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Abstract—Chow and Luo [3] showed in 2003 that the combinatorial analogue of the Hamilton
Ricci flow on surfaces converges under certain conditions to Thruston’s circle packing metric
of constant curvature. The combinatorial setting includes weights defined for edges of a
triangulation. A crucial assumption in [3] was that the weights are nonnegative. Recently we
have shown that the same statement on convergence can be proved under a weaker condition:
some weights can be negative and should satisfy certain inequalities [4].
On the other hand, for weights not satisfying conditions of Chow–Luo’s theorem we observed in
numerical simulation a degeneration of the metric with certain regular behaviour patterns [5].
In this note we introduce degenerate circle packing metrics, and under weakened conditions
on weights we prove that under certain assumptions for any initial metric an analogue of
the combinatorial Ricci flow has a unique limit metric with a constant curvature outside of
singularities.
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1. INTRODUCTION

The Ricci flow on a two-dimensional closed surface was introduced by R.Hamilton in [1]. The
solution for the Ricci flow exists for all time, and after a suitable normalization the solution
converges to a constant curvature metric as time goes to infinity [1, 2].

The combinatorial Ricci flow for triangulated surfaces was introduced by Chow and Luo in [3].
They gave a complete description of the asymptotic behavior of the solution to the combinatorial
Ricci flow under certain assumptions. Both the Euclidean and the hyperbolic background geometry
were considered.

Let us give a brief description of their results. Consider a closed surfaceX with a triangulation T .
Let V = {A1, . . . , AN} be the set of vertices of T . The set of all edges and faces is denoted by E
and F , respectively. A weight is a function w : E → (−1, 1]. Given a triple (X,T,w), Thurston
defined a circle packing metric in the following way (see [6]). To each vertex Aj ∈ V assign a
number rj > 0. For the Euclidean background metric assume that each face is a flat Euclidean
triangle. For an edge eij joining vertices Ai and Aj define its length

lij =
√

r2i + r2j + 2rirjwij,

where wij = wji = w(AiAj). A circle packing metric is a collection r = {rj > 0 : j = 1, . . . , N}.
Clearly, only those r should be considered which define the collection {lij} so that the triangle
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inequalities are satisfied on each face of triangulation. It is not difficult to show that for nonnegative
weights any choice of r = {rj > 0 : j = 1, . . . , N} satisfies this condition, see [6].

The curvature Ki at Ai is defined to be

Ki = 2π −
∑

�AiAjAk∈F
∠AkAiAj . (1.1)

The combinatorial Ricci flow (as appeared in [3] for the first time) in the Euclidean background
is the system of ODE

dri
dt

= −Kiri, i = 1, . . . , N. (1.2)

For the Euclidean background metric it is useful to consider the normalized Ricci flow

dri
dt

= −(Ki −Kav)ri, i = 1, . . . , N, (1.3)

where Kav = 2πχ(X)
N . A function ri(t) is a solution to the Ricci flow (1.2) iff eK

av
ri(t) is a solution

to the normalized Ricci flow (1.3). The circle packing metrics of constant curvature Kj = Kav are

the equilibrium points of (1.3). The product
N∏
i=1

ri is a first integral of the normalized Ricci flow.

Assume I ⊂ V is a proper subset of vertices. Let FI be the subcomplex formed by simplices with
vertices from I. Let Lk(I) be the set of pairs (v, e), v ∈ I, e ∈ E, such that both end points of e
are not in I and v, e form a triangle.

Theorem 1 (see [3]). Suppose (X,T,w) is a triangulation T of a closed connected surface X with
a fixed weight function w � 0. Then for any initial metric r(0) the solution r(t) to the normalized
combinatorial Ricci flow (1.3):

(a) exists for all t � 0;

(b) converges to a metric of constant curvature Kav = 2πχ(X)
N iff for any proper subset I ⊂ V

2π|I|χ(X)/|V | > −
∑

(e,v)∈Lk(I)

(
π − arccosw(e)

)
+ 2πχ(FI); (1.4)

(c) converges to a metric of constant curvature exponentially fast under conditions (1.4) of
statement (b).

For surfaces of negative Euler characteristic it is natural to consider a piece-wise hyperbolic
metric. Namely, assume that each face is a triangle with the hyperbolic metric of constant curvature
−1. The length of the edge eij joining vertices Ai and Aj is defined by the equation

cosh lij = cosh ri cosh rj + sinh ri sinh rjwij.

It is not difficult to show that for nonnegative weights any choice of r = {rj > 0 : j = 1, . . . , N}
defines the collection {lij} so that the triangle inequalities are satisfied on each face of triangulation,
see [6].

The Ricci flow is the system of ODE

dri
dt

= −Ki sinh ri, i = 1, . . . , N. (1.5)

The curvature (or, to be more precise, the defect of the curvature) at Ai is defined by the
formula (1.1).
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Theorem 2 (see [3]). Suppose (X,T,w) is a triangulation T of a closed connected surface X of
negative Euler characteristic with a fixed weight function w � 0. Then for any initial metric r(0)
the solution r(t) to the normalized Ricci flow (1.5):

(a) exists for all t � 0;

(b) converges iff the following two conditions hold:

(b1) if for three edges e1, e2, e3 forming a null-homotopic loop in X one has
3∑

j=1
arccosw(ej) �

π, then these edges form the boundary of a triangle of T ,

(b2) if for four edges e1, e2, e3, e4 forming a null-homotopic loop in X one has
4∑

j=1
arccosw(ej)�

2π, then these edges form the boundary of the union of two adjacent triangles of T ;

(c) converges to a hyperbolic metric with all Ki = 0, provided conditions (b1) and (b2) hold.

The proofs of both theorems are based on representation of the Ricci flow as a negative gradient
flow of some convex function. In its own turn the convexity of the function is based on the following
fact from elementary geometry (Lemma 13.7.3 from Thurston’s book [6], see also [3] Lemma 2.2).
Denote by θi, θj and θk the inner angles of the triangle ΔAiAjAk. Then under the assumption
w ∈ [0, 1] we have ∂θp/∂rp < 0 and ∂θp/∂rq > 0 for p, q ∈ {i, j, k}, p �= q. In our paper [4] we
proved that the same inequalities are true if for any face of the triangulation either all weights
are nonnegative or only one weight is negative, for instance, α < 0, and the other two, β and γ, are
positive, so that α+ βγ � 0. This gives a partial answer to the question from [3] for what choices
of a weight function the statements of Theorems 1 and 2 can be proved. The same conditions were
independently found by Zhou, see [7], and were used by Xu in [8].

On the other hand, in our paper [5] we found several examples for which the statement of
Theorem 1 does not hold. Namely, for the tetrahedron A0A1A2A3 with the weights w01 = w23 =
−0.8, w02 = w12 = w03 = w13 = −0.7 there exist 5 different equilibrium points of (1.2), that is, 5
different constant curvature metrics. One of them is a sink, and the other four are saddle points.
In every saddle point there are two nonattracting separatrices. One of them tends to the sink and
along the other the metric degenerates in such a way that one radius rj tends to zero, while the
other three radii tend to infinity, and at the same time the curvatures have finite limits. These
observations suggest that there should exist a limiting circle packing metric which is in some sense
degenerate.

In the present paper we define a degenerate circle packing metric and prove analogues of
convergence theorems for both the Euclidean and the hyperbolic background geometry under
weakened assumptions on the weight function w. Apparently, these metrics are the limits which
were discussed in problem 3 of Section 7 of [3].

2. BASIC DEFINITIONS

Suppose T is a triangulation of a closed surface X. We assume that a lift of a closed face or an

edge to the universal cover X̃ is an embedding. Denote the sets of vertices, edges and faces of T by V ,
E, F , respectively. Divide the set of vertices into a disjoint union V = Vn � Vd, such that there is no
edge connecting two vertices from Vd. Without loss of generality we can assume Vn = {A1, . . . , AM}
and Vd = {AM+1, . . . , AN}. Vertices from Vn are called nondegenerate and vertices from Vd are
called degenerate. Call a cell of T (that is, an edge or a face) nondegenerate iff all its vertices are
nondegenerate, and degenerate otherwise. Denote the set of (non)degenerate edges and faces by Ed

(En) and Fd (Fn), respectively. Clearly, E = En � Ed and F = Fn � Fd. Sometimes it is useful to
denote a subset of vertices and the corresponding subset of indices by the same symbol.

A weight is a function w : En → (−1, 1]. Fix a triple (X,T,w). A (degenerate) circle packing
metric is defined by a collection of numbers r = (r1, r2, . . . , rN ), where rj > 0 for 1 � j � M and
rj = 0 for M + 1 � j � N . This definition differs from the classical circle packing metric where all
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rj are positive, see [3, 6]. For the Euclidean background define the length of an edge connecting
two vertices Ai and Aj by the formula

l2ij = r2i + r2j + 2rirjwij . (2.1)

For a degenerate edge one of the numbers ri or rj is zero, therefore the last term is assumed to be
zero, although the weight wij is not defined. Moreover, if ri = 0, then lij = rj . The curvature Ki

at the vertex Ai is defined as usual by formula (1.1).
The curvature at a degenerate vertex does not depend on r and can be expressed in terms

of the weight w. Indeed, let Ai ∈ Vd and �AiAjAk ∈ F . Then Aj , Ak ∈ Vn. By the cosine law
cos∠AjAiAk = −wjk, hence ∠AjAiAk = π − arccos(wjk). Therefore, for the curvature Ki we have
the expression

Ki = 2π −
∑

�AiAjAk∈F

(
π − arccos(wjk)

)
. (2.2)

The combinatorial Ricci flow is the system of ODE

dri
dt

= −Kiri, i = 1, . . . ,M. (2.3)

For i = M + 1,M + 2, . . . , N one has ri =
dri
dt = 0, therefore in (2.3) one can assume 1 � i � N .

For a degenerate metric define the averaged curvature Kav :

Kav =
1

M

⎛
⎝2πχ(X)−

N∑
j=M+1

Kj

⎞
⎠ . (2.4)

The normalized combinatorial Ricci flow is the system of ODE

dri
dt

= −(Ki −Kav)ri, i = 1, . . . ,M. (2.5)

The normalized and nonnormalized Ricci flows are in a certain sense equivalent.

Lemma 1. Functions ri(t), i = 1, . . . ,M , are the solution of (2.3) iff functions eK
avtri(t) are the

solution of (2.5).

Proof. Let r̂i(t) = eK
avtri(t). Then

dr̂i(t)

dt
= KaveK

avtri(t) + eK
av(−Kiri(t)

)
= (Kav −Ki)e

Kav
ri(t) = −(Ki −Kav)r̂i(t).

�
The normalized combinatorial Ricci flow has the following useful property.

Lemma 2. The product
M∏
j=1

rj(t) is a first integral for (2.5).

Proof.

d

(
M∏
j=1

rj(t)

)

dt
=

⎛
⎝

M∑
j=1

−(Kj −Kav)

⎞
⎠

M∏
j=1

rj(t) = 0.

�

For the hyperbolic background geometry the length of the edge eij joining vertices Ai and Aj is
defined by the equation

cosh lij = cosh ri cosh rj + sinh ri sinh rjwij. (2.6)

As in the Euclidean case for a degenerate edge one of the radii ri or rj is zero, so the last term is
assumed to be zero, though the weight wij is undefined. Clearly, for ri = 0 one has lij = rj . The
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curvature Ki at the vertex Ai is defined as usual by formula (1.1). The curvature at a degenerate
vertex Ai, M + 1 � i � N , is given by (2.2).

The (hyperbolic) combinatorial Ricci flow is the system of ODE

dri
dt

= −Ki sinh ri, i = 1, . . . ,M. (2.7)

For i = M + 1,M + 2, . . . , N one has ri =
dri
dt = 0, hence in (2.7) one can assume 1 � i � N .

Remark 1. Equations (2.1) and (2.6) explain why it is natural to assume that no pair of degenerate
vertices is connected by an edge. Indeed, otherwise the length of such an edge should be zero, and
this edge should be shrunk to a point. A face with three degenerate vertices should be shrunk to
a point, while a triangle with exactly two degenerate vertices should be shrunk to a segment. This
means that the initial triangulation T should be modified.

It is very important to determine the combinatorial type of the triangulation which appears at
the limit as time tends to infinity when Theorem 1 (or Theorem 2) is not applicable. We do not
address this question here.

Now we investigate the space of metrics for a triple (X,T,w). Denote by Rw the set of all

r ∈ R
M × (0, . . . , 0) ⊂ R

N such that for every face of the triangulation the triangle inequalities
hold.

Lemma 3. Suppose any face of the triangulation satisfies one of the following conditions:
(a) the face is nondegenerate and all the weights of its edges are nonnegative;

(b) the face is nondegenerate, exactly one weight α of its edges is negative, the other two weights,
β and γ, are positive, and α+ βγ � 0;

(c) the face is degenerate and the weight of the nondegenerate edge of the face is not equal to 1.

Then for both the Euclidean and the hyperbolic background geometry one has Rw = R
M
+ .

Proof. We need to check the triangle inequalities for any r. For a face satisfying (a) it was done
in Lemma 13.7.2 [6]. For a face satisfying (b) it was proved in [4]. For a face �AiAjAk with the
degenerate vertex Ai it follows from the equalities lij = rj, lik = rk and (2.1) or (2.6). �

We say that condition (W) is satisfied for a weight function w iff the condition of Lemma 3 is
satisfied.

The following statement plays a key role in the proof of the main properties of the combinatorial
Ricci flow.

Lemma 4. Let �AiAjAk be a face of the triangulation T , and θi, θj, θk be the angles of this face
at the vertices Ai, Aj , Ak, respectively. Suppose condition (W ) is satisfied.

(a) Suppose �AiAjAk ∈ Fn. Then

(a1)
∂θp
∂rp

< 0, p ∈ {i, j, k};

(a2)
∂θp
∂rq

> 0, p, q ∈ {i, j, k}, p �= q;

(a3)
∂(θi+θj+θk)

∂rp
= 0 for the Euclidean case and

∂(θi+θj+θk)
∂rp

< 0 for the hyperbolic case, p ∈
{i, j, k}.
(b) Suppose Ai ∈ Vd. Then

(b1)
∂θj
∂rj

< 0 and ∂θk
∂rk

< 0;

(b2)
∂θj
∂rk

> 0 and ∂θk
∂rj

> 0;

(b3)
∂(θj+θk)

∂rp
=

∂(θi+θj+θk)
∂rp

= 0 for the Euclidean case, and
∂(θj+θk)

∂rp
=

∂(θi+θj+θk)
∂rp

< 0 for the

hyperbolic case, p ∈ {j, k}.
Moreover, in both cases the partial derivatives ∂θn

∂rm
are elementary functions of ri, rj , rk, where

n,m ∈ {i, j, k}.
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Proof. (a) For a nondegenerate face with nonnegative weights see Lemma 13.7.3 from [6]. Other
cases of nondegenerate faces were considered in [4].

(b) In the Euclidean case by the cosine law

r2k = r2j + l2jk − 2rj ljk cos θj = r2j + r2j + r2k + 2wjkrjrk − 2rj

√
r2j + r2k + 2wjkrkrj cos θj.

Since

∂ cos θj
∂rj

= − sin θj
∂θj
∂rj

,

the sign of the derivative
∂θj
∂rj

is opposite to the sign of the derivative
∂ cos θj
∂rj

. By the formula for a

derivative of a fraction the sign of
∂ cos θj
∂rj

coincides with the sign of

(rj + wjkrk)
′
rj (r

2
j + r2k + 2wjkrjrk)−

1

2
(rj + wjkrk)(r

2
j + r2k + 2wjkrkrj)

′
rj

= (r2j + r2k + 2wjkrjrk)− (rj + wjkrk)
2

= r2j + r2k + 2wjkrjrk − r2j − r2kw
2
jk − 2rjrkwjk = r2k(1− w2

jk).

Therefore,

∂θj
∂rj

< 0.

Similarly, the sign of
∂ cos θj
∂rk

coincides with the sign of

(rj + wjkrk)
′
rk
(r2j + r2k + 2wjkrjrk)−

1

2
(rj + wjkrk)(r

2
j + r2k + 2wjkrkrj)

′
rk

= wjk(r
2
j + r2k + 2wjkrjrk)− (rj + wjkrk)(rk +wjkrj)

= wjkr
2
j + wjkr

2
k + 2w2

jkrjrk − rjrk − wjkr
2
j −wjkr

2
k − w2

jkrkrj = rjrk(w
2
jk − 1).

Therefore,

∂θj
∂rk

> 0.

The hyperbolic case is considered in the same way. A detailed calculation of the derivatives can be
found in the proof of Lemma 5. �

Lemma 5. Suppose the vertices Aj and Ak of a face �AiAjAk are nondegenerate. Then

∂θk
∂rj

rj =
∂θj
∂rk

rk for the Euclidean case,

∂θk
∂rj

sinh rj =
∂θj
∂rk

sinh rk for the hyperbolic case.

(2.8)

Proof. For a nondegenerate face, equality (2.8) holds for three pairs of vertices. This case was
considered in Lemma 2.3 of [3].

Now assume the vertex Ai is degenerate. For the Euclidean background geometry using the
notation from Lemma 4 we have

cos θj =
rj + wjkrk√

r2j + r2k + 2wjkrjrk
.

Similarly to the proof of Lemma 4, we obtain

− sin θj
∂θj
∂rk

=
∂ cos θj
∂rk

=
rjrk(w

2
jk − 1)

(r2j + r2k + 2wjkrjrk)3/2
.
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Consequently,

rk
∂θj
∂rk

= − rk
sin θj

·
rjrk(w

2
jk − 1)

(r2j + r2k + 2wjkrjrk)3/2

and

rj
∂θk
∂rj

= − rj
sin θk

·
rjrk(w

2
jk − 1)

(r2j + r2k + 2wjkrjrk)3/2
.

To complete the proof in the Euclidean case, we note that by the sine law one has

rj
sin θk

=
rk

sin θj
.

For the hyperbolic background we proceed as follows. For a triangle�AiAjAk denote by xi, xj , xk
the lengths of the edges opposite to the vertices Ai, Aj , Ak, respectively. By the sine law, the quantity
Aijk = sinhxi sinhxj sin θk is symmetric in indices i, j, k. By Lemma A1 of [3] we have two equalities

∂θk
∂xk

=
sinhxk
Aijk

and
∂θk
∂xi

= − ∂θk
∂xk

cos θj .

In our setting xi = ljk, xj = rk, xk = rj. Note also
∂ljk
∂rj

= 1
sinh ljk

∂ cosh ljk
∂rj

. Then

∂θk
∂rj

sinh rj = sinh rj
sinhxk
Aijk

(
1− cos θj

∂xi
∂rj

)

=
1

Aijk sinh
2 ljk

(
sinh2 rj sinh

2 ljk

− sinh rj(cosh rj cosh ljk − cosh rk)(sinh rj cosh rk + wjk cosh rj sinh rk)
)

=
(1 −w2

jk) sinh
2 rj sinh

2 rk

Aijk sinh
2 ljk

,

where the rightmost quantity is clearly symmetric in indices j and k. �

Proposition 1. Let (X,T,w) be a closed surface X with a triangulation T and a weight function

w. Suppose ri(t), i = 1, . . . ,M , satisfy the equations dri
dt = −Li(r1, . . . , rM )s(ri), where s(ri) = ri in

the Euclidean case and s(ri) = sinh ri in the hyperbolic case. Then the time derivative of the inner

angle θjki at the vertex Ai ∈ Vn of a face �AiAjAk can be written as

(1)
dθjki
dt = −Bij(Lj − Li)−Bik(Lk − Li)−BiλLi for �AiAjAk ∈ Fn;

(2)
dθjki
dt = −Bij(Lj − Li)−BiλLi for �AiAjAk ∈ Fd with Ak ∈ Vd.

Assume, in addition, that w satisfies condition (W ). Then Bij = Bji and Bi are positive
elementary functions for all i, j = 1, . . . ,M, i �= j. Here λ = 0 for the Euclidean background and
λ = −1 for the hyperbolic background.

Proof. Case (1) was proved in [3], Proposition 2.4. For convenience we recall the proof:

dθjki
dt

=
∂θjki
∂ri

r′i +
dθjki
∂rj

r′j +
dθjki
∂rk

r′k = −∂θjki
∂ri

Lis(ri)−
dθjki
∂rj

Ljs(rj)−
dθjki
∂rk

Lks(rk)

= −dθjki
∂rj

(Lj − Li)s(rj)−
dθjki
∂rk

(Lk − Li)s(rk)−
(
∂θjki
∂ri

s(ri) +
∂θjki
∂rj

s(rj) +
∂θjki
∂rk

s(rk)

)
Li

= −∂θjki
∂rj

(Lj − Li)s(rj)−
∂θjki
∂rk

(Lk − Li)s(rj)−
(
∂θjki
∂ri

s(ri) +
∂θikj
∂ri

s(ri) +
∂θijk
∂ri

s(ri)

)
Li

= −Bij(Lj − Li)−Bjk(Lk − Li)−BiLiλ.
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For case (2) assume Ak ∈ Vd. Then

dθjki
dt

=
∂θjki
∂ri

r′i +
∂θjki
∂rj

r′j = −∂θjki
∂ri

Lis(ri)−
∂θjki
∂rj

s(rj)Lj

= −∂θjki
∂rj

(Lj − Li)s(rj)−
(
∂θjki
∂ri

Lis(ri) +
∂θjki
∂rj

Lis(rj)

)

= −∂θjki
∂rj

(Lj − Li)s(rj)−
(
∂θjki
∂ri

Lis(ri) +
θikj
∂ri

Lis(ri)

)

= −∂θjki
∂rj

(Lj − Li)s(rj)−
(
∂(θjki + θikj + θijk )

∂ri

)
Lis(ri)

= −Bij(Lj − Li)−BiLiλ.

�

From Proposition 1 we deduce the evolution of curvatures at nondegenerate vertices.

Proposition 2. Assume w satisfies condition (W ). Then in the assumptions of Proposition 1 for
1 � i � M one has

dKi

dt
=

∑
i�j,j�M

Cij(Lj − Li) + λCiLi,

where Cij = Cji and Ci are positive elementary functions in r1, . . . , rM , and the summation is over
all nondegenerate vertices Aj adjacent to Ai.

Proof. The statement follows directly from Proposition 1 since

dKi

dt
= −

∑
�AiAjAk∈F

dθjki
dt

.

�

3. EXISTENCE OF THE SOLUTION TO THE RICCI FLOW FOR t ∈ [0,∞)

Let M (t) = max
(
K1(t), . . . ,KM (t)

)
and M(t) = min

(
K1(t), . . . ,KM (t)

)
. The solution to the

combinatorial Ricci flow with any given initial metric exists for all t ∈ [0,+∞). This can be proved
by the same argument as in [3] Section 3.4 using the following maximum principle.

Proposition 3. Let r(t) =
(
r1(t), . . . , rM (t)

)
be a solution to the Ricci flow (2.5) or (2.7) on an

interval. Then

(1) for the Euclidean geometry the function M(t) is nonincreasing and the function M(t) is
nondecreasing;

(2) for the hyperboilc geometry the function max
(
0,M (t)

)
is nonincreasing and the function

min
(
0,M (t)

)
is nondecreasing.

Proposition 4. Let r(t) =
(
r1(t), . . . , rM (t)

)
is a solution to the normalized Ricci flow (2.5).

Suppose the curve r(t) is contained in a compact subset of R
M
+ . Then r(t) converges to a point

in R
M
+ such that the corresponding curvatures at nondegenerate vertices are equal to Kav =

1
M

(
2πχ(X) −

∑
j�M+1

Kj

)
. The convergence is exponentially fast.
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Proof. Consider the function

g(t) =

M∑
j=1

(
Kj(t)−Kav

)2
=

M∑
j=1

K2
j (t)−M(Kav)2.

For its derivative we have

g′ = 2

M∑
j=1

Kj(t)K
′
j(t).

Let us calculate K ′
j(t). By Proposition 2 for Lj = (Kj −Kav) we obtain

K ′
j(t) =

∑
j�i,i�M

Cij

(
(Kj −Kav)− (Ki −Kav)

)
=

∑
j�i,i�M

Cij(Kj −Ki).

Therefore,

g′(t) = 2

M∑
j=1

∑
i�j,i�M

CjiKj(Ki −Kj). (3.1)

Interchanging indices i and j, we obtain another expression

g′(t) = 2

M∑
i=1

∑
j�i,j�M

CijKi(Kj −Ki). (3.2)

The sum of (3.1) and (3.2) gives

g′(t) = −2
∑

i�j�M

Cij(Ki −Kj)
2.

The curve r(t) lies in a compact subset of R
M
+ , and the functions Cij are positive. Hence,

there exists a constant c1 > 0 such than for any adjacent vertices Ai � Aj one has the inequality

Cij

(
r(t)

)
� c1 > 0.

The Cauchy inequality

M∑
j=1

yj

M
�

√√√√√
M∑
j=1

y2j

M

for yj = Ki −Kj gives

⎛
⎜⎜⎜⎝

M∑
j=1

(Kj −Ki)

M

⎞
⎟⎟⎟⎠

2

�

M∑
j=1

(Ki −Kj)
2

M
.

Therefore,

(Ki −Kav)2 �

M∑
j=1

(Ki −Kj)
2

M
.

Taking a sum on i from 1 to M , we obtain

M∑
i=1

(Ki −Kav)2 � 1

M

M∑
i,j=1

(Ki −Kj)
2. (3.3)
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Any two nondegenerate vertices Ai and Aj can be connected by a sequence of edges joining
consequently nondegenerate vertices Ai, Ai1 , . . . , Aip , Aj . Hence for the constant c2 = p+ 1 > 0 we
have

(Ki −Kj)
2 � c2

(
(Ki −Ki1)

2 + (Ki1 −Ki2)
2 + . . .+ (Kip −Kj)

2
)
.

Since the number of edges in such a sequence is bounded by |Vn| − 1, there exists a constant c3 > 0
such that

M∑
i,j=1

(Ki −Kj)
2 � c3

∑
i�j�M

(Ki −Kj)
2. (3.4)

From (3.3) and (3.4) we obtain

M∑
i=1

(Ki −Kav)2 � c3
M

∑
i�j�M

(Ki −Kj)
2,

hence,

∑
i�j�M

Cij(Ki −Kj)
2 � c1

∑
i�j�M

(Ki −Kj)
2 � c1M

c3

M∑
i=1

(Ki −Kav)2.

Therefore, there exists a constant c4 > 0 such that

g′ = −2
∑

i�j�M

Cij(Ki −Kj)
2 � −c4

M∑
i=1

(Ki −Kav)2 = −c4g.

Now we have the inequality

g(t) � c5e
−c4t

for some positive constants c4 and c5. Finally, we obtain

(Ki −Kav)2 �
M∑
i=1

(Ki −Kav)2 � c5e
−c4t.

�

Proposition 5. Let r(t) =
(
r1(t), . . . , rM (t)

)
be a solution to the Ricci flow (2.7). Suppose curve

r(t) is contained in a compact subset R
M
+ . Then r(t) converges exponentially fast to a point

(r1, . . . , rM ) ∈ R
M
+ such that the corresponding curvatures K1, . . . ,KM vanish.

Proof. The proof is the same as that of Proposition 3.7 from [3]. �

4. RICCI FLOW AS A NEGATIVE GRADIENT FLOW

Consider the following change of variables. For the Euclidean background geometry define
uj = ln rj, and for the hyperbolic background geometry define uj = ln tanh rj/2. Then both Ricci
flows, (2.3) and (2.7), take the form

duj
dt

= −Kj, j = 1, . . . ,M. (4.1)

Under assumption (W ) for the Euclidean background u = (u1, . . . , uM ) belongs to U = RM , and

for the hyperbolic background u belongs to U = (−∞, 0)M ⊂ R
M . By Lemma 5

∂Ki

∂uj
=

∂Kj

∂ui
, i, j = 1, . . .M.
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Hence, the 1-form Ω =
M∑
j=1

Kjduj is closed. Since in both cases U is simply connected, there

exists a function F (u1, . . . , uM ) : U → R such that dF = Ω.

Proposition 6. Assume the weight function satisfies condition (W ). Then
(a) for hyperbolic background the function F (u1, . . . , uM ) is strictly convex;
(b) for the Euclidean background the function F (u1, . . . , uM ) is strictly convex on any plane

M∑
j=1

uj = const.

Proof. The proof is the same as that of Proposition 3.9 from [3]. �
From this proposition it easily follows that in the hyperbolic background the metric is determined

by its curvatures, and that in the Euclidian background the metric is determined by its curvatures
up to a scalar multiple. This gives us rigidity of circle packings with degenerations.

5. DEGENERATION
Proposition 7. Suppose X is a closed surface with a triangulation T and a weight w, satisfying
condition (W ). Let I be a proper subset of Vn. Denote by DI the set of all degenerate vertices

adjacent to a vertex from I. Consider a sequence of metrics r(n) = (r
(n)
i : i = 1, . . . ,M) in the

Euclidean or in the hyperbolic backgound geometry such that lim
n→∞

r
(n)
i = 0 for i ∈ I and lim

n→∞
r
(n)
i >

0 for i ∈ {1, . . . ,M} \ I. Then

lim
n→∞

∑
i∈I

Ki

(
r(n)

)
+

∑
j∈DI

Kj = −
∑

(e,v)∈Lk(I∪DI )

(
π − arccosw(e)

)
+ 2πχ(FI∪DI

). (5.1)

Moreover, for any metric r in the Euclidean or in the hyperbolic backgound geometry and any
proper subset I ∈ Vn we have∑

i∈I
Ki(r) +

∑
j∈DI

Kj > −
∑

(e,v)∈Lk(I∪DI )

(
π − arccosw(e)

)
+ 2πχ(FI∪DI

). (5.2)

Proof. Equality (5.1) can be obtained by the same argument as the equality in Proposition 4.1
from [3] or at the end of the proof of Theorem 13.7.1 in [6] taking into account that the curvatures
at the degenerate vertices are fixed. But to prove (5.2) for the weight function w satisfying conditions
(W ), we need to look at the details of the proof.

Denote by θjki the inner angle at the vertex Ai of a triangle �AiAjAk of the triangulation T .
The faces of the triangulation having a vertex in I ∪DI are divided into three types T1, T2, T3,
where a face belongs to Ts iff it has exactly s vertices in I ∪DI counting multiplicities (in other

words, the lift of the face to the universal cover π : X̃ → X has exactly s vertices in π−1(I)). Write
the curvature at a vertex Ai as 2π − ai. Then

∑
i∈I∪DI

ai is equal to

∑

Ai ∈ I ∪DI ,

�AiAjAk ∈ T1

θjki +
∑

Ai, Aj ∈ I ∪DI ,

�AiAjAk ∈ T2

(θjki + θikj ) +
∑

Ai, Aj , Ak ∈ I ∪DI ,

�AiAjAk ∈ T3

(θjki + θikj + θijk ).

Applying the arguments from the proof of Proposition 4.1 of [3], we obtain the statement about

the limit behavior of
∑
i∈I

Ki

(
r(n)

)
, namely, the formula (5.1).

For (5.2) note that θjki + θikj + θijk in the third sum is not greater than π for any metric r. Also,

θjki + θikj in the second sum is less than π for any metric r. In the first sum there are two types

of terms. For Ai ∈ DI we have θjki = π − arccoswjk. Finally, assuming that the weight w satisfies

condition (W ) for Ai ∈ I, we have θjki < π − arccoswjk by monotonicity from Lemma 4. �
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6. THE EUCLIDEAN CASE

Theorem 3. Suppose X is a closed surface with a triangulation T and a weight w, satisfying
condition (W ).

The solution to the normalized Ricci flow (1.3) converges for any initial metric iff for any proper
subset I ∈ Vn

|I|Kav +
∑
j∈DI

Kj > −
∑

(e,v)∈Lk(I∪DI )

(
π − arccosw(e)

)
+ 2πχ(FI∪DI

). (6.1)

Furthermore, if the solution converges, then it converges exponentially fast to the metric with
Ki = Kav, i = 1, . . . ,M .

Proof. Consider the set metrics

Ma = {(r1, . . . , rM ) | ri > 0 for all i = 1, . . . ,M and
M∏
i=1

ri = a},

where a > 0. Also consider the curvature map Ξ : Ma → R
M , Ξ(r) =

(
K1(r), . . . ,KM (r)

)
. By

Proposition 6 the map Ξ is injective. Its image is contained in the hyperplane

Π =

⎧⎨
⎩(K1, . . . ,KM ) ∈ R

M |
M∑
i=1

Ki = 2πξ(X) −
N∑

j=M+1

Kj

⎫⎬
⎭ .

Consider the convex open polytope PK ⊂ Π, defined by the inequalities
∑
i∈I

Ki > −
∑

(e,v)∈Lk(I∪DI )

(
π − arccosw(e)

)
+ 2πχ(FI∪DI

)−
∑
j∈DI

Kj ,

where I runs through all proper subsets I ⊂ Vn. Then we have an injective continuous map
Ξ : Ma → PK , where both Ma and PK are homeomorphic to R

M−1. By the invariance of the
domain theorem the map Ξ is a homeomorphism of Ma onto imΞ. Applying Proposition 7,

we see that imΞ = PK . Therefore, there exists a unique r(0) =
(
r
(0)
1 , . . . , r

(0)
m

)
∈ Ma such that

Ξ(r(0)) = (Kav, . . . ,Kav) ∈ PK , that is, the metric of constant curvature exists and is unique up to
scalar multiplication.

Now we pass to convergence of the normalized Ricci flow. As we have already seen, after the
change of variables ui = ln ri, i = 1, . . . ,M , the normalized Ricci flow takes the form

dui
dt

= −
(
Ki(u)−Kav

)
. (6.2)

Also, there is a function F such that ∂F
∂ui

= Ki(u)−Kav. Hence, the latter equation is the

negative gradient flow of F . Now we fix a = 1. The restriction of F on the hyperplane U0 = {u ∈

R
M |

M∑
i=1

ui = 0} is strictly convex. By the argument at the beginning of the proof F has a unique

critical point u(0) ∈ U0. Therefore, this point is a minimum of F . A gradient line of F with initial
point in U0 is contained in U0. Let us show that a (negative) gradient line converges to u(0).

Consider a negative gradient line u(t), that is, du
dt = − gradF . Choose a sequence tn → +∞ and

denote u(n) = u(tn). Since F is bounded from below and dF (u(t))
dt = −‖ gradF |u=u(t)‖2, it follows

that after passing to a subsequence we have gradF (u(n)) → 0. For a sequence r(n) corresponding

to u(n) this means that lim
n→+∞

Ki(r
(n)) = Kav. Since there exists a neighborhood of the point

(Kav , . . . ,Kav) ∈ PK such that its closure is compact and is contained in PK , passing to a

subsequence we see that r(n) belongs to a compact in Ma and, therefore, contains a convergent
subsequence. Hence, u(n) contains a convergent subsequence. Therefore, all (negative) gradient
lines converge to a metric with Ki = Kav, i = 1, . . . ,M . �
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7. THE HYPERBOLIC CASE

Theorem 4. Suppose X is a closed surface of negative Euler characteristic with a triangulation T
and a weight w, satisfying condition (W ).

The solution to the hyperbolic Ricci flow (1.5) converges for any initial metric iff for any subset
I ∈ Vn ∑

j∈DI

Kj > −
∑

(e,v)∈Lk(I∪DI )

(
π − arccosw(e)

)
+ 2πχ(FI∪DI

). (7.1)

Furthermore, if the solution converges, then it converges exponentially fast to the metric with
Ki = 0, i = 1, . . . ,M .

Proof. Consider the set of all metrics

M = {(r1, . . . , rM ) | ri > 0 for all i = 1, . . . ,M}.
Also, consider the curvature map Ξ : M → R

M , Ξ(r) =
(
K1(r), . . . ,KM (r)

)
. By Proposition 6 the

map Ξ is injective. By the Gauss –Bonnet theorem the image of Ξ is contained in the halfspace
L ⊂ R

M , given by the inequality

M∑
i=1

Ki > −
N∑

j=M+1

Kj + 2πχ(X).

Also, consider the subset LK ⊂ L, defined by the inequalities
∑
i∈I

Ki > −
∑

(e,v)∈Lk(I∪DI )

(
π − arccosw(e)

)
+ 2πχ(FI∪DI

)−
∑
j∈DI

Kj ,

where I runs through all proper subsets I ⊂ Vn. Then Ξ : M → LK is an injective continuous map.
Both of them are homeomorphic to R

M .

To prove that there exists a metric r(0) with Ki

(
r(0)

)
= 0 for i = 1, . . . ,M , we proceed as follows.

Choose an initial metric r(0) such that the curvatures Ki(r) are close to 2π for i = 1, . . . ,M . This
is possible by the following statement.

Lemma 6 (see [3], Lemma 3.5). Let Ai ∈ Vn and condition (W ) be satisfied. Then for any

ε > 0 there exists a number L such that for any ri > L and any rj and rk the inner angle θjki
of the hyperbolic triangle �AiAjAk is smaller than ε.

Fix a number δ > 0 such that Ki

(
r(0)

)
< 2π − δ. Consider the solution r(t) to the hyperbolic

Ricci flow (1.5) with the initial value r(0). By the maximum principle (see Proposition 3)

min
(
K1

(
r(t)

)
, . . . ,KM

(
r(t)

)
, 0
)

is not decreasing as t → +∞. Therefore, Ki(t) � 0 for all t � 0

and i = 1, . . . ,M . On the other hand, max
(
K1

(
r(t)

)
, . . . ,KM

(
r(t)

)
, 0
)

is not increasing, thus

Ki

(
r(t)

)
< 2π − δ for all t � 0 and i = 1, . . . ,M . Therefore, K

(
r(t)

)
is contained in a compact

subset of LK . Hence, the curve r(t) is contained in a compact subset of M . By Proposition 5 r(t)

converges to a metric r(0) with Ki = 0 for i = 1, . . . ,M . Therefore, r(0) exists.

Now we pass to convergence of the Ricci flow (1.5). As we have already seen, after the change
of variables ui = ln tanh ri

2 , i = 1, . . . ,M , the Ricci flow takes the form

dui
dt

= −Ki(u), (7.2)

where u ∈ U = (−∞, 0)M . Also, there is a strictly convex function F on U such that ∂F
∂ui

= Ki(u).

Hence, the latter equation is the negative gradient flow of F . By the argument at the beginning of
the proof, F has a unique critical point u(0) ∈ U . Therefore, this point is a minimum of F . Let us
show that a (negative) gradient line converges to u(0).
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Consider a negative gradient line u(t), that is, du
dt = − gradF . Choose a sequence tn → +∞ and

denote u(n) = u(tn). Since F is bounded from below and
dF

(
u(t)

)
dt = −‖ gradF |u=u(t)‖2, it follows

that after passing to a subsequence we have gradF
(
u(n)

)
→ 0. For a sequence r(n) corresponding

to u(n) this means that lim
n→+∞

Ki

(
r(n)

)
= 0. Since there exists a neighborhood of the point

(0, . . . , 0) ∈ LK such that its closure is compact and is contained in LK , passing to a subsequence

we see that r(n) belongs to a compact in M and, therefore, contains a convergent subsequence.
Hence, u(n) contains a convergent subsequence. Therefore, all (negative) gradient lines converge to
a metric with Ki = 0, i = 1, . . . ,M . �
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First of all, note that by the sine theorem equality (2.8) can be written as ∂θk
∂rj

sin θk =
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∂rk

sin θj
for both the Euclidean and the hyperbolic geometries. Using the notation from the proof of
Lemma 5, denote by xi, xj , xk the lengths of the edges opposite to the vertices Ai, Aj , Ak of a
triangle �AiAjAk, respectively. Assume that the angle θi is fixed. Then by an elementary geometry

argument one can show that ∂xi
∂xk

= cos θj in both the Euclidean and the hyperbolic cases. For

example, one can consider the right-angled triangle �AkAjH, where H is the point on the geodesic
line AiAj such that the geodesic line AkH is perpendicular to AiAj .

In our setting xi = ljk, xj = rk, xk = rj , and
∂ljk
∂rj

= cos θj. Therefore,
∂2ljk
∂rk∂rj

= − sin θj · ∂θj
∂rk

. Then

finally from the Mixed Derivative Theorem we find that this is equal to
∂2ljk
∂rj∂rk

= − sin θk · ∂θk
∂rj

. �
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