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Abstract—We consider periodic perturbations of conservative systems. The unperturbed
systems are assumed to have two nonhyperbolic equilibria connected by a heteroclinic orbit
on each level set of conservative quantities. These equilibria construct two normally hyperbolic
invariant manifolds in the unperturbed phase space, and by invariant manifold theory there
exist two normally hyperbolic, locally invariant manifolds in the perturbed phase space. We
extend Melnikov’s method to give a condition under which the stable and unstable manifolds
of these locally invariant manifolds intersect transversely. Moreover, when the locally invariant
manifolds consist of nonhyperbolic periodic orbits, we show that there can exist heteroclinic
orbits connecting periodic orbits near the unperturbed equilibria on distinct level sets. This
behavior can occur even when the two unperturbed equilibria on each level set coincide and
have a homoclinic orbit. In addition, it yields transition motions between neighborhoods of very
distant periodic orbits, which are similar to Arnold diffusion for three or more degree of freedom
Hamiltonian systems possessing a sequence of heteroclinic orbits to invariant tori, if there exists
a sequence of heteroclinic orbits connecting periodic orbits successively. We illustrate our theory
for rotational motions of a periodically forced rigid body. Numerical computations to support
the theoretical results are also given.
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1. INTRODUCTION

In this paper we consider periodic perturbations of conservative systems of the form

ẋ = f(x) + εg(x, νt), x ∈ R
n, (1.1)

where 0 < ε � 1, n � 3 is an integer, ν > 0 is a constant, f : R
n → R

n and g : R
n × R → R

n are
Cr (r � 2) and g(x, θ) is 2π-periodic in θ. When ε = 0, Eq. (1.1) becomes

ẋ = f(x). (1.2)

We assume that Eq. (1.2) has m conservative quantities Fj : R
n → R, j = 1, . . . ,m, i. e.,

DFj(x)f(x) = 0, j = 1, . . . ,m, (1.3)

where 1 � m � n− 2 and the derivatives DFj(x), j = 1, . . . ,m, are row vectors. We easily see that
if x = x0 is an equilibrium in (1.2), then by (1.3)

DFj(x0)Df(x0) = 0, j = 1, . . . ,m. (1.4)
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Hence, Df(x0) has a zero eigenvalue of geometric multiplicity m, and especially x0 is nonhy-
perbolic, if DFj(x0), j = 1, . . . ,m, are linearly independent. Moreover, we assume that there
exist two equilibria connected by a heteroclinic orbit on each level set F (x) = c ∈ I, where
F (x) =

(
F1(x), . . . , Fm(x)

)T with T the transpose operator and I ⊂ R
m is a closed domain. See

Section 2 for details on our assumptions.
For ε > 0 Eq. (1.1) is shown to have two (m + 1)-dimensional normally hyperbolic, locally

invariant manifolds in Section 2, where the concepts “normal hyperbolicity” and “local invariance”
are briefly described. They are fully expounded in [5–8, 25]. We study the behavior of the stable and
unstable manifolds of the locally invariant manifolds and discuss heteroclinic motions to them. In
particular, when the locally invariant manifolds consist of nonhyperbolic periodic orbits so that they
are exactly invariant, we show that periodic orbits near the unperturbed equilibria on different level
sets can be connected by heteroclinic orbits (see Theorem 2 below). This behavior can occur even
when there exists only one equilibrium with a homoclinic orbit on each level set in the unperturbed
system (1.2). Moreover, it yields transition motions between neighborhoods of very distant periodic
orbits, which are similar to Arnold diffusion [1] for three or more degree of freedom Hamiltonian
systems possessing a sequence of heteroclinic orbits to invariant tori, if there exists a sequence of
heteroclinic orbits connecting periodic orbits successively (see Remark 2 below). We also remark
that it was reported in [26] that such diffusion motions for invariant tori can occur not only in
nearly integrable Hamiltonian systems but also in strongly nonintegrable ones.

Our main example is a periodically forced rigid body

ω̇1 =
I2 − I3

I1
ω2ω3 − ε

α

I1
ω2 sin νt,

ω̇2 =
I3 − I1

I2
ω3ω1 + ε

α

I2
ω1 sin νt + ε

β2

I2
sin νt,

ω̇3 =
I1 − I2

I3
ω1ω2 + ε

β3

I3
sin νt,

(1.5)

where I1, I2, I3, α, β2, β3, ν are nonnegative constants. Equation (1.5) represents a mathematical
model of a quadrotor helicopter illustrated in Fig. 1 when one of the rotors becomes out of tune and
its rotational speed is periodically modulated. See Section 5.1 for more details on the model. This
example is also important from an application point of view since quadrotor helicopters are used
or expected to be used in many areas. Chaotic motions in a similar system were previously studied
in [21], but the occurrence of transition behavior was ignored there. Moreover, rigid bodies with
attachments were also investigated in [17, 18, 27]. In particular, chaotic motions were discussed
in [17], although the possibility of such transition motions as discussed here was not taken into
account.

Fig. 1. Mathematical model for a quadrotor helicopter.

Homoclinic or heteroclinic motions in systems similar to (1.1) were previously studied by several
researchers (e. g., [13, 16, 23]). So the reader may think that the problem treated here has already
been settled in the field of dynamical systems. However, the previous results do not apply to (1.1)
and (1.5) since especially the perturbed periodic orbits, if they exist, as well as the unperturbed
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equilibria, are nonhyperbolic and the perturbed system is not Hamiltonian (even not conservative),
although they could if the perturbed periodic orbits were hyperbolic or the perturbed system was
Hamiltonian. Furthermore, it has not been reported or pointed out anywhere, to the author’s
knowledge, that periodic orbits near the unperturbed equilibria on different level sets can have
heteroclinic connections and transition motions between neighborhoods of very distant periodic
orbits can occur in systems such as (1.1) and (1.5). Thus, the result obtained here is quite new and
is not just a straightforward extension of the previous ones.

The outline of this paper is as follows: In Section 2 we precisely state our assumptions and
describe the unperturbed and perturbed phase space structures which immediately follow from the
assumptions. In Section 3 we give a condition under which the stable and unstable manifolds of the
two locally invariant manifolds intersect transversely. In Section 4, under an additional assumption
that the locally invariant manifolds consist of periodic orbits, we show that the periodic orbits are
connected by heteroclinic orbits and estimate the difference between the level sets of equilibria to
which they are close when these transverse heteroclinic orbits exist. Finally, we illustrate the theory
for (1.5) and give numerical computations for periodic orbits and heteroclinic orbits to demonstrate
the theoretical results in Section 5.

2. PHASE SPACE STRUCTURE
We make the following assumptions on the unperturbed system (1.2):

(A1) There exist m Cr-conservative quantities Fj : R
n → R, j = 1, . . . ,m, where 1 � m � n − 2.

(A2) There exists a nonempty closed domain I ⊂ R
m such that for any c ∈ I Eq. (1.2) has

two equilibria of nonhyperbolic saddle type, x±(c), at which DFj(x), j = 1, . . . ,m, are
linearly independent, on the level set F (x) = c. Moreover, x±(c) are Cr with respect to
c ∈ I0 = I \ ∂I.

By (A2), the zero eigenvalue of Df(x±(c)) is of geometric multiplicity m since DFj(x±(c)),
j = 1, . . . ,m, are the associated left eigenvectors, as stated in Section 1.

(A3) ns and nu eigenvalues of Df
(
x±(c)

)
have negative and positive real parts, respectively, where

ns + nu + m = n.

(A4) The two equilibria x±(c) are connected by a heteroclinic orbit xh(t; c) satisfying

lim
t→±∞

xh(t; c) = x±(c)

on each level set F (x) = c for c ∈ I. Moreover, xh(t; c) is Cr with respect to c ∈ I0 = I \ ∂I
as well as it is Cr+1 with respect to t ∈ R. See Fig. 2.

Fig. 2. Assumptions (A2) and (A4).

Consider the variational equation of (1.2) along the heteroclinic orbit xh(t; c),

ξ̇ = Df
(
xh(t; c)

)
ξ, ξ ∈ R

n. (2.1)

We easily see that ξ = ẋh(t; c) is a solution to (2.1) which exponentially tends to 0 as t → ±∞. By a
fundamental result concerning asymptotic behavior of linear differential equations (e. g., Section 3.8
of [3]), Assumption (A3) means that there exist ns linearly independent solutions to (2.1) which
exponentially tend to 0 as t → ∞ and nu linearly independent solutions to (2.1) which exponentially
tend to 0 as t → −∞ for each c ∈ I. We also assume the following.
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(A5) The variational equation (2.1) has no other linearly independent solution than ξ = ẋh(t; c)
such that it exponentially tends to 0 as t → ±∞.

In (A2)–(A5), it is allowed that x+(c) = x−(c) and xh(t; c) becomes a homoclinic orbit to the
equilibrium.

We introduce a new state variable θ ∈ S
1 = R/2π such that θ = νt mod 2π, and rewrite (1.1) as

ẋ = f(x) + εg(x, θ), θ̇ = ν, (2.2)

for which the phase space is the (n + 1)-dimensional space R
n × S

1. When ε = 0, there exist two
(m + 1)-dimensional normally hyperbolic invariant manifolds with boundaries,

M±
0 = {(x±(c), θ) | θ ∈ S

1, c ∈ I},
which consist of nonhyperbolic saddles. Here “normal hyperbolicity” means that the expansion and
contraction rates of the flow generated by (2.2) with ε = 0 normal to M±

0 dominate those tangent
to M±

0 . See [5–8, 25] for details on this concept and its related matters. Their (m + ns + 1)- and
(m + nu + 1)-dimensional stable and unstable manifolds, W s(M +

0 ) and W u(M−
0 ), intersect in the

(m + 2)-dimensional heteroclinic manifold

N = {(xh(t; c), θ) | θ ∈ S
1, t ∈ R, c ∈ I},

i. e., W s(M +
0 ) ∩ W u(M−

0 ) ⊃ N .

We immediately have the following result for the perturbed system (1.1) by the invariant
manifold theory [5–8, 25].

Proposition 1. For ε > 0 sufficiently small, there exist (m + 1)-dimensional normally hyperbolic,
locally invariant manifolds M±

ε in O(ε)-neighborhoods of M±
0 . Moreover, their (m + ns + 1) and

(m + nu + 1)-dimensional stable and unstable manifolds, W s(M±
ε ) and W u(M±

ε ), are also O(ε)-
close to W s(M±

0 ) and W u(M±
0 ), respectively, in neighborhoods of M±

0 . See Fig. 3.

Fig. 3. Proposition 1.

Here “local invariance” of M±
ε means that the trajectory

(
x(t), θ(t)

)
stays in M±

ε only for
t ∈ (t1, t2) if it starts in M±

ε at t = 0 and (t1, t2) is the maximal interval such that
(
x(t), θ(t)

)
∈ U±

for t ∈ (t1, t2), where U± are open domains containing M±
ε \ ∂M±

ε with ∂U± ⊃ ∂M±
ε . Thus, some

trajectories starting in M±
ε may escape M±

ε through its boundary ∂M±
ε . The stable and unstable

manifolds W s(M±
ε ) and W u(M±

ε ) inherit this property as a necessary consequence. See [5–8, 25]
for details on this concept and its related matters.
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3. HETEROCLINIC ORBITS TO LOCALLY INVARIANT MANIFOLDS

In this section we assume (A1)–(A5) and analyze the behavior of the stable and unstable mani-
folds, W s(M +

ε ) and W u(M−
ε ). We begin with describing solutions to the variational equation (2.1)

and its adjoint equation.

Let c = (c1, . . . , cm) ∈ R
m. Substituting x = xh(t; c) into (1.2) and differentiating the resulting

equation with respect to cj , j = 1, . . . ,m, we easily see that

ξ =
∂xh

∂cj
(t; c), j = 1, . . . ,m, (3.1)

are solutions to the variational equation (2.1). We also differentiate the relations

F
(
xh(t; c)

)
= c, f

(
x±(c)

)
= 0

with respect to cj to obtain

DF
(
xh(t; c)

)∂xh

∂cj
(t; c) = ej , Df

(
x±(c)

)∂x±
∂cj

(c) = 0, (3.2)

where ej ∈ R
m is a vector of which the jth element is one and all the others are zero. Hence, the

solutions (3.1) are linearly independent and tend to linearly independent eigenvectors for the zero
eigenvalue of multiplicity m as t → ±∞ since so do DFj

(
xh(t; c)

)
, j = 1, . . . ,m, by (A2).

Let n0 = ns + nu. Using the above fact and Theorem 1 of [10], we immediately obtain the
following lemma.

Lemma 1. There exists a fundamental matrix Φ(t; c) =
(
φ1(t; c), . . . , φn(t; c)

)
to (2.1) such that

lim
t→±∞

φ1(t; c) = 0, lim
t→±∞

φ2(t; c) = ∞,

lim
t→+∞

φj(t; c) = 0, lim
t→−∞

φj(t; c) = ∞, 3 � j � ns + 1,

lim
t→+∞

φj(t; c) = ∞, lim
t→−∞

φj(t; c) = 0, ns + 1 < j � n0,

lim
t→+∞

|φj(t; c)| < ∞, lim
t→−∞

|φj(t; c)| < ∞, j > n0,

(3.3)

where the convergence to 0 and divergence for φj(t; c), j � n0, are exponentially fast.

We see that Ψ(t; c) =
(
Φ(t; c)−1

)T is a fundamental matrix to the adjoint equation for (2.1),

ξ̇ = −Df
(
xh(t; c)

)T
ξ, (3.4)

which we call the adjoint variational equation of (1.2) along xh(t; c). Let Ψ(t; c) =
(
ψ1(t; c), . . . ,

ψn(t; c)
)
. We have

lim
t→±∞

ψ1(t; c) = ∞, lim
t→±∞

ψ2(t; c) = 0,

lim
t→+∞

ψj(t; c) = ∞, lim
t→−∞

ψj(t; c) = 0, 3 � j � ns + 1,

lim
t→+∞

ψj(t; c) = 0, lim
t→−∞

ψj(t; c) = ∞, ns + 1 < j � n0,

lim
t→+∞

|ψj(t; c)| < ∞, lim
t→−∞

|ψj(t; c)| < ∞, j > n0,

(3.5)

where the convergence to 0 and divergence for ψj(t; c), j � n0, are also exponentially fast.

Remark 1. From the argument at the beginning of this section, we take the solutions (3.1) as
φn0+j(t; c), j = 1, . . . ,m, in Lemma 1. Then ψn0+j(t; c), j = 1, . . . ,m, in (3.5) are given by

ξ = DFj

(
xh(t; c)

)T
, j = 1, . . . ,m. (3.6)
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Actually, we differentiate (1.3) with respect to x to obtain

D2Fj(x)f(x) + DFj(x)Df(x) = 0, j = 1, . . . ,m,

so that Eq. (3.6) gives linearly independent solutions to the adjoint variational equation (3.4) since

d
dt

DFj

(
xh(t; c)

)
= D2Fj

(
xh(t; c)

)
ẋh(t; c) = D2Fj

(
xh(t; c)

)
f
(
xh(t; c)

)
.

Moreover, it follows from (3.2) that they tend to linearly independent eigenvectors of −Df
(
x±(c)

)T

for the zero eigenvalue of multiplicity m as t → ±∞.

As in Lemma 4.5.2 of [11], we obtain the following lemma.

Lemma 2. Let (x, θ) =
(
xs

ε(t; t0, c), νt
)

and
(
xu

ε (t; t0, c), νt
)
, respectively, denote orbits on the

stable and unstable manifolds, W s(M +
ε ) and W u(M−

ε ), passing through points in an O(ε)-
neighborhood of

(
xh(0; c), νt0

)
. Then for any τ > 0 there exists ε0 > 0 such that for 0 < ε < ε0

xs
ε(t; t0, c) =xh(t − t0; c) + εξs(t; t0, c) + O(ε2), t ∈ [t0, τ),

xu
ε (t; t0, c) =xh(t − t0; c) + εξu(t; t0, c) + O(ε2), t ∈ (−τ, t0],

(3.7)

where these expressions hold with uniform validity in the indicated time intervals and ξs,u(t; t0, c)
are solutions of the first variational equation

ξ̇ = Df
(
xh(t − t0; c)

)
ξ + g

(
xh(t − t0; c), νt

)
. (3.8)

The unperturbed stable and unstable manifolds, W s(M +
0 ) and W u(M−

0 ), intersect in the
heteroclinic manifold N . Their tangent spaces at

(
xh(0; c), θ

)
,

T(
xh(0;c),θ

)W s(M +
0 ) and T(

xh(0;c),θ
)W u(M−

0 ),

are spanned by

{φ̃1(0; c), φ̃3(0; c), . . . , φ̃ns+1(0; c), φ̃n0+1(0; c), . . . , φ̃n(0; c), ẽn+1}
and

{φ̃1(0; c), φ̃ns+2(0; c), . . . , φ̃n0(0; c), φ̃n0+1(0; c), . . . , φ̃n(0; c), ẽn+1},
respectively, where ẽn+1 ∈ R

n+1 is a vector of which (n + 1)th element is one and all the others are
zero, and

φ̃j(t; c)T =
(
φj(t; c)T, 0

)
∈ R

n × R.

So the perturbed stable and unstable manifolds, W s(M +
ε ) and W u(M−

ε ), may separate in the
direction of φ̃2(0; c) near

(
xh(0; c), θ

)
. Since ψ2(0; c) are normal to φj(0; c) for j 	= 2, the distance

between W s(M +
ε ) and W u(M−

ε ) near (xh(0; c), νt0) is measured by

dε(t0; c) =
1

|ψ2(0; c)|
〈ψ2(0; c), xu

ε (t0; t0, c) − xs
ε(t0; t0, c)〉, (3.9)

where the bracket 〈·, ·〉 represents the inner product in R
n and νt0 = θ. See Fig. 4.

Let Δs,u(t, c) = 〈ψ2(t − t0; c), ξs,u(t; t0, c)〉. From (3.7) we have

dε(t0; c) =
ε

|ψ2(0; c)|
(
Δu(t0; c) − Δs(t0; c)

)
+ O(ε2).

Differentiating Δs,u(t; c) with respect to t yields
d
dt

Δs,u(t; c) =〈ψ̇2(t − t0; c), ξs,u(t; t0, c)〉 + 〈ψ2(t − t0; c), ξ̇s,u(t; t0, c)〉

=〈ψ2(t − t0; c), g
(
xh(t − t0; c), νt

)
〉,
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Fig. 4. Distance dε(t0; c).

where Eqs. (3.4) and (3.8) have been used. Employing “Melnikov’s trick” as in the standard
Melnikov technique (e. g., [11]) and noting that ψ2(t; c) exponentially tends to zero as t → ±∞
and |ξs(t; t0, c)| < ∞ (resp. |ξu(t; t0, c)| < ∞) for t ∈ [0,∞) (resp. t ∈ (−∞, 0]), we obtain

Δs(t0; c) = −
∫ ∞

t0

〈ψ2(t − t0; c), g
(
xh(t − t0; c), νt

)
〉dt,

Δu(t0; c) =
∫ t0

−∞
〈ψ2(t − t0; c), g

(
xh(t − t0; c), νt

)
〉dt.

Here we have used the fact that any arbitrarily large value can be chosen as τ > 0 in Lemma 2.
Thus, we have

dε(t0; c) =
ε

|ψ2(0; c)|
M(νt0; c) + O(ε2),

where

M(θ; c) =
∫ ∞

−∞
〈ψ2(t; c), g

(
xh(t; c), νt + θ

)
〉dt, (3.10)

which we call the Melnikov function. As in the standard Melnikov method [11, 24], if M(θ; c) has
a simple zero, then so does dε(t0; c) for ε > 0 sufficiently small by the implicit function theorem.
Thus, we obtain the following theorem.

Theorem 1. Suppose that M(θ; c) has a simple zero at θ = θ0 for some c ∈ I0. Then for ε > 0
sufficiently small W s(M +

ε ) and W u(M−
ε ) intersect transversely.

4. HETEROCLINIC ORBITS TO PERIODIC ORBITS

Let γ±
0 (c) = {(x±(c), θ) ∈ R

n × S
1 | θ ∈ S

1} denote the unperturbed periodic orbits in (2.2) with
ε = 0. Throughout this section, we assume the following in addition to (A1)–(A5).

(A6) For ε > 0 sufficiently small the locally invariant manifolds M±
ε consist of m-parameter

families of nonhyperbolic T -periodic orbits {γ±
ε (c)}c∈Ĩ such that γ±

ε (c) → γ±
0 (c) as ε → 0,

where Ĩ ⊂ I0 is a nonempty closed set and T = 2π/ν.

Assumption (A6) also means that M±
ε are exactly invariant. We parameterize the perturbed

periodic orbits as

c = F
(
x±

ε (0; c)
)
, (4.1)

where γ±
ε (c) = {(x±

ε (θ; c), θ) ∈ R
n × S

1 | θ ∈ S
1}.
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Lemma 3. If Assumption (A6) holds, then
∫ T

0
DF

(
x±(c)

)
g
(
x±(c), νt

)
dt = 0.

Proof. For c ∈ Ĩ we can write the periodic orbit as

x±
ε (θ; c) = x±(c) + εξ±(θ; c) + O(ε2)

with ξ±(2π; c) = ξ±(0; c). Substituting the above expressions into (1.1) with θ = νt, we have

dx±
ε

dt
(νt; c) = ε

(
Df

(
x±(c)

)
ξ±(νt; c) + g

(
x±(c), νt

))
+ O(ε2),

so that
DFj

(
x±(c)

)(
x±

ε (2π; c) − x±
ε (0; c)

)

= ε

∫ T

0
DFj

(
x±(c)

) (
Df

(
x±(c)

)
ξ±(νt; c) + g

(
x±(c), νt

))
dt + O(ε2)

= ε

∫ T

0
DFj

(
x±(c)

)
g
(
x±(c), νt

)
dt + O(ε2) = 0, j = 1, . . . ,m,

since f
(
x±(c)

)
= 0, F

(
x±

ε (2π; c)
)

= F
(
x±

ε (0; c)
)

= c, and DFj

(
x±(c)

)
is a left eigenvector of

Df
(
x±(c)

)
for the zero eigenvalue (see Eq. (1.4)). Thus, we obtain the result. �

Suppose that the Melnikov function M(θ; c) has a simple zero at θ = θ0 so that W s(M +
ε ) and

W u(M−
ε ) intersect transversely near (x, θ) =

(
xh(0; c), θ0

)
for c ∈ Ĩ0 = Ĩ \ ∂Ĩ . Then there exists a

heteroclinic orbit
(
xε(t; t0, c), νt

)
represented by

xε(t; t0, c) = xh(t − t0; c) + εξ̃(t; t0, c) + O(ε2) (4.2)

on [−τ, τ ] for any τ > 0, where νt0 = θ0 mod 2π and ξ̃(t; t0, c) is a solution to (3.8) such that
ξ̃(0; t0, c) ∈ span{φ2(0; c), . . . , φn0(0; c)}, where span{ζ1, . . . , ζj} represents the subspace spanned
by vectors ζ1, . . . , ζj ∈ R

n for 0 < j � n. We solve (3.8) to obtain

ξ̃(t; t0, c) = Φ(t; c)
(∫ t

0
Ψ(s; c)Tg

(
xh(s − t0; c), νs

)
ds + ξ̃(0; t0, c)

)
. (4.3)

On the other hand, it follows from (A6) that the heteroclinic orbit tends to periodic orbits
γε

(
c±ε (t0, c)

)
on M±

ε as t → ±∞, where

c±ε (t0, c) = lim
N→∞

F
(
xε(±NT ; t0, c)

)
.

Let W s
(
γ±

ε (c)
)

and W u
(
γ±

ε (c)
)
, respectively, denote the stable and unstable manifolds of γ±

ε (c). By
the invariant manifold theorem for nonhyperbolic periodic orbits (e. g., [15]), we see that the stable

and unstable manifolds, W s
(
γ+

ε

(
c+
ε (t0, c)

))
and W u

(
γ−

ε

(
c−ε (t0, c)

))
, are, respectively, O(ε)-close to

the stable and unstable manifolds of the unperturbed periodic orbits, W s
(
γ+
0 (c)

)
and W u

(
γ−
0 (c)

)
.

Thus, the estimate (4.2) uniformly holds for t ∈ (−∞,∞).
Since ψj+n0(t; c) = DFj(xh(t; c))T, j = 1, . . . ,m, as stated in Remark 1, we have

DF
(
xh(t; c)

)
Φ(t; c) = (0 e1 . . . em).

Recall that ej ∈ R
m is a vector whose jth element is one and all the others are zero. Using the

above relation, (4.2) and (4.3), we compute

c+
ε (t0, c) − c = lim

N→∞
εDF

(
xh(NT − t0; c)

)
ξ̃(NT ; t0, c) + O(ε2)
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=ε

m∑

j=1

D+
j (t0, c)ej + O(ε2),

where

D+
j (t0, c) = lim

N→∞

∫ NT

0
〈ψj+n0(t; c), g

(
xh(t − t0; c), νt

)
〉dt

=
∫ ∞

0
DFj

(
xh(t; c)

)(
g
(
xh(t − t0; c), νt

)
− g

(
x+(c), νt

))
dt.

Here we have used Remark 1 and Lemma 3. Note that

|g
(
xh(t − t0; c), νt

)
− g

(
x+(c), νt

)
| → 0

exponentially as t → ∞ since g is Cr. Similarly, we obtain

c−ε (t0, c) − c = ε
m∑

j=1

D−
j (t0, c)ej + O(ε2),

where

D−
j (t0, c) =

∫ −∞

0
DFj

(
xh(t; c)

)(
g
(
xh(t − t0; c), νt

)
− g

(
x−(c), νt

))
dt.

Thus, we have

c+
ε (t0, c) − c−ε (t0, c) =εD(t0; c) + O(ε2),

where

D(t0; c) =
m∑

j=1

(
D+

j (t0, c) − D−
j (t0, c)

)
ej . (4.4)

Changing c−ε (t0, c) to c in the above argument, we obtain the following theorem.

Theorem 2. Suppose that the Melnikov function M(θ; c) has a simple zero at θ = θ0 for c ∈ Ĩ \ ∂Ĩ.
Then for ε > 0 sufficiently small W u

(
γ−

ε (c)
)

intersect W s
(
γ+

ε (c + εΔc)
)
, where Δc = D(t0; c) +

O(ε) with νt0 = θ0. See Fig. 5.

Fig. 5. Theorem 2.

Remark 2. Assume that Eq. (1.1) with ε = 0 has another heteroclinic orbit x̃h(t) such that

lim
t→±∞

x̃h(t) = x∓(c)
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and the hypothesis of Theorem 2 holds at θ = θk and θ̃k with Δck and Δc̃k, k = 1, 2, for xh(t)
and x̃h(t), respectively. For any integer N > 0 and sequence {kj ∈ {1, 2}}2N

j=−2N , let {cj}2N
j=−2N be

a sequence with the length 4N satisfying

cj = c + O(ε) ∈ Ĩ \ ∂Ĩ, j = −2N, . . . , 2N,

c2j+1 − c2j = −εΔck2j
+ O(ε2),

c2j+2 − c2j+1 = εΔc̃k2j+1
+ O(ε2), j = −N, . . . ,N − 1.

(4.5)

Then W u
(
γ−

ε (c2j)
)

and W u
(
γ+

ε (c2j+1)
)

intersect W s
(
γ+

ε (c2j+1)
)

and W s
(
γ−

ε (c2j+2)
)
, respectively.

Hence, there exists an orbit successively visiting neighborhoods of periodic orbits γ−
ε (c2j) and

γ+
ε (c2j+1), j = −N, . . . ,N . This behavior is very similar to Arnold diffusion and that type of

motions [1, 26] for three or more degree of freedom Hamiltonian systems.

5. EXAMPLE: PERIODICALLY FORCED RIGID BODY
5.1. Rotational Motion of the Quadrotor Helicopter

Consider the quadrotor helicopter illustrated in Fig. 1. Let ωj and Ij, j = 1, 2, 3, respectively,
denote the angular velocities and moments of inertia about the quadrotor’s principal axes. We
assume that I1 < I2 < I3. Let Ωj be the angular velocities of the jth rotors for j = 1− 4 and write

U1 = Ω2
4 − Ω2

2, U2 = Ω2
3 − Ω2

1, U3 = Ω2
2 + Ω2

4 − Ω2
1 − Ω3

1,

and Ω = Ω2 + Ω4 − Ω1 − Ω3. Equations of motion for rotational motion of the quadrotor are given
by

ω̇1 =
I2 − I3

I1
ω2ω3 −

J

I1
Ωω2 +

�b

I1
U1,

ω̇2 =
I3 − I1

I2
ω3ω1 +

J

I2
Ωω1 +

�b

I2
U2,

ω̇3 =
I1 − I2

I3
ω1ω2 +

�d

I3
U3,

(5.1)

where � is the length from the center of mass to the rotational axis of the rotor, and J , b and d are
the rotor’s moment of inertia about the rotational axis, thrust factor and drag factor, respectively.
See [2, 14] for the derivation of (5.1). In this model, by equations of motion for its translational
motion, the quadrotor can hover only if

Ωj = Ω0 :=
1
2

√
m0g

b
, j = 1-4,

with m0 the quadrotor’s mass and g the gravitational acceleration.
Suppose that when all the rotors rotate with the angular velocity Ω0, one of them, say the

rotor No. 1, suddenly becomes out of tune so that its angular velocity is periodically modulated,
Ω1 = Ω0(1 + ε sin νt). In this situation, Eq. (5.1) becomes (1.5) up to O(ε), where

α = JΩ0, β2 = 2�bΩ2
0, β3 = 2�dΩ2

0

are nonnegative constants.

5.2. Application of the Theory

We now illustrate our theory for (1.5). When ε = 0, Eq. (1.5) has a conservative quantity

F̃ (ω) =
1
2
(
I1ω

2
1 + I2ω

2
2 + I3ω

2
3

)

and has two nonhyperbolic equilibria at ω = (0,±c, 0) connected by four heteroclinic orbits

ωh
±(t; c) =

(

±c

√
I2(I3 − I2)
I1(I3 − I1)

sechkct, c tanh kct,±c

√
I2(I2 − I1)
I3(I3 − I1)

sechkct

)

,
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ω̃h
±(t; c) =

(

±c

√
I2(I3 − I2)
I1(I3 − I1)

sechkct,−c tanh kct,∓c

√
I2(I2 − I1)
I3(I3 − I1)

sechkct

)

on the level set F1(ω) :=
√

2F̃ (ω)/I2 = c > 0, where

k =

√
(I2 − I1)(I3 − I2)

I3I1
.

See Fig. 6 for the unperturbed orbits of (1.5) with ε = 0 on the level set F1(ω) = c. The variational
equations of (1.5) with ε = 0 along ωh

±(t; c) and ω̃h
±(t; c) have no other linearly independent

solutions than ξ = ω̇h
±(t; c) and ˙̃ωh

±(t; c), respectively, such that they tend to 0 exponentially as
t → ±∞ since the numbers of eigenvalues with positive and negative real parts are both one. Thus,
Assumptions (A1)–(A5) hold with n = 3, m,ns, nu = 1 and I = [c�, cr] for any 0 < c� < cr < ∞.
The solutions tending to 0 as t → ±∞ for the corresponding adjoint variational equations are given
by

ψ2(t; c) =
(
I1(I1 − I2)ω1(t; c), 0, I3(I3 − I2)ω3(t; c)

)T
,

where ω(t; c) = ωh
±(t; c) or ω̃h

±(t; c). Henceforth we use the notation repeatedly. Moreover,

DF1(ω) =
1

cI2
(I1ω1, I2ω2, I3ω3).

Fig. 6. Unperturbed orbits of (1.5) with ε = 0 on the level set F1(ω) = c.

Fix the closed interval I = [c�, cr]. When ε > 0 is sufficiently small, there are two normally
hyperbolic, locally invariant manifolds M±

ε near

M±
0 = {(0,±c, 0, θ) ∈ R

3 × S
1 | θ ∈ S

1, c ∈ I}
in (1.5). We compute the Melnikov functions as

M(θ; c) =
∫ ∞

−∞
[α(I2 − I1)ω1(t; c)ω2(t; c) + β3(I3 − I2)ω3(t; c)] sin(νt + θ0)dt

=α(I2 − I1) cos θ

∫ ∞

−∞
ω1(t; c)ω2(t; c) sin νt dt

+ β3(I3 − I2) sin θ

∫ ∞

−∞
ω3(t; c) cos νt dt,

so that
M±(θ; c) = ±αM1(c) cos θ ± β3M2(c) sin θ (5.2)

for ω = ωh
±, and

M̃±(θ; c) = ±αM1(c) cos θ ∓ β3M2(c) sin θ (5.3)
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for ω = ω̃h
±, where

M1(c) = πν

√
I1I2I2

3

(I3 − I1)(I3 − I2)
sech

( πν

2kc

)
,

M2(c) = π

√
I1I2(I3 − I2)

I3 − I1
sech

( πν

2kc

)
.

From Theorem 1 we obtain the following.

Theorem 3. Assume that α 	= 0 or β3 	= 0. Then the stable and unstable manifolds, W s(M∓
ε ) and

W u(M±
ε ), intersect transversely.

We next apply Theorem 2. First, we easily see that M±
ε satisfy (A6) if β2, β3 = 0. Actually,

since F1(ω) is still a conservative quantity, for ε > 0 sufficiently small M±
ε is transversal to the

level set F1(ω) = c. Hence, M±
ε ∩

{
(ω, θ) | F1(ω) = c, θ ∈ S

1
}

are closed curves, which correspond
to periodic orbits. More generally, we prove the following.

Proposition 2. M±
ε satisfy (A6) if and only if α = 0 or β3 = 0.

Proof. We only give a proof for M +
ε since the proof for M−

ε is similar. For α = 0 or β3 = 0, Eq. (1.5)
has the following symmetry.

Lemma 4. Let ω =
(
ω̄1(t), ω̄2(t), ω̄3(t)

)
be a solution to (1.5) with ε > 0.

(i) If α = 0, then ω =
(
− ω̄1(−t), ω̄2(−t), ω̄3(−t)

)
is a solution to (1.5).

(ii) If β3 = 0, then ω =
(
ω̄1(−t), ω̄2(−t),−ω̄3(−t)

)
is a solution to (1.5).

Proof. Noting that

d
dt

ωj(−t) = −ω̇j(−t), j = 1, 2, 3,

we can immediately obtain the results. �

Let α = 0 and assume that Eq. (1.5) has a solution ω̄(t) such that ω̄1(0) = ω̄1(T/2) = 0. Then
by Lemma 4 ω̂(t) = (−ω̄1(−t), ω̄2(−t), ω̄3(−t)) is also a solution to (1.5). Obviously, ω̂(0) = ω̄(0),
so that ω̂(t) ≡ ω̄(t). Hence, ω̄(t) is T -periodic since ω̄(−T/2) = ω̂(−T/2) = ω̄(T/2). Similarly, if
Eq. (1.5) with β3 = 0 has a solution ω̄(t) such that ω̄3(0) = ω̄3(T/2) = 0, then it is also T -periodic.
These facts are keys to our argument below in the proof.

We now prove the sufficiency part. We begin with the case of α = 0. Substituting

ω1 = εζ1, ω2 = c + εζ2, ω3 = εζ3 (5.4)

into (1.5), we have

ζ̇1 = −ca1ζ3 + O(ε), ζ̇2 = β̄2 sin νt + O(ε),

ζ̇3 = −ca3ζ1 + β̄3 sin νt + O(ε),
(5.5)

where

a1 =
I3 − I2

I1
, a3 =

I2 − I1

I3
, β̄j =

βj

Ij
, j = 2, 3.

Solving (5.5), we obtain

ζ1(t) =
ca1β̄3

ν2 + c2a1a3
sin νt + C1 cosh c

√
a1a3t + C2 sinh c

√
a1a3t + O(ε),
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where C1, C2 are constants. By the implicit function theorem, we see that for ε > 0 sufficiently
small and each c > 0, there is a unique point (C1, C2) near (0, 0) such that

ζ1(0) = C1 + O(ε) = 0,

ζ1(T/2) = C1 cosh
πc

√
a1a3

ν
+ C2 sinh

πc
√

a1a3

ν
+ O(ε) = 0.

Hence, Eq. (1.5) has a periodic orbit in an O(ε)-neighborhood of M +
0 and it must be on M +

ε for
each c > 0 since it would escape from the neighborhood as t → ∞ or −∞ if not.

We turn to the case of β3 = 0. Substituting (5.4) into (1.5), we have

ζ̇1 = −ca1ζ3 − cᾱ1 sin νt + O(ε),

ζ̇2 = β̄2 sin νt + O(ε), ζ̇3 = −ca3ζ1 + O(ε),
(5.6)

where α1 = α/I1. Solving (5.6), we obtain

ζ3(t) = − c2a3ᾱ1

ν2 + c2a1a3
sin νt + C3 cosh c

√
a1a3t + C4 sinh c

√
a1a3t + O(ε),

where C3, C4 are constants. We apply the above argument for ζ3 instead of ζ1 to see that Eq. (1.5)
has a periodic orbit on M +

ε for ε > 0 sufficiently small and each c > 0.
We next prove the necessity part by contradiction. Assume that α, β3 	= 0 and that there exists

a T -periodic orbit on M +
ε . Substituting (5.4) into (1.5), we have

ζ̇1 = −ca1ζ3 − cᾱ1 sin νt + O(ε),

ζ̇2 = β̄2 sin νt + ε(a2ζ3ζ1 + ᾱ2ζ1 sin νt) + O(ε2),

ζ̇3 = −ca3ζ1 + β̄3 sin νt + O(ε),

(5.7)

where

a2 =
I3 − I1

I2
, ᾱ2 =

α

I2
.

Solving (5.7), we obtain the expressions

ζ1(t) =
c(νᾱ1 cos νt + a1β̄3 sin νt)

ν2 + c2a1a3
+ O(ε),

ζ3(t) = −νβ̄3 cos νt + c2a3ᾱ1 sin νt)
ν2 + c2a1a3

+ O(ε)

for the periodic orbit. Hence,

ζ2(T ) − ζ2(0) = ε
πc(a2ᾱ1 − a1ᾱ2)β̄3

ν(ν2 + c2a1a3)
+ O(ε2),

which is nonzero since I2 > I1 so that a2ᾱ1 − a1ᾱ2 > 0. This is a contradiction. Thus, we complete
the proof. �

We assume that α = 0 or β3 = 0 and apply Theorem 2. We have

D±
1 (t0; c) =

1
cI2

∫ ±∞

−t0

(
β2Δ±ω2(t; c) + β3ω3(t; c)

)
sin ν(t + t0) dt,

where

Δ±ω2(t; c) =

{
ω2(t; c) ∓ c for ω = ωh

±;
ω2(t; c) ± c for ω = ω̃h

±.

Thus, we compute (4.4) as

D±(t0; c) =
2β2

cI2

(
cos νt0

∫ ∞

0
Δ+ω2(t; c) sin νt dt − c

∫ 0

−t0

sin ν(t + t0)dt

)
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+
β3

cI2
sin νt0

∫ ∞

−∞
ω3(t; c) cos νt dt

=β2

(
D1(c) cos νt0 −

2
νI2

)
± β3D2(c) sin νt0 (5.8)

for ω = ωh
±, and

D̃±(t0; c) =
2β2

cI2

(
cos νt0

∫ ∞

0
Δ+ω2(t; c) sin νt dt + c

∫ 0

−t0

sin ν(t + t0)dt

)

+
β3

cI2
sin νt0

∫ ∞

−∞
ω3(t; c) cos νt dt

= − β2

(
D1(c) cos νt0 −

2
νI2

)
∓ β3D2(c) sin νt0 (5.9)

for ω = ω̃h
±, where

D1(c) =
π

kcI2
cosech

( πν

2kc

)
, D2(c) =

π

kc

√
I2 − I1

I2I3(I3 − I1)
sech

( πν

2kc

)
.

Since by (5.2) and (5.3) M±(θ; c) and M̃±(θ; c) have a simple zero at θ = 0, π for α = 0 and at
θ = π/2, 3π/2 for β3 = 0, we obtain the following result.

Theorem 4. Assume that α = 0 or β3 = 0. Then γ−
ε (c) and γ+

ε (c + εΔc) have a heteroclinic cycle,
where

Δc = β2

(
±D1(c) −

2
νI2

)
+ O(ε)

for α = 0 and

Δc = −2β2

νI2
+ O(ε)

for β3 = 0. See Fig. 7 for the dependence of Δc on c given in the above formulas.

Proof. Applying Theorem 2 and using (5.8), we see that W u
(
γ−

ε (c)
)

intersects W s
(
γ+

ε (c + εΔc)
)
,

i. e., there exists a heteroclinic orbit from γ−
ε (c) to γ+

ε (c + εΔc). Hence, by Lemma 4, there also
exists a heteroclinic orbit from γ+

ε (c + εΔc) to γ−
ε (c). This completes the proof. �

Remark 3. Applying Theorem 2 and using (5.9), we see that W u
(
γ+

ε (c)
)

intersects W s
(
γ−

ε (c +
εΔc̃)

)
, i. e., there exists a heteroclinic orbit from γ−

ε (c) to γ+
ε (c + εΔc̃), where

Δc̃ = β2

(
∓D1(c) +

2
νI2

)
+ O(ε)

for α = 0 and

Δc̃ =
2β2

νI2
+ O(ε)

for β3 = 0. Thus, Δc̃ = −Δc up to O(1), which is consistent with the statement of Theorem 4.

Assume that α = 0 and β2, β3 	= 0 and define

Δck(c) =

{
β2

(
2/νI2 + D1(c)

)
for k = 1;

β2

(
2/νI2 − D1(c)

)
for k = 2.

(5.10)
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Fig. 7. Dependence of Δc on c given in Theorem 4: The solid and dotted lines represent the results for α = 0
and β3 = 0, respectively.

For any integer N > 0 and sequence {kj ∈ {1, 2}}2N
j=−2N , let {cj}2N

j=−2N be a sequence with the length
4N satisfying (4.5). Then by Theorem 4, W u

(
γ−

ε (c2j)
)

and W u
(
γ+

ε (c2j+1)
)

intersect W s
(
γ+

ε (c2j+1)
)

and W s
(
γ−

ε (c2j+2)
)
, respectively, so that there exists an orbit successively visiting neighborhoods of

periodic orbits γ−
ε (c2j) and γ+

ε (c2j+1), j = −N, . . . ,N . In particular, cj = cj+2 holds including the
O(ε2) term if k2j 	= k2j+1. Thus, transition motions described in Remark 2 occur in (1.5). We note
that they may occur even when β3 = 0 and α, β2 	= 0, although it is more subtle since Eq. (5.10) is
replaced with

Δck(c) = −2β2

νI2
, k = 1, 2,

in the above arguments.

5.3. Numerical Computations

Finally, we give numerical computations for heteroclinic orbits to periodic orbits in (1.5) for
(α, β3) = (0, 1) or (α, β3) = (1, 0). The other parameter values are I1 = 0.8, I2 = 1, I3 = 2, β2 = 1
and ν = 1, while ε, c are changed. The computations were carried out by using the computer tool
AUTO [4] as follows.

Periodic orbits ω̄±(t) on the invariant manifolds M±
ε are computed by applying the argument

used in the proof of Proposition 2 based on Lemma 4 and solving the boundary value problem
of (1.5) with the boundary conditions

ω1(0) = ω1(T/2) = 0

for α = 0 and
ω3(0) = ω3(T/2) = 0

for β3 = 0. So M±
ε are obtained from continuations of the solutions of this boundary value problem

when ω̄±
2 (0) is changed. Consider the variational equation of (1.5) around the periodic orbits ω̄±(t),

ξ̇1 = (a1ω̄
±
3 (t) − εᾱ1 sin νt)ξ2 + a1ω̄

±
2 (t)ξ3,

ξ̇2 = (a2ω̄
±
3 (t) + εᾱ2 sin νt)ξ1 + a2ω̄

±
1 (t)ξ3,

ξ̇3 = a3ω̄
±
2 (t)ξ1 + a3ω̄

±
1 (t)ξ2.

(5.11)

Heteroclinic orbits from ω̄∓(t) to ω̄±(t) are computed by solving the boundary value problems
of (1.5) with the boundary conditions

L∓
sc

(
ω(−NT ) − ω̄∓(0)

)
= 0, L±

uc

(
ω(NT ) − ω̄±(0)

)
= 0,

REGULAR AND CHAOTIC DYNAMICS Vol. 23 No. 4 2018



HETEROCLINIC TRANSITION MOTIONS IN PERIODIC PERTURBATIONS 453

where N ∈ N is sufficiently large (in a numerical meaning), ω(−NT ) and ω(NT ) are close to
ω̄∓(0) and ω̄±(0), respectively, and L±

sc and L±
uc are, respectively, 2 × 3 matrices consisting of row

eigenvectors for the monodromy matrices of (5.11) whose eigenvalues have no moduli which are
greater and less than one (approximately). Moreover, orbits on the stable and unstable manifolds,
W s

(
ω̄±(t)

)
and W u

(
ω̄±(t)

)
, are computed by solving the boundary value problems of (1.5) with

the boundary conditions

L±
uc

(
ω(NT ) − ω̄±(0)

)
= 0, ω(0) = ωs

0

and

L∓
sc

(
ω(−NT ) − ω̄∓(0)

)
= 0, ω(0) = ωu

0 ,

respectively, where ωs
0 and ωu

0 are points on W s
(
ω̄±(t)

)
and W u

(
ω̄±(t)

)
, respectively, and should be

determined through the computations. So W s
(
ω̄±(t)

)
and W u

(
ω̄±(t)

)
are, respectively, obtained

from continuations of ωs
0 and ωu

0 when ω(NT ) and ω(−NT ) are changed. The unperturbed
nonhyperbolic saddles ω = (0,±c, 0) and heteroclinic orbits, ωh

±(t; c) and ω̃h
±(t; c), are taken as

the starting solutions at ε = 0 for these boundary value problems, and numerically continued by
AUTO with ε and c. Similar treatments for computations of the stable and unstable manifolds were
also used in [20, 22].

Figure 8 shows numerically computed invariant manifolds M±
ε consisting of periodic orbits on

the Poincaré section

Σ = {(ω, θ) ∈ R
3 × S

1 | θ = 0}
for (α, β3) = (0, 1) when ε = 0.01 and 0.05, where θ = νt mod 2π. Here we take c� ≈ 0.1 and cr ≈ 1.5
for the closed interval I = [c�, cr] in (A2).

Fig. 8. Numerically computed invariant manifolds on the Poincaré section Σ = {θ = 0} for (α, β3) = (0, 1):

(a) M−
ε ; (b) M +

ε . The red and blue lines represent the manifolds for ε = 0.01 and 0.05, respectively.

Figure 9 shows numerically computed heteroclinic orbits from γ−
ε (c) to γ+

ε (c + εΔc) with c = 1
for ε = 0.01. Note that heteroclinic orbits exist only for special values of Δc as described in the
theory. Actually, only for two such values heteroclinic orbits were continued from the unperturbed
one for each value of c in the computations. We see that the arriving periodic orbit is different for the
two heteroclinic orbits when (α, β3) = (0, 1), while it is (almost) the same when (α, β3) = (1, 0).
Figures 10 and 11 show the dependence of Δc on ε or c for numerically computed heteroclinic
orbits when (α, β3) = (0, 1) and (α, β3) = (1, 0), respectively. The red lines represent the theoretical
predictions

εΔc = εβ2

(
±D1(c) −

2
νI2

)

given in Theorem 4 up to O(ε) in Fig. 10. The theoretical predictions almost completely coincide
with the numerically computations and are not plotted in Fig. 11. Thus, excellent agreement
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between the theoretical predictions and numerical results is found, except when ε is relatively
large or c is relatively small in Fig. 10: Heteroclinic bifurcations occur and the heteroclinic orbits
disappear there. Note that the numerical observations do not contradict the statement of Theorem 4
since heteroclinic orbits are numerically computed for ε > 0 sufficiently small when the value of
c > 0 is fixed.

Fig. 9. Numerically computed heteroclinic orbits with c = 1 for ε = 0.01: (a) (α, β3) = (0, 1); (b) (α, β3) =
(1, 0).

Fig. 10. Numerically computed dependence of εΔc on ε and c for (α, β3) = (0, 1): (a) c = 1; (b) ε = 0.01. The
red line represents the theoretical predictions.

Figure 12 shows numerically computed stable and unstable manifolds of periodic orbits with c±
on M±

ε for (α, β3) = (0, 1) on the Poincaré section Σ, where c− = 1. In Fig. 12a, when ε = 0.05, the
stable manifolds of two periodic orbits with c+ = 0.885808, 0.899862, which correspond to the values
of Δc in Fig. 10a, on M +

ε intersect the unstable manifold of a periodic orbit with c− = 1 on M−
ε .

In Fig. 12b, when ε = 0.0755865, the stable manifold of a periodic orbit with c+ = 0.832024, which
correspond to the value of Δc near the heteroclinic bifurcation point in Fig. 10a, on M +

ε is almost
tangent to the unstable manifold of a periodic orbit with c− = 1 on M−

ε . In Fig. 12c, when ε = 0.08,
the stable and unstable manifolds of a periodic orbit with c− = 1 on M−

ε intersect, although such
heteroclinic orbits as plotted in Fig. 9a already disappear through a heterocliinic bifurcation. Here
we remark that by Lemma 4 the unstable manifold of a periodic orbit on M−

ε is symmetric to its
stable manifold about the (ω2, ω3)-plane on Σ, and in particular, if the unstable manifold intersects
the (ω2, ω3)-plane on Σ, then it intersects the stable manifold on Σ, as shown in Fig. 12c.

We finally give numerical simulation results: Fig. 13 shows orbits of the Poincaré section Σ and
Fig. 14 shows computed variations of c = F1(ω) for them. Here a Fortran code called “DOP853” [12]
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Fig. 11. Numerically computed dependence of εΔc on ε and c for (α, β3) = (1, 0): (a) c = 1; (b) ε = 0.01.

Fig. 12. Numerically computed stable and unstable manifolds of periodic orbits with c− = 1 on M−
ε and

with c+ on M +
ε for (α, β3) = (0, 1) on the Poincaré section Σ: (a) ε = 0.05, c+ = 0.885808, 0.899862; (b)

ε = 0.0755865, c+ = 0.832024; (c) ε = 0.08, c+; = 1. The black line represents the unstable manifolds, and the
red and blue lines represent the stable manifolds. The point “•” represents periodic orbits.

was used with a tolerance of 10−8. The code is based on the explicit Runge – Kutta method of
order 8 and a fifth-order error estimator with third-order correction is utilized. Thus, the numerical
results are very accurate. The initial point is chosen at ω = (10−3, 1, 10−3) near the unperturbed
nonhyperbolic saddle on Σ for both orbits. We observe that the value of F1(ω) varies heavily for
α = 0, but not for β3 = 0. One of the reasons for this observation is thought to be the difference of
transition motions described at the end of Section 5.2.

REGULAR AND CHAOTIC DYNAMICS Vol. 23 No. 4 2018



456 YAGASAKI

Fig. 13. Numerically computed orbits on the Poincaré section Σ: (a) (α, β3) = (0, 1); (b) (α, β3) = (1, 0).

Fig. 14. Numerically computed variations of F1(ω) for the orbits shown in Fig. 13: (a) (α, β3) = (0, 1); (b)
(α, β3) = (1, 0). The abscissa k represents the iteration number of the Poincaré map.
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