reduced spaces of isotropy submanifolds equipped with the isotropy action.
We can be more explicit about the implementation of this principle for our example.

Proposition 4. Let the 2-sphere be given by the unit imaginary quaternions S2 ⊂ ImH and
consider the action of G on N = T ∗S2 × T ∗S2 with momentum map J . For any Ω ∈ g∗ the reduced
space NΩ is symplectomorphic to MΩ,−Ω.

Proof. For (g1, p1, g2, p2) in N the value of J is the angular momentum

Ω = (g1 × p1) + (g2 × p2).

As these quaternions are imaginary, we have g−1
i = −gi. By expanding the cross product as

multiplication between quaternions and taking the complex conjugate of the Ri, one can show that
2Ω = λ− ρ and λ = −ρ. As the isotropy subgroup fixing a 2-sphere in H is trivial, the symplectic
submanifold N ↪→ M descends to the orbit spaces to give an inclusion N/G ↪→ M/(GL ×GR).
From Proposition 1, any point with |λ| = |ρ| is cospherical, and thus, at the level of orbit spaces

there is a bijection between the orbit reduced spaces J−1(OΩ)/G → J−1
L,R(OΩ ×O−Ω)/(GL ×GR)

induced by the canonical inclusion. As all of the maps here are Poisson, it follows that this bijection
between symplectic leaves is a symplectomorphism. �

One sees from this proof that the reduced Hamiltonian on MΩ,−Ω pulls back to give the
Hamiltonian on NΩ. It follows that the Hessian at the RE must be the same, and therefore, that the
Hessian of the RE in the energy-Casimir diagrams in Figs. 3 and 4 agrees with that in [6] for when
|λ| = |ρ|. As the Hessian varies continuously with the relative equilibria, and that the signature can
only change when it crosses a zero eigenvalue, we may apply a continuity argument to extend the
Hessian over all of the RE with non-zero eigenvalues. This observation, combined with the above
discussion concerning the linearisation, provides the proof to the following theorem.

Theorem 4. For the 2-body problem on the 3-sphere with the gravitational potential, we have the
following stability results for the RE:

– All acute RE are linearly stable, with the signature of the Hessian of the Hamiltonian being
(+,+,−,−).

– When the masses are equal, all right-angled RE which are not isosceles are linearly stable
with signature (+,+,−,−).

– Obtuse RE which are above the fold in Fig. 4 are linearly stable with signature (+,+,−,−).
Obtuse RE under the fold are linearly unstable with signature (+,+,+,−). When the masses
are equal there is no such fold, and all obtuse RE are linearly unstable with signature
(+,+,+,−).
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Fig. 4. The energy-Casimir bifurcation diagram for non-equal masses separated into the acute component on
the left and the obtuse on the right. The particle masses have been taken to be m1 = 3 and m2 = 2. The axes
for both diagrams are to the same scale. The coordinate lines running from left to right are of constant θ, and
those transversal to them are for constant τ . We have deliberately removed an upper section of the obtuse
component to demonstrate that the surface is folded along a cusp. The lines of constant θ above the fold are
for θ smaller than those lines below.

3.5. Stability of the Relative Equilibria for the Lagrange Top

Before jumping straight into a stability analysis, we pause to review some of our terminology
for the Lagrange top RE. As the angle θ corresponds to the angle the body axis makes with the
vertical, we will alternatively refer to acute and obtuse RE by upright and downward, respectively.
Furthermore, right-angled RE with θ = π/2 might more fittingly be described as being horizontal.
Alternatively of course, the potential in (3.15) applies equally well to the case of two particles on
a sphere which are repelled by each other. In this case, the old terminology is perfectly applicable.

From the characteristic polynomial in (3.17), one can immediately see from the root t2 =
2αγ cos θ that RE which are upright are unstable. This is in marked contrast to the ordinary
Lagrange top where a sufficiently quickly spinning top is stable when standing vertical (the sleeping
top). The second pair of roots may be analysed by again using (3.7) to write |R|2 = |R1|2 = |R2|2
in terms of θ and |η|, which gives

4α2|R|2 − 8αγ cos θ = 4|η|2 + α2γ2

|η|2 − 4αγ cos θ. (3.22)

This is always strictly positive for θ greater than zero, and therefore always corresponds to imaginary
eigenvalues. For the right-angled RE we have the characteristic polynomial in (3.18), for which the
roots of the quartic factor are equal to

±
√
−α2(

√
k11 ±

√
k22)2. (3.23)

Consequently, we see that these eigenvalues are all non-zero and imaginary away from the isosceles
k11 = k22 branch.

Unlike for the 2-body problem, where we ignored the singular RE since the Hamiltonian is not
defined for θ = 0 or π, the energy-Casimir diagram for the Lagrange top contains two “threads”
corresponding to these families of RE. From Fig. 5 for the “isosceles” RE, one sees that the lines
of constant θ converge to a single thread on top of the surface as θ → 0. This thread corresponds
to those configurations of the top held vertically upright and spinning about its axis. As the
spin decreases, that is, as k11 = k22 = |R|2 decreases below 2γ/α, the second root pair in (3.17)
transitions from imaginary to real, and the thread detaches from the surface and extends outwards
as an isolated thread until |R| = 0, where the top is motionless. This is entirely analogous to the
case for the ordinary Lagrange top as shown in [12] and is a mathematical realisation of “gyroscopic
stabilisation”. It cannot be seen in our picture, however, as θ tends to π, the lines of constant θ
converge underneath the surface to a thread which is not isolated, corresponding to those motions
when the body is hanging vertically downwards.
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As with the 2-body problem, we remark that taking the slice through the energy-Casimir diagram
for |ρ| = |λ| in Fig. 5 gives the same diagram as in [9], where they also consider the 2-body problem
on the 2-sphere for the same potential.

Fig. 5. The energy-Casimir bifurcation diagram for the 4-dimensional Lagrange top, specifically for α =
2, separated into the “isosceles” and “right-angled”/horizontal components in the left and right figures,
respectively. The axes for both diagrams are to the same scale. For the component on the left, the coordinate
lines emanating away from the origin are of constant τ , and those transversal to them are of constant θ. The
thickened line is that for θ = π/2, and it is along this branch that the additional component of horizontal RE
is attached.

A linearised stability analysis is sufficient for deducing instability, but not conclusive for stability.
Fortunately, the existence of the additional integral I in (2.15) on the full reduced space will allow
us to obtain the strongest possible results for stability. We begin by claiming that all downward
RE are not only critical points of the Hamiltonian, but also of I. To see this, observe that for
θ > π/2, the linearisation admits two distinct non-zero imaginary eigenvalue pairs. If such a point
were not a critical point of I, then in a neighbourhood of this point we could introduce coordinates
which include I as a coordinate function. As {H, I} = 0, the Hamiltonian in these coordinates is
independent of I, and therefore a change in the I coordinate away from a RE would also give a
RE. This is not compatible with the non-zero eigenvalues.

Therefore, at such RE the differentials dH and dI are both zero. We also claim that their Hessians
d2H and d2I are linearly independent. This is equivalent to showing that the linearisations of the
flows generated by H and I at the fixed point are independent. From Table 1 one can find the flow
generated by the integral I. In particular, one can show

k̇11 = {I, k11} = 4γ(k13k12 − k11k23),

k̇22 = {I, k22} = 4γ(k13k22 − k12k23).

By linearising these at a RE, and comparing with the first and fourth rows of the matrix in (3.13), we
see that the two linearisations are indeed linearly independent when k11, k12, k22 �= 0, and therefore
so too are d2H and d2I.

The quadratic forms d2H and d2I are both well defined on the tangent space of the symplectic
leaf at a RE since it is a critical point for each of them. The Lie algebra of such quadratic forms with
respect to the Poisson bracket is isomorphic to the symplectic Lie algebra Symp(4;R). Furthermore,

as {H, I} = 0, the quadratic forms also commute, and as d2H has distinct eigenvalues, and is
linearly independent from d2I, it follows that they span a Cartan subalgebra of Symp(4;R). Up
to conjugacy by canonical transformations there are only four such Cartan subalgebras: centre-
centre, saddle-centre, saddle-saddle, and focus-focus [5]. As the eigenvalues of the linearisation are
all purely imaginary, this forces it to be of centre-centre type. It follows from a normal-form result
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in [19] that there exist Darboux coordinates (q1, p1, q2, p2) in a neighbourhood of the RE (which
may be taken to be the origin) where

H = a(q21 + p21) + b(q22 + p22) + . . .

I = c(q21 + p21) + d(q22 + p22) + . . .

Here the dots denote terms of cubic order in the coordinates, and where we have further supposed
that I and H are zero at the origin. As the quadratic forms are linearly independent, we can find
x, y ∈ R such that the function F = xH + yI has d2F positive definite at the RE. The function F
therefore has a minimum at this point and thus, for any small δ > 0, there exists an ε for which
F−1(ε) is contained to a ball of radius δ. It follows then from

H−1(ε1) ∩ I−1(ε2) ⊂ F−1(xε1 + yε2)

that the level sets of H and I are also contained to arbitrarily small neighbourhoods around the
RE. As the flow is contained to these level sets, small perturbations away from these RE result in
motions contained to tori which remain close to the RE.

To be completely watertight, the single RE which has evaded our argument so far is the one
corresponding to the body hanging vertically downward and motionless as k11 = k12 = k22 = 0, and
thus the two Hessians may not be independent. For this point, Lyapunov stability is a consequence
of it being a global minimum of the Hamiltonian. We can now pull all of this together into a
theorem.

Theorem 5. For the 4-dimensional Lagrange top the following stability results apply to the relative
equilibria in the full reduced space.

– All upright relative equilibria, that is, those with θ < π/2, are linearly unstable.

– All hanging relative equilibria with θ > π/2, and all horizontal relative equilibria with θ = π/2,
excluding those which are isosceles, are Lyapunov stable.

CONCLUDING COMMENTS AND SCOPE FOR FURTHER WORK

It is natural to ask how we might extend these results. In this regard it is crucial to note that
the fundamental idea upon which this work rests is the “accidental” isomorphism between g× g

and so(4). It is thanks to this that we have the double cover over SO(4) and the connection with
the Lagrange top, and the commuting left and right actions which allow us to reduce in stages. It
is because of this “accident” that our work does not generalise to more bodies, or to the negative
curvature case of the 2-body problem on hyperbolic 3-space. For this space, the symmetry group
SO(1, 3) is double covered by SL(2;C). It is clear that a different approach must be taken to resolve
this case. It is, however, true that hyperbolic space may be equipped with a group structure which
is compatible with the metric with respect to left translations alone [15]. In light of this, it would
still be possible to obtain an analogous left reduced space for the case of negative curvature.

We do, however, obtain a fairly straightforward generalisation of our work by replacing the
algebra of real quaternions with the split quaternions. This alteration results in the 2-body problem
on SL(2;R) which is the unit “sphere” in this algebra. Everything then proceeds in almost exactly
the same way, the full symmetry group is SO(2, 2) and this is double covered by two “spheres”
and we have again two commuting left and right actions. This alteration is entirely due to another
‘accidental’ isomorphism between sl(2;R)× sl(2;R) and so(2, 2). In a similar fashion we could even
push this idea further and replace the quaternions with the biquaternions and consider the 2-body
problem on SL(2;C).

Another route of study concerns the more general problem of dynamics on a cotangent bundle
of a group G which is symmetric with respect to both the left and right translations by a given
subgroup H. In addition to the example we have dealt with, a famous example of such a system are
the Riemannian ellipsoids [27]. This system concerns the motion of a self-gravitating distribution of
mass whose configuration is given by an element of G = SL(3;R) which is symmetric by the left and
right actions of H = SO(3). This system is comprehensively treated in the work of Chandrasekhar
in [10], and a more modern Hamiltonian account may be found in [28]. The famous work of Riemann
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concerns the classification of the relative equilibria, and one wonders whether our use of reduction
by stages could be applied as a possible alternative approach.

It would be interesting to study the limit as one particle’s mass dominates the other. This should
be expected to approach what is referred to as the restricted 2-body problem on the sphere [11].
In particular, it would be interesting to see what the flow on the full reduced space is limited
to. Furthermore, given that we have the Poisson structure on the full reduced space, it would be
nice to see if this offers any use in demonstrating the non-integrability for the 2-body problem
(see [30] and [21]) or whether additional integrable systems can be found for different potentials.
One might hope that this would connect with the substantial literature that exists for integrable
systems on SO(4).

Finally, our work concerning the 2-body problem on the sphere cannot be considered complete,
and there remain interesting unresolved questions. The nature of the full reduced spaces is one
such question. One would like to say more about their geometry, to describe the fibres of the
energy-momentum map, and the invariant integral manifolds. Moreover, as the Lagrange top is
integrable, one can also ask questions about the foliation of the reduced spaces by invariant tori,
the image of the momentum map, and the monodromy of these tori. The stability of the RE for
the 2-body problem also remains an open question, and as in [6], we leave the door open for the
use of sophisticated KAM methods to strengthen the stability results.
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