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Abstract—The sum of elliptic integrals simultaneously determines orbits in the Kepler problem
and the addition of divisors on elliptic curves. Periodic motion of a body in physical space
is defined by symmetries, whereas periodic motion of divisors is defined by a fixed point
on the curve. The algebra of the first integrals associated with symmetries is a well-known
mathematical object, whereas the algebra of the first integrals associated with the coordinates
of fixed points is unknown. In this paper, we discuss polynomial algebras of nonpolynomial first
integrals of superintegrable systems associated with elliptic curves.
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1. INTRODUCTION

The main point of interest in integrable systems relies on the fact that they can be integrated by
quadratures. For many known integrable systems these quadratures involve various sums of Abelian
integrals, which are inextricably entwined with the arithmetic of divisors. In physics, we describe
first integrals of dynamical systems in terms of physical variables, and usually these first integrals
are related to symmetries, including dynamical ones. For the Kepler problem the corresponding
first integrals are well-known polynomials in momenta [3, 8, 19, 20, 25, 26].

In algebraic geometry we describe the evolution of divisors in terms of coordinates of divisors.
The corresponding constants of motion are nothing more than the coordinates of fixed points, which
are algebraic functions on original physical variables. In fact, algebraic first integrals for the Kepler
problem have been obtained by Euler as a byproduct of his study of the algebraic orbits appearing
in two fixed centers problem [8].

Algebras of the polynomial first integrals of superintegrable systems can be associated with
orthogonal polynomials, see, e. g., [5, 6, 12–14, 23, 24] and references therein. For instance, it could
be the Racah –Wilson algebra, Bannai – Ito algebra, Askey –Wilson algebra, etc. We suppose that
the polynomial algebra of nonpolynomial first integrals arising in divisor arithmetic on elliptic
and hyperelliptic curves may be associated with elliptic and hyperelliptic functions. It could be
Weierstrass functions, Jacobi functions, Abelian functions, etc.

In 1762 Euler wrote a paper entitled “Problem: a body is attracted to two given fixed centers
inversely proportional to the square of the distance; find in which case the curve described by the
body will be algebraic” [8]. In this paper he separated algebraic orbits from transcendental ones
using elliptic coordinates on a plane and an addition law for the corresponding elliptic integrals.
Algebraic orbits were interesting because if one of the centers were absent, the body would move
in algebraic orbits, as a solution of the Kepler problem.

Indeed, let us consider the motion of the body attracted to two fixed centers by forces inversely
proportional to the squares of the distance

R =
α

r2
and Q =

β

q2
.
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In elliptic coordinates s and u the equations of motion are reduced to differential equations

ds
√

Hs4 + (α + β)s3 + cs2 − h2(α + β)s −Hh4 − (b2 + c)h2

=
du

√
Hu4 + (α− β)u3 + cs2 − h2(α − β)u−Hh4 − (b2 + c)h2

and

dt =
s2ds

4
√

Hs4 + (α+ β)s3 + cs2 − h2(α+ β)s−Hh4 − (b2 + c)h2

− u2du

4
√

Hu4 + (α− β)u3 + cs2 − h2(α− β)u−Hh4 − (b2 + c)h2
,

which we copied from page 106 of Lagrange’s textbook [26]. Here H and h are integrals of motion,
which are second-order polynomials in momenta, and b and c are geometric parameters describing
the positions of fixed centers.

At β = 0 and x1 = s, x2 = u these equations become well-known Abel’s quadratures for the
two-body Kepler problem

∫
dx1√
f(x1)

+

∫
dx2√
f(x2)

= const, (1.1)

and
∫

x21dx1√
f(x1)

+

∫
x22dx2√
f(x2)

= 4t, (1.2)

on the elliptic curve X defined by an equation of the form

X : Φ(x, y) = y2 − f(x) = 0, f(x) = a4x
4 + a3x

3 + a2x
2 + a1x+ a0 (1.3)

on a projective plane. The first equation of (1.1) determines the trajectories of motion, whereas the
second equation of (1.2) defines time [26].

Equations (1.1), (1.2) describe the motion of a body in the Kepler problem and, simultaneously,
the evolution of points P1(t) = (x1, y1), P2(t) = (x2, y2) around the fixed point P3 = (x3, y3) on X
governed by the arithmetic equation

P1(t) + P2(t) = P3. (1.4)

According to Abel’s theorem [1, 2, 11, 17, 18], the trajectories of points P1,2(t) on X are uniquely
determined by Abel’s sum (1.1) in the same way as trajectories of a body in the Kepler problem.
Subsequently, the periodic motion of points along the plane curve X generates periodic motion in
the phase space of the Kepler system and vice versa.

According to [9], the coordinates of the fixed point x3 and y3 are algebraic functions on the
coordinates of movable points x1,2 and y1,2 which are constants of divisor motion along the elliptic
curve X (1.4). These algebraic functions on elliptic coordinates u1,2 and momenta pu1,2 are also

first integrals in the Kepler problem. In [8] Euler used these algebraic first integrals and their
combination

C = 2a4x
2
3 + a3x3 + a2 − 2

√
a4y3 (1.5)

in order to separate algebraic orbits from transcendental ones in the problem of two fixed centers.

In the Kepler case the first integral C (1.5) is a square of the component of angular momentum

C = −
(
p1q2 − (q1 − κ)p2

)2
.

Of course, this first integral is related to the well-studied rotational symmetry [3, 19, 20, 25]. The
Poisson algebras of polynomial first integrals for the Kepler problem and other dynamical systems
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separable in elliptic, parabolic and polar coordinates are well studied objects, see, e. g., [5, 6, 12–
14, 23, 24].

In [41–44] we presented a few families of superintegrable systems with additional first integrals
which are rational and algebraic functions on coordinates and momenta. In this paper our aim
is to calculate the algebra of nonpolynomial first integrals x3 and y3 and to discuss various
representations of this algebra. This algebra occurs in a standard arithmetic of divisors on elliptic
curves and, therefore, it could belong to a family of algebras associated with the arithmetic of
divisors on more complicated hyperelliptic curves.

2. THE KEPLER PROBLEM

In the original physical problem, configuration space is 6-dimensional, and phase space is 12-
dimensional. A discussion of the traditional topics, such as symmetries, conservation of angular
momentum, conservation of Laplace –Runge – Lenz vector, regularization and so on, may be found
in [3, 19, 20, 25] and many other papers and textbooks.

Our aim is to come back to Euler’s calculations in order to get a family of superintegrable
systems with nonpolynomial first integrals, which cannot be obtained using symmetries. Following
Euler [8], we start with the planar two-center problem. Reduction of the original phase space to the
orbital plane, which Euler described by using a picture, may be found in the Lagrange textbook [26].

2.1. Motion in an Orbit

Let us introduce elliptic coordinates on an orbital plane. If r and r′ are the distances from a
point on the plane to the fixed centers, then the elliptic coordinates u1,2 are

r + r′ = 2u1, r − r′ = 2u2.

If the centers are taken to be fixed at −κ and κ on the OX-axis of the Cartesian coordinate system,
then we have the standard Euler definition of elliptic coordinates on the plane

q1 =
u1u2
κ

and q2 =

√
(u21 − κ2)(κ2 − u22)

κ
. (2.1)

Coordinates u1,2 are curvilinear orthogonal coordinates, which take values only in the intervals

u2 < κ < u1,

i. e., they are locally defined coordinates. The corresponding momenta are given by

p1 =
u1u2(pu1u1 − pu2u2)− κ2(pu1u2 − pu2u1)

κ(u21 − u22)
,

p2 =
(pu1u1 − pu2u2)

√
u21 − κ2

√
κ2 − u22

κ(u21 − u22)
.

(2.2)

For the planar Kepler problem with one center of attraction at point (κ, 0), which is a partial case
of Euler’s two-center problem, the Hamiltonian and the first integral are equal to

2H = I1 = p21 + p22 +
α

r
, I2 =

α(r2 − r′2)

4r
− (κ2 + q22)p

2
1 − 2q1q2p1p2 − q21p

2
2. (2.3)

In elliptic coordinates these integrals of motion have the following form:

I1 =
(u21 − κ2)p2u1

u21 − u22
+

(u22 − κ2)p2u2

u22 − u21
+

α

u1 + u2
,

I2 =
u22(u

2
1 − κ2)pu2

1

u22 − u21
+

u21(u
2
2 − κ2)p2u2

u21 − u22
+

αu1u2
u1 + u2

.

(2.4)

Substituting the solutions of these equations with respect to pu1 and pu2 into the equations of
motion

du1
dt

= {u1,H} =
(u21 − κ2)pu1

u21 − u22
,

du2
dt

= {u2,H} =
(u22 − κ2)pu2

u22 − u21
,
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we obtain differential equations of the form

du1√
(u21 − κ2)(I1u21 − αu1 + I2)

=
dt

u21 − u22
,

du2√
(u22 − κ2)(I1u

2
2 − αu2 + I2)

= − dt

u21 − u22
,

After integration of the sum of these equations one gets a sum of Abelian integrals
∫

du1√
(u21 − κ2)(I1u21 − αu1 + I2)

+

∫
du2√

(u22 − κ2)(I1u22 − αu2 + I2)
= const (2.5)

involving holomorphic differentials on the elliptic curve X (1.3) defined by the equation

X : Φ(x, y) = y2 − f(x) = 0, f(x) = I1x
4 − αx3 + (I2 − I1κ

2)x2 + κ2αx− I2κ
2. (2.6)

Here I1,2 are values of the integrals of motion, for terminology and discussion, see Lagrange’s
textbook [26] and comments by Darboux and Serret [4, 31].

2.2. Motion in an Elliptic Curve

Using the sum of Abelian integrals (2.5), we can transfer from classical mechanics to algebraic
geometry and, in particular, to divisors arithmetic on elliptic curves. Indeed, the coordinates of
movable points P1,2(t) in the equation of motion along the elliptic curve X (1.4) are

x1 = u1, y1 = (u21 − κ2)pu1 and x2 = u2, y2 = (u22 − κ2)pu2 .

Because

u2 < κ < u1 ⇒ x1 �= x2 ⇒ (x3, y3) �= (∞,∞),

the abscissa x3 and the ordinate y3 of the fixed point P3 are well-defined finite functions on T ∗
R
2.

In order to calculate affine coordinates of the fixed point P3, we have to consider the intersection
of X and the parabola Y with a fixed leading coefficient

Y : y = P(x), P(x) =
√
a4x

2 + b1x+ b0,

see [1, 17, 18] for details. Solving equations

y1 =
√
a4x

2
1 + b1x1 + b0 and y2 =

√
a4x

2
2 + b1x2 + b0

with respect to b1 and b0, we calculate standard interpolation by Lagrange for the polynomial

P(x) =
√
a4x

2 + b1x+ b0 =
√
a4(x1 − x)(x2 − x) +

(x− x2)y1
x1 − x2

+
(x− x1)y2
x2 − x1

. (2.7)

Substituting y = P(x) into f(x)− y2 = 0, we obtain Abel’s polynomial

ψ = f(x)− P2(x)

= (a3 − 2b1
√
a4)x

3 + (a2 − 2b0
√
a4 − b21)x

2 + (a1 − 2b0b1)x+ a0 − b20
= (a3 − 2b1

√
a4)(x− x1)(x− x2)(x− x3).

Evaluating coefficients of this polynomial, we determine the abscissa of the fixed point P3 in (1.4)

x3 = −x1 − x2 −
2b0

√
a4 + b21 − a2

2b1
√
a4 − a3

(2.8)

and its ordinate

y3 = −P(x3) = −√
a4x

2
3 − b1x3 − b0, (2.9)

where b1 and b0 are functions of coordinates of the movable points x1, x2 and y1, y2 defined by
Eq. (2.7).
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Now we come back from divisor arithmetics to classical mechanics. For the Kepler problem we
have

a4 = I1, a3 = −α, a2 = (I2 − κ2I1), a1 = κ2α, a0 = −κ2I2,

so the abscissa of the fixed point P3 is equal to

x3 =
2
(
κ2(pu1u2−pu2u1)−u1u2(pu1u1+pu2u2)

)(√
I1(u2

1−u2
2)−κ2(pu1−pu2)+pu1u

2
1−pu2u

2
2

)
−α(u1−u2)2(κ2+u1u2)

(u2
1−u2

2)
(
2
√
I1(κ2(pu1−pu2)−pu1u

2
1+pu2u

2
2)+2κ2(p2u1−p2u2)−2p2u1u

2
1+2p2u2u

2
2−α(u1−u2)

) .

The ordinate y3 (2.7) is equal to

y3 = −
√
I1(u1 − x3)(u2 − x3)−

(x3 − u2)(κ
2 − u21)pu1

u1 − u2
− (x3 − u1)(κ

2 − u22)pu2

u2 − u1
.

Here I1 is given by (2.4) and, therefore, x3 and y3 are algebraic functions on u1,2 and pu1,2 .

In [8, 9] Euler introduced the algebraic first integral C (1.5), which is nothing more than a
square of angular momentum in the Kepler case:

C = 2a4x
2
3 + a3x3 + a2 − 2

√
a4y3 =

(u21 − κ2)(u22 − κ2)(pu1 − pu2)
2

(u1 − u2)2

= −
(
p1q2 − (q1 − κ)p2

)2
.

It is well known that the existence of this first integral C is related to the rotational symmetry of
the orbital plane around the center of attraction. The algebraic first integrals x3 and y3 have no
obvious physical meaning, but they have a trivial geometric description as affine coordinates of the
fixed point on the elliptic curve X.

2.3. Symmetry Breaking

Let us consider noncanonical transformations of momenta preserving symmetries of configuration
space, but breaking symmetry between divisors [16, 36–39, 41–43].

It is easy to see that the transformation of momenta

pu1 → pu1

m
and pu2 → pu2

n
, (2.10)

where m and n are rational numbers, preserves the only symmetry of the potential part of first
integrals and breaks the symmetry of whole integrals of motion (2.3), which now have the form

2H = I1 =
u21 − κ2

u21 − u22

(pu1

m

)2
+

u22 − κ2

u22 − u21

(pu2

n

)2
+

α

u1 + u2
,

I2 =
u22(u

2
1 − κ2)

u22 − u21

(pu1

m

)2
+

u21(u
2
2 − κ2)

u21 − u22

(pu2

n

)2
+

αu1u2
u1 + u2

.

(2.11)

In Cartesian coordinates on the plane the Hamiltonians (2.11) read as

H =
(m2 + n2)(p21 + p22)

4m2n2
+

(m2 − n2)
(
(κ2 − q21 + q22)(p

2
1 − p22) + 4q1q2p1p2

)

4m2n2rr′
+

α

2r
.

According to [41, 42], these Hamiltonians (2.11) are superintegrable Hamiltonians because this
noncanonical transformation sends the original sum of elliptic integrals (2.5) to the sum

m

∫
du1√

(u21 − κ2)(I1u21 − αu1 + I2)
+ n

∫
du2√

(u22 − κ2)(I1u22 − αu2 + I2)
= const (2.12)

i. e., to the sum of elliptic integrals with integer coefficients

m1n2

∫
du1√

(u21 − κ2)(I1u21 − αu1 + I2)
+ n1m2

∫
du2√

(u22 − κ2)(I1u22 − αu2 + I2)
= const.
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Here we present the rational numbers m = m1/m2 and n = n1/n2 as the ratio of integer numbers.
The corresponding first integrals of motion on the elliptic curve X were obtained in Problem 83 of
Euler’s textbook [9].

Below, without loss of generality we consider only the positive integer numbers m and n. In this
case, the sum of elliptic integrals (2.12) generates the well-studied arithmetic equation for divisors
on elliptic curves

[m]P1(t) + [n]P2(t) = P3, (2.13)

see [9, 27, 32]. Here [k]P means scalar multiplication of a point on an elliptic curve on the integer
number k ∈ Z, and we denote the coordinates of [k]P = [k](x, y) as ([k]x, [k]y), whereas notations
for the coordinates of P3 in (2.13) remain the same, x3 and y3.

In order to get the coordinates of the fixed point P3 in (2.13), we have to:

1) Multiply divisors P1,2 by integer numbers m and n using a recursion procedure proposed
by Euler [9] or using standard expressions for scalar multiplication on elliptic curves,
see [27, 32, 40] and references therein.

2) Add divisors [m]P1 and [n]P2. Because points [m]P1 and [n]P2 belong to the intersection
divisor of X and Y , we can use the equation of parabola Y

[m]y1 =
√
a4 · ([m]x1)

2 + b1 · [m]x1 + b0 and [n]y2 =
√
a4 · ([n]x2)2 + b1 · [n]x2 + b0

in order to calculate its coefficients b1 and b0. After that we substitute ai, bi and [m]x1, [m]y1
and [n]x2, [n]y2 into (2.8) and (2.9) and obtain the coordinates of the fixed point P3 in (2.13):

x3 = −[m]x1 − [n]x2 −
2b0

√
a4 + b21 − a2

2b1
√
a4 − a3

, y3 = −√
a4x

2
3 − b1x3 − b0. (2.14)

Following [9], we can also determine Euler’s first integral of equation of motion (2.13) on X:

Cmn = 2a4x3 + a3x3 + a2 − 2
√
a4y3

=

(
[m]y1 − [n]y2
[m]x1 − [n]x2

)2

− a4
(
[m]x1 + [n]x2

)2 − a3
(
[m]x1 + [n]x2

)
.

(2.15)

3) Identify affine coordinates on the projective plane with elliptic coordinates on phase space

x1 = u1, y1 = (u21 − κ2)
pu1

m
and x2 = u2, y2 = (u22 − κ2)

pu2

n
(2.16)

so that the constants of divisor motion on the elliptic curve X become first integrals of the
Hamiltonian vector field in T ∗

R
2.

At m = n the first integral Cmn (2.15) is a square of angular momentum relating to rotational
symmetry. At m �= n all first integrals x3, y3 (2.14) and Cmn (2.15) are algebraic functions in phase
space. Some explicit expressions of these first integrals may be found in [42] .

Now we are ready to formulate the main result in this note.

Proposition 1. Functions I1, I2 (2.11) and x3, y3 (2.14) in phase space T ∗
R
2 can be considered as

a representation of the following algebra of the first integrals

{I1, I2} = 0, {I1, x3} = 0, {I1, y3} = 0,

{I2, x3} = Φy(x3, y3), {I2, y3} = −Φx(x3, y3), {x3, y3} = κ2 − x23
(2.17)

labelled by two integer numbers m and n. Here

Φy(x, y) =
∂Φ(x, y)

∂y
= 2y and Φx(x, y) =

∂Φ(x, y)

∂x
= −(4I1x

3 − 3αx2 + 2(I2 − κI1)x+ ακ2)

are derivatives of function Φ(x, y) from the definition of the elliptic curve X (2.6), and {. , .} is the
standard canonical Poisson bracket

{u1, u2} = 0, {pu1 , pu2} = 0, {ui, puj} = δij .
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The Poisson brackets (2.17) are derived from the brackets

{Ii, Ij} = {ωi, ωj} = 0, {Ii, ωj} = δij ,

between the action variables I1,2 (2.11) and the angle variables

ω1 = m

∫
u21du1√

(u21 − κ2)(I1u21 − αu1 + I2)
+ n

∫
u22du2√

(u22 − κ2)(I1u22 − αu2 + I2)
,

ω2 = m

∫
du1√

(u21 − κ2)(I1u21 − αu1 + I2)
+ n

∫
du2√

(u22 − κ2)(I1u22 − αu2 + I2)
.

Here we use indefinite integrals determined only up to an additive constant following Euler [9],
Abel [1], Jacobi [22] and Stäckel [33], see also [2, 17] for a discussion.

In (2.17) the form of the bracket {x3, y3} coincides with the form of original brackets {x1, y1}
and {x2, y2}. Two remaining nontrivial brackets can be rewritten in the following form:

{Φ(x, y), x3} =
∂Φ

∂I2

∂Φ

∂y

∣∣
∣
∣
P3

and {Φ(x, y), y3} = − ∂Φ

∂I2

∂Φ

∂x

∣∣
∣
∣
P3

, (2.18)

which is reminiscent of Hamiltonian equations of motion. The first time brackets (2.17) appeared
when we studied superintegrable systems associated with the elliptic curve in the short Weierstrass
form [42, 44]. Below we discuss similar algebras of the first integrals for other superintegrable
systems associated with the elliptic curve.

3. HARMONIC OSCILLATOR

Let us consider a 2D harmonic oscillator with the following Hamiltonian and additional integral
of motion:

2H = I1 = p21 + p22 − α2(q21 + q22), I2 = (p21 − α2q21)κ
2 − (p1q2 + p2q1)

2,

which is a shifted square of angular momentum. In the elliptic coordinates (2.1) and (2.2) these
constants of motion are equal to

I1 =
(u21 − κ2)p2u1

u21 − u22
+

(u22 − κ2)p2u2

u22 − u21
+ α2(κ2 − u21 − u22),

I2 = −
u22(u

2
1 − κ2)p2u1

u21 − u22
−

u21(u
2
2 − κ2)p2u2

u22 − u21
+ α2u21u

2
2.

(3.1)

Rewriting the equations of motion

du1
dt

= {u1,H} =
(u21 − κ2)pu1

u21 − u22
,

du2
dt

= {u2,H} =
(u22 − κ2)pu2

u22 − u21

in the form

du1
pu1

=
dt

u21 − u22
,

du2
pu2

= − dt

u21 − u22
,

we can eliminate time and obtain the equation

du1
pu1

+
du2
pu2

= 0.

Substituting the solutions of Eqs. (3.1) with respect to pu1,2 into this expression and integrating,
we obtain a standard equation defining the form of the trajectories [26]:
∫

du1√
(u21 − κ2)(α2u41 + (I1 − α2κ2)u21 + I2)

+

∫
du2√

(u22 − κ2)(α2u42 + (I1 − α2κ2)u22 + I2)
= const.
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This equation is reduced to (1.1) using Euler’s substitution u2i = xi, which allows us to consider
the evolution of divisors on the elliptic curve X

X : Φ(x, y) = y2 − f(x) = 0, f(x) = α2x4 + (I1 − 2α2κ2)x3 + (α2κ4 − I1κ
2 + I2)x

2 − κ2I2x
(3.2)

governed by Eq. (1.4)

P1(t) + P2(t) = P3.

The coordinates of the movable points P1,2(t) are

x1 = u21, y1 = (u21 − κ2)u1pu1 and x2 = u22 , y2 = (u22 − κ2)u2pu2 .

The abscissa of the fixed point x3 (2.8) reads as

x3 = −
(
(u2

1−κ2)u2pu1−(u2
2−κ2)u1pu2+αu1u2(u2

1−u2
2)

)2

(u2
1−u2

2)
(
(κ2−u2

1)p
2
u1

−(κ2−u2
2)p

2
u2

+2α(u1(κ2−u2
1)pu1−u2(κ2−u2

2)pu2)+α2(κ2−u2
1−u2

2)(u
2
1−u2

2)
) .

The ordinate y3 (2.9) is a more lengthy rational function in elliptic coordinates, which we do not
present for brevity, whereas Euler’s integral (1.5) is the following simple polynomial:

C = −(p1q2 + p2q1)
2 − κ2I1 + α2κ4.

The existence of the polynomial first integrals I1, I2 and C is related to symmetries of equations of
motion in the original physical space. The existence of nonpolynomial first integrals x3 and y3 is
related to motion along the elliptic curve X around the fixed point P3.

The symmetry breaking transformation (2.10) generates polynomial integrals of motion

I1 =
u21 − κ2

u21 − u22

(pu1

m

)2
+

u22 − κ2

u22 − u21

(pu2

n

)2
+ α2(κ2 − u21 − u22)

I2 =
u22(u

2
1 − κ2)

u22 − u21

(pu1

m

)2
+

u21(u
2
2 − κ2)

u21 − u22

(pu2

n

)2
+ α2u21u

2
2.

(3.3)

In Cartesian coordinates on the plane superintegrable Hamiltonians in (3.3) read as

H =
(m2 + n2)(p21 + p22)

4m2n2
+

(m2 − n2)
(
(κ2 − q21 + q22)(p

2
1 − p22) + 4q1q2p1p2

)

4m2n2rr′
− α2(q21 + q22)

2
,

where r, r′ and κ appear in the definition of elliptic coordinates. The corresponding first integrals
x3, y3 (2.14) and Cmn (2.15) are rational functions at m �= n. Some particular expressions for these
first integrals may be found in [42].

Proposition 2. Functions I1, I2 (3.3) and x3, y3 (2.14) on T ∗
R
2 can be considered as a represen-

tation of the following algebra of the first integrals:

{I1, I2} = 0, {I1, x3} = 0, {I1, y3} = 0,

{I2, x3} = 2Φy(x3, y3), {I2, y3} = −2Φx(x3, y3), {x3, y3} = 2x3(κ
2 − x23),

(3.4)

labelled by two integer numbers m and n. Here

Φy(x, y) = 2y , −Φx(x, y) = 4α2x3 + 3(I1 − 2α2κ2)x2 + 2(α2κ4 − κ2I1 + I2)x− κ2I2

are derivatives of function Φ(x, y) from the definition of the elliptic curve X (3.2), and {. , .} is the
standard canonical Poisson bracket.

As in Section 2, the algebra of the first integrals (3.4) is derived from the Poisson brackets between
the corresponding action-angle variables. We also have a computer-assisted proof of this proposition
at m = 1, 2, 3 and n = 1, 2, 3.

This algebra of the first integrals (3.4) slightly differs from (2.17) because in the Kepler problem
we take x1,2 = u1,2, whereas for the oscillator we have to put x1,2 = u21,2 and, therefore, we have
different Poisson brackets between the coordinates of movable points.
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3.1. Smorodinsky –Winternitz System

In order to obtain the so-called Smorodinsky –Winternitz system [10], we have to start with the
elliptic curve X defined by the equation Φ(x, y) = y2 − f(x) = 0 with

f(x) = α2x4 + (I1 − 2α2κ2)x3 + (α2κ4 − I1κ
2 + I2 − 2β − γ)x2 − κ2(I2 − 4β + δ)x− 2βκ4 (3.5)

instead of (3.2). Equation (2.13)

[m]P1(t) + [n]P2(t) = P3

determines the evolution of two moving points around a third fixed point in the intersection divisor.
Coefficients I1,2 of polynomial f(x) together with coordinates (x3, y3) of the fixed point P3 are
constants of the divisor motion.

The constants of the divisor motion give rise to the first integrals on phase space, which can be
calculated using the standard algorithm:

• identify the affine coordinates of movable points P1,2(t) on the projective plane with elliptic
coordinates and momenta in phase space

x1 = u21, y1 = (u21 − κ2)u1
pu1

m
and x2 = u22, y2 = (u22 − κ2)u2

pu2

n
;

• solve a pair of equations Φ(x1, y1) = 0 and Φ(x2, y2) with respect to I1, I2;

• calculate first integrals associated with affine coordinates (x3, y3) (2.14) of the fixed point P3.

After that we can verify that functions I1, I2 and x3, y3 on T ∗
R
2 satisfy the Poisson brackets (3.4).

For the curve X (3.5) one gets the following Hamiltonian:

H =
I1
2

= Tmn − α2

2
(q21 + q22) +

β

q21
+

γ

q22
.

Here the potential part is independent of the integer numbers m and n, whereas the kinetic
energy Tmn is

Tmn =
u21 − κ2

u21 − u22

(pu1

m

)2
+

u22 − κ2

u22 − u21

(pu2

n

)2

=
(m2 + n2)(p21 + p22)

4m2n2
+

(m2 − n2)
(
(κ2 − q21 + q22)(p

2
1 − p22) + 4q1q2p1p2

)

4m2n2rr′
,

where r, r′ and κ appear in Euler’s definition of elliptic coordinates on the plane. At m = n = 1
this Hamiltonian coincides with the Hamiltonian of the Smorodinsky–Winternitz system [10].

4. DRACH SYSTEM

In 1935 Jules Drach classified Hamiltonian systems in T ∗
R
2 with third-order integrals of

motion [7]. Below we consider the so-called (h) Drach system associated with an elliptic curve,
see [35–37] for details of classification. Possible generalizations of the Drach systems are discussed
in [28].

The (h) Drach system is defined by the Hamiltonian

H = I1 = p1p2 − 2α(q1 + q2)− β

(
q1

2
√
q2

+
3
√
q2

2

)
− γ

2
√
q2

and the first integral

I2 = (q1 + q2)p1p2 − q1p
2
1 − q2p

2
2 − α(q1 − q2)

2 − β(q1 − q2)
2

2
√
q2

− γ(q1 − q2)

2
√
q2

.
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After canonical point transformation of variables

q1 =
(u1 − u2)

2

4
, p1 =

pu1 − pu2

u1 − u2
, q2 =

(u1 + u2)
2

4
, p2 =

pu1 + pu2

u1 + u2

the integrals of motion look like

I1 =
p2u1

u21 − u22
+

p2u2

u22 − u21
− α(u21 + u22)−

β(u21 + u1u2 + u22)

u1 + u2
− γ

u1 + u2

I2 =
u22p

2
u1

u21 − u22

u21p
2
u2

u22 − u21
− αu21u

2
2 −

βu21u
2
2

u1 + u2
+

γu1u2
u1 + u2

.

Solving these equations with respect to pu1 and pu2 , we obtain the separated relations

Φi(ui, pui) = p2ui
−

(
αu4i + βu3i + I1u

2
i + γui − I2

)
, i = 1, 2. (4.1)

Following [33], we determine the Stäckel matrix S with entries

Sij =
∂Φj

∂Ii
(4.2)

and Stäckel angle variables

ω1 =
1

2

∫
S11du1
pu1

+
1

2

∫
S12du2
pu2

, ω2 =
1

2

∫
S21du1
pu1

+
2

2

∫
S22du2
pu2

,

which can be rewritten in a standard form for the Stäckel systems with n degrees of freedom

ωj = −
n∑

i=1

∫ Pi ∂Φ(x, y)/∂Ij
∂Φ(x, y)/∂y

dx , (4.3)

using the separated relations (4.1), the definition of the Stäckel matrix (4.2) and the definition of
points Pi = (xi, yi) on the hyperelliptic curve X, see [34].

In action-angle variables I1,2 and ω1,2 the equations of motion and the symplectic form look like

İi = 0 , ω̇i =
∂H

∂Ii
, Ω = dI1 ∧ dω1 + dI2 ∧ dω2.

Because H = I1, the differential equations are trivially reduced to quadratures, for instance,

I1,2 = const, ω2 = −1

2

2∑

i=1

∫ Pi dx1√
αx4 + βx3 + I1x2 + γx− I2

= const.

The relation ω2 = const involves the sum of Abelian integrals with holomorphic differentials on X
and, therefore, it defines the swing of two points around a third fixed point on the elliptic curve (1.4)

P1(t) + P2(t) = P3.

In the Drach case the coordinates of moving points are a simple function on physical variables

x1 = u1, y1 = pu1 , x2 = u2, y2 = pu2 ,

and, therefore, the abscissa of the fixed point P3 is a quite observable rational function

x3 = −2(u2
1−u2

2)(u2pu1−u1pu2)
√
α+u1u2(u1−u2)2β−(u1−u2)2γ−2(pu1−pu2)(u2pu1−u1pu2)(

2(u2
1−u2

2)(u1+u2)α−2(pu1−pu2)
√
α+(u1−u2)β

)
(u2

1−u2
2)

,

similar to Euler’s integral (1.5), which is the following polynomial in momenta:

C =
(pu1 − pu2)

2

(u1 − u2)2
− (u1 + u2)

2α− (u1 + u2)β.
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Let us apply the symmetry breaking transformation (2.10) to this superintegrable Stäckel system.
The action variables I1,2 associated with the equation

[m]P1(t) + [n]P2(t) = P3

are equal to

I1 =
p2u1

/m2

u21 − u22
+

p2u2
/n2

u22 − u21
− α(u21 + u22)−

β(u21 + u1u2 + u22)

u1 + u2
− γ

u1 + u2
,

I2 =
u22p

2
u1
/m2

u21 − u22
+

u21p
2
u2
/n2

u22 − u21
− αu21u

2
2 −

βu21u
2
2

u1 + u2
+

γu1u2
u1 + u2

.

(4.4)

In original Cartesian coordinates the Hamiltonian in (4.4) has the form

I1 =
(m2 + n2)p1p2

2m2n2
+

(m2 − n2)(
√
q1 +

√
q2)

2(q1p
2
1 + q2p

2
2)

4n2m2(
√
q1q2 + q1)(

√
q1q2 + q2)

− 2α(q1 + q2)− β

(
q1

2
√
q2

+
3
√
q2

2

)
− γ

2
√
q2
.

Following [29], we can say that at m �= n these Hamiltonians describe the motions of the body with
a position-dependent mass.

The corresponding Stäckel angle variables

ω1 =
m

2

∫
S11du1
pu1

+
n

2

∫
S12du2
pu2

, ω2 =
m

2

∫
S21du1
pu1

+
n

2

∫
S12du2
pu2

involve a holomorphic differential on the elliptic curve, which allows us to calculate the coordinates
of the fixed point using the arithmetic equation (2.14).

At m = 2 and n = 1 the abscissa of the fixed point P3 remains a quite observable rational
function if β = γ = 0

x3 = −u2 − (u21 − u22)pu1

(
1

2
√
αu1(u21 − u22) + u2pu1 − 2u1pu2

+
1

2
√
αu1(u21 − u22)− u2pu1+2u1pu2

)
.

This expression was obtained using doubling of the point P1 = (u1, pu1/2) and addition (2.14) of
points [2]P1 and P2 = (u2, pu2) on the elliptic curve X.

At m = 3 and n = 1 the abscissa of the fixed point P3 is a bulky function even if β = γ = 0

x3 = − (u2pu1 + 3u1pu2)(u2pu1 − 3u1pu2)
2

3
√
α
(
(4u21 − u22)p

2
u1

− 6u1u2pu1pu2 − 9u21p
2
u2

)
(u21 − u22)

+ 6
√
α(u21 − u22)u

2
1p

2
u1

(
(u1 − u2)

2

A−
− (u1 + u2)

2

A+

)
,

where

A+ =
(
9αu21(u

2
1 − u22)

2 + (u2pu1 − 3u1pu2)
(
(2u1 + u2)pu1 + 3u1pu2

))(
(2u1 + u2)pu1 + 3u1pu2

)

and

A− =
(
9αu21(u

2
1 − u22)

2 − (u2pu1 − 3u1pu2)
(
(2u1 − u2)pu1 − 3u1pu2

))(
(2u1 − u2)pu1 − 3u1pu2

)
.

This expression was obtained using tripling of the point P1 = (u1, pu1/3) and addition (2.14) of the
points [3]P1 and P2 = (u2, pu2) on the elliptic curve X.

Proposition 3. Functions I1, I2 (4.4) and x3, y3 (2.14) on T ∗
R
2 can be considered as a represen-

tation of the following algebra of the first integrals:

{I1, I2} = 0, {I1, x3} = 0, {I1, y3} = 0,

{I2, x3} = Φy(x3, y3), {I2, y3} = −Φx(x3, y3), {x3, y3} = 1
(4.5)
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labelled by two integer numbers m and n. Here

Φy(x, y) = 2y, −Φx(x, y) = 4αx3 + 3βx2 + 2I1x+ γ

are derivatives of function Φ(x, y) from the definition of the elliptic curve X (4.1), and {. , .} is the
canonical Poisson bracket.

This algebra is derived from the Poisson bracket between the corresponding action-angle variables.
We also have a computer-assisted proof of this proposition at m = 1, 2, 3 and n = 1, 2, 3.

Thus, the so-called (h) Drach system belongs to a family of two-dimensional superintegrable

systems associated with elliptic curves of the form X : Φ(x, y) = y2 − f (k)(x), where

f (1)(x) = αx4 + βx3 + γx2 + I1x+ I2, f (2)(x) = αx4 + βx3 + I2x
2 + γx+ I2,

f (3)(x) = αx4 + I2x
3 + βx2 + γx+ I2, f (4)(x) = I1x

4 + αx3 + βx2 + γx+ I2,

and the equation of motion

[m]P1(t) + [n]P2(t) = P3, m, n ∈ Z.

For all these superintegrable systems the algebra of the first integrals has the standard form (4.5)
which directly follows from the Poisson brackets between action-angle variables.

5. 3D SUPERINTEGRABLE STÄCKEL SYSTEM ON AN ELLIPTIC CURVE

Let us consider a Stäckel system associated with the symmetric product X ×X ×X of the
elliptic curve X defined by an equation of the form

X : Φ(x, y) = y2 − f(x) = 0, f(x) = αx4 + βx3 + I1x
2 + I2x+ I3. (5.1)

If we identify the coordinates of the points on each copy of X in X ×X ×X with canonical
coordinates in T ∗

R
3

x1 = u1 , y1 = pu1 , x2 = u2, y2 = pu2 , x3 = u3 , y3 = pu3 ,

we obtain the action variables I1, I2 and I3:

I1 =
p2u1

(u1 − u3)(u1 − u2)
+

p2u2

(u2 − u3)(u2 − u1)
+

p2u3

(u3 − u1)(u3 − u2)

− (u21 + u22 + u23 + u1u2 + u1u3 + u2u3)α− (u1 + u2 + u3)β,

I2 = −
(u2 + u3)p

2
u1

(u1 − u3)(u1 − u2)
−

(u1 + u3)p
2
u2

(u2 − u3)(u2 − u1)
−

(u1 + u2)p
2
u3

(u3 − u1)(u3 − u2)

+ (u1 + u2)(u1 + u3)(u2 + u3)α+ (u1u2 + u1u3 + u2u3)β,

I3 =
u2u3p

2
u1

(u1 − u3)(u1 − u2)
+

u1u3p
2
u2

(u2 − u3)(u2 − u1)
+

u1u2p
2
u3

(u3 − u1)(u3 − u2)

− u1u2u3(u1 + u2 + u3)α− u1u2u3β

(5.2)

solving the separated relations Φ(ui, pui , I1, I2, I3) = 0 with respect to I1, I2 and I3. Substituting
the solutions of the same separated relations with respect to pu1 , pu2 and pu3 into the Stäckel
definition (4.3), we get standard angle variables

ω1 = −
∫

u21du1√
f(u1)

−
∫

u22du2√
f(u2)

−
∫

u23du3√
f(u3)

,

ω2 = −
∫

u1du1√
f(u1)

−
∫

u2du2√
f(u2)

−
∫

u3du3√
f(u3)

,

ω3 = −
∫

du1√
f(u1)

−
∫

du2√
f(u2)

−
∫

du3√
f(u3)

.
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The equation of motion ω3 = const involves a holomorphic differential on the elliptic curve and,
therefore, it is equivalent to an arithmetic equation for divisors on X

P1(t) + P2(t) + P3(t) = P4. (5.3)

This equation describes the swing of parabola Y

Y : y = P(x), P(x) = b2(t)x
2 + b1(t)x+ b0(t)

around some fixed point P4 on X. Because four points P1, P2, P3 and −P4 form an intersection
divisor of X and Y , we can calculate three coefficients b2, b1 and b0 by solving three equations

y1 = b2x
2
1 + b1x1 + b0, y2 = b2x

2
2 + b1x2 + b0, y3 = b2x

2
3 + b1x3 + b0.

Substituting y = P(x) into the definition y2 − f(x) = 0 of X, we obtain Abel’s polynomial

ψ(x) = f(x)− P2(x) = (a4 − b22)(x− x1)(x− x2)(x− x3)(x− x4).

Evaluating the coefficients of this polynomial, we find the coordinates of the fixed point

x4 = −x1 − x2 − x3 −
a3 − 2b1b2
a4 − b22

, y4 = −P(x4),

which are constants of divisor motion (5.3) on the elliptic curve X.

The corresponding rational functions on phase space T ∗
R
3

x4 = −u1 − u2 − u3 −
β − 2b1b2
α− b22

, y4 = −(b2x
2
4 + b1x4 + b0), (5.4)

where

b2 =
(u2 − u3)pu1 + (u3 − u1)pu2 + (u1 − u2)pu3

(u1 − u2)(u1 − u2)(u2 − u3)
,

b1 = −(u22 − u23)pu1 − (u23 − u21)pu2 − (u21 − u22)pu3

(u1 − u2)(u1 − u2)(u2 − u3)
,

b0 =
u2u3(u2 − u3)pu1 + u1u3(u3 − u1)pu2 + u1u2(u1 − u2)pu3

(u1 − u2)(u1 − u2)(u2 − u3)
,

are first integrals of the dynamical system determined by the Hamiltonian H(I1, I2, I3) and
canonical Poisson brackets.

After the symmetry breaking transformation (2.10)

pu1 →
pu1

m
, pu2 → pu2

n
, pu3 → pu3

k

the equation of motion (5.3) on X becomes

[m]P1(t) + [n]P2(t) + [k]P3(t) = P4, m, n, k ∈ Z.

The affine coordinates of the constant part of the intersection divisor are given by

x4 = −[m]x1 − [n]x2 − [k]x3 −
a3 − 2b1b2
a4 − b22

, y4 = −P(x4),

where the parabola Y : y = P(x) is now defined by using Lagrange interpolation by movable points
[m]P1, [n]P2 and [k]P3 on the elliptic curve X, where

P1 = (u1, pu1/m), P2 = (u2, pu2/n), P3 = (u3, pu3/k).

Proposition 4. Functions I1, I2, I3 (5.2) and x4, y4 (5.4) in phase space T ∗
R
3 can be considered

as a representation of the following algebra of the first integrals:

{I1, I2} = 0, {I1, I3} = 0, {I1, x3} = 0, {I1, y3} = 0,

{I2, I3} = 0, {I2, x3} = 0, {I2, y3} = 0,

{I3, x4} = Φy(x4, y4), {I3, y4} = −Φx(x4, y4), {x4, y4} = 1.

(5.5)
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Here

Φy(x, y) =
∂Φ(x, y)

∂y
= 2y and Φx(x, y) =

∂Φ(x, y)

∂x
= −(4αx3 + 3βx2 + 2I1x+ I2)

are derivatives of function Φ(x, y) from the definition of the elliptic curve X (5.1) and {. , .} is the
canonical Poisson bracket.

This algebra is derived from the Poisson bracket between the corresponding action-angle variables.
We also have a computer-assisted proof of this proposition at m = n = k.

The algebra of the first integrals (5.5) slightly differs from the algebra (2.17) in the Kepler case.
Abel’s subalgebra of (5.5) consists of two elements I1 and I2, whereas Abel’s subalgebra of (2.17)
has only one central element I1.

Summing up, we can construct six families of superintegrable systems using elliptic curves of
the form X : Φ(x, y) = y2 − f (k)(x), where

f (1)(x) = αx4 + βx3 + I1x
2 + I2x+ I3, f (2)(x) = αx4 + I1x

3 + βx2 + I2x+ I3,

f (3)(x) = αx4 + I1x
3 + I2x

2 + βx+ I3, f (4)(x) = I1x
4 + αx3 + βx2 + I2x+ I3,

f (5)(x) = I1x
4 + αx3 + I2x

2 + βx+ I3, f (6)(x) = I1x
4 + I2x

3 + αx2 + βI2x+ I3,

and the intersection divisor equation of motion

[m]P1(t) + [n]P2(t) + [k]P3(t) = P4, m, n, k ∈ Z.

For all these superintegrable systems the algebra of the first integrals has the standard form (5.5)
which directly follows from the Poisson brackets between action-angle variables. Following [29],
we can say that the Hamiltonians I1, I2 and I3 describe the motion of the body in T ∗

R
3 with a

position-dependent mass.

6. CONCLUSION

The equations of motion

żi = {H, zi}, zi ∈ T ∗
R
n

for the Stäckel systems on a symmetrized product X × · · · ×X of the hyperelliptic curve X are
equivalent to the equation of motion

divX · Y (t) = 0

describing the evolution of the intersection divisor of X and the auxiliary curve Y (t). For
superintegrable Stäckel systems, the intersection divisor can be divided into moving and fixed
parts

divX · Y (t) = D(t) +D′ = 0,

according to Abel’s theorem. It is clear that the constants of divisor motion are the coordinates of
fixed part D′ of the intersection divisor, and integrals of motion in phase space are some functions
on these constants of divisor motion. Thus, the algebra of the first integrals in phase space can
be obtained from the algebra of the constants of divisor motion, which is easily obtained from the
Poisson brackets between the Stäckel action-angle variables.

In this note we calculate the algebra of the constants of divisor motion associated with the
Kepler problem, harmonic oscillator, Drach system, Stäckel systems with two and three degrees of
freedom and some of their deformations associated with symmetry breaking transformations of the
Stäckel matrices. All these systems are related to various elliptic curves, but we can rewrite the
corresponding algebras of nonpolynomial integrals in a common form.

Scalar multiplication of points on elliptic curves

ϕ : X → X, ϕ(P ) = [m]P

generates a noncanonical transformation of phase space

ψ : T ∗
R
n → T ∗

R
n, ψ(ui) = ui, ψ(pui) = mipui ,
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which changes the form of the kinetic part of the Hamiltonian, but preserves its superintegrability
property. Because multiplication of points on X is a special case of isogenies between elliptic curves,
we suppose that isogeny arithmetics also generates noncanonical transformations of phase space

ψ : T ∗
R
n → T ∗

R
n

preserving superintegrability. If this conjecture is true, than the isogeny volcanoes [30] could gener-
ate superintegrable system volcanoes. In a forthcoming publication, we will discuss this conjecture
and application of Landen –Gauss transformations (2-isogenies) and Vélu’s transformations [32, 45]
to the construction of superintegrable systems associated with elliptic curves.

For superintegrable Stäckel systems on hyperelliptic curves of genus two we have affine coordi-
nates of divisors, Mumford’s coordinates of divisors, modified Jacobian coordinates, Chudnovski-
Jacobian coordinates, mixed coordinates, etc. First integrals associated with these coordinates
could be algebraic, rational or polynomial functions in phase space satisfying various polynomial or
nonpolynomial relations. It is interesting to study these relations associated with various constants
of the divisor motion.

The class of superintegrable or degenerate systems is closely related to the class of bi-Hamiltonian
systems with equations of motion

d

dt
zi = {I1, zi} = {I2, zi}′,

see [15] and references therein. Thus, we have two algebras of divisor motion constants with
respect to compatible Poisson brackets {. , .} and {. , .}′. We suppose that both algebras of the first
integrals are similar to the “Hamiltonian equation of motion” with respect to the “Hamiltonian”
Φ(x, y) (2.18).
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in Oeuvres complétes: Vol. 1, Christiania: Grondahl, 1881, pp. 145–211.

2. Bliss, G.A., Algebraic Functions and Their Divisors, Ann. of Math. (2), 1924, vol. 26, nos. 1–2, pp. 95–
124.

3. Cordani, B., The Kepler Problem: Group Theoretical Aspects, Regularization and Quantization, with
Application to the Study of Perturbations, Prog. Math. Phys., vol. 29, Basel: Birkhäuser, 2003.
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de Berlin, 1767, vol. 16, pp. 228–249; see also: Opera Omnia, Ser. 2: Vol. 6, Basel: Birkhäuser, 1957,
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Lagrange, J. L., Œuvres complètes: Vol. 12, Paris: Gauthier-Villars, 1889, pp. 1–340.

27. Lang, S., Elliptic Curves: Diophantine Analysis, Grundlehren Math. Wiss., vol. 231, New York: Springer,
1978.

28. Maciejewski, A. J., Przybylska, M., and Tsiganov, A.V., On Algebraic Construction of Certain Integrable
and Super-Integrable Systems, Phys. D, 2011, vol. 240, no. 18, pp. 1426–1448.
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