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Abstract—We present a procedure for the normalization of perturbed Keplerian problems in n
dimensions based on Moser regularization of the Kepler problem and the invariants associated to
the reduction process. The approach allows us not only to circumvent the problems introduced
by certain classical variables used in the normalization of this kind of problems, but also to
do both the normalization and reduction in one step. The technique is introduced for any
dimensions and is illustrated for n = 2, 3 by relating Moser coordinates with Delaunay-like
variables. The theory is applied to the spatial circular restricted three-body problem for the
study of the existence of periodic and quasi-periodic solutions of rectilinear type.
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1. INTRODUCTION
We propose a new approach to the analysis of the classic perturbed Kepler problem. We look

at the regularized problem in n dimensions with the goal of finding periodic and quasi-periodic
solutions as well as related bifurcations by methods which avoid some of the traditional pitfalls.
This approach is illustrated with the analysis of several new and old problems.

We give an alternative way of carrying out the normalization of three-dimensional perturbed
Keplerian systems by first applying the Moser regularization mapping and then averaging the
regularized perturbation with respect to the eccentric anomaly. The approach is easily adapted to
the case of n-dimensional perturbed Kepler problems by generalizing the invariants of the spatial
Kepler problem to any dimension n. Our procedure is based on the fact that the regularized
perturbed Kepler problem can be written as a Hamiltonian system in a collection of variables
given by a pair of action-angle coordinates together with some global coordinates (invariants) that
parameterize the reduced space of the n-dimensional Kepler problem. This space is the set G2,n+1,
the Grassmannian manifold of oriented 2-planes in R

n+1, see [35]. If n = 2, then the reduced
space becomes S2, whereas it is S2 × S2 when n = 3. The normalization can be interpreted as an
average with respect to the angle coordinate. One of the advantages of our approach is that after
normalization the resulting Hamiltonian is directly expressed in terms of the invariants that define
the reduced space G2,n+1.
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Our approach is closely related to the constrained normal form result of van der Meer and
Cushman [50] (see also [10, 12]), where the authors design a method to deal with the normalization
of a perturbed Keplerian Hamiltonian in n dimensions in terms of the coordinates introduced after
applying Moser regularization [36]. Indeed, the use of these coordinates allows one to treat all
types of bounded motions provided the perturbation is a smooth function after regularization. We
show the relation between the approach of [50] and ours by giving explicitly the mappings between
Moser coordinates and the Keplerian invariants associated to the Kepler reduction. When n = 3
Pauli [44] in his quantization of the hydrogen atom provided the quantum differential operators
that correspond to the angular momentum and the Laplace – Runge –Lenz vectors, and pointed out
that they have an so(4) Lie algebra structure. More recently, Cordani [7] has designed a method
to normalize perturbed Kepler problems in global coordinates which are somehow related to Moser
coordinates and the invariants of S2 × S2.

Due to the explicit relations we provide between the rectangular coordinates and the Keplerian
invariants, compared to other approaches to the subject, we get a deeper insight into the issue of
normalization of perturbed Kepler problems for any dimension n. Specifically, our procedure allows
one to analyze a certain problem from its corresponding reduced system constructed in several
steps, namely: (i) regularizing the problem; (ii) normalizing it up to a certain order arriving at
the reduced Hamiltonian written in terms of the Keplerian invariants; (iii) building the reduced
system (i. e., the equations of motion) and; (iv) analyzing the system in the reduced space taking
into account the constraints defining it.

A change of time in the regularization process is indispensable if one wants to analyze the
possibility of solutions of collision nature. This occurs in many examples, such as the restricted
three-body problem in the space [33, 51]. For other three-body examples see, for instance, [41, 42, 46]
where the Hamiltonian, after applying the Jacobi transformation to eliminate the translational
symmetry, can be written as the sum of two Keplerian Hamiltonians plus a small perturbation
dealing with the coupling terms of the two systems.

We have noticed that if we apply Ligon – Schaaf regularization [28], which does not require
scaling the time, a given perturbation cannot be expressed in an analytic way with respect to
all of Ligon – Schaaf’s coordinates when we are at the collision manifold, even when the Kepler
Hamiltonian and the perturbation both make sense for collisions. This problem is overcome if
one applies Kustaanheimo – Stiefel (for dimension 3), Levi-Civita (for dimension 3) or Moser (for
dimension n) formalisms. In any of these settings the perturbation is analytic with respect to the
symplectic coordinates that define these mappings, and the same happens if we proceed with the
invariants of the Kepler problem and the pair of action-angle coordinates that we introduce. The
main reason is that we are avoiding the mean anomaly as part of these coordinates since it is
essentially replaced by the eccentric anomaly and the perturbation behaves smoothly with respect
to it. Thus, one can apply averaging techniques, normal forms and reduction using any of these
procedures and study perturbations of the Kepler problem properly.

For the spatial case of the circular restricted three-body problem in the lunar regime we have
analyzed the solutions (periodic and quasi-periodic) of rectilinear bounded nature. This has been
achieved after checking a transversality condition that is required in order to get true solutions and
this issue has been applied in different types of three-body problems [6, 16, 43, 52].

The paper is structured in six sections plus a list of references. Regularization of the n-
dimensional Kepler problem is recalled in Section 2. In Section 3 the coordinates used by Moser
are related to a set of action-angle coordinates deduced from Delaunay elements (the so-called
Delaunay-like coordinates), whereas Section 4 is devoted to present the normalization procedure
in both Delaunay-like coordinates and the invariants associated to the reduction of the Kepler
problem. In Section 5 we generalize the normalization procedure to deal with n-dimensional cases,
stating and proving our two main results (Theorems 1 and 2). Section 6 is dedicated to treating
the case of periodic solutions and KAM 3-tori in the spatial restricted three-body problem. It is
remarkable that, even when we perform a regularization, we do not need an isoenergetic version of
a KAM theorem since our method allows us to carry out the calculations for all (negative) energy
levels at once.

The relationship between Moser coordinates for n = 3 and Delaunay-like variables presented
in Section 3.1 is new and allows one the normalization of perturbed Kepler problems by means of
action-angle variables. The explicit transformation relating rectangular coordinates to the invariants
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of the reduced space S2 ×S2 presented in Section 4 is also a novelty. This is generalized to dimension
n in Section 5. Finally, the procedure of Section 6 to check the transversality of the manifolds in
the spatial restricted three-body problem appears here for the first time.

2. REGULARIZATION OF THE KEPLER PROBLEM

The linear and inverse square law, the Kepler problem, are unique among central force problems
in that they have hidden symmetries beyond the obvious rotational symmetry and extra integrals
in addition to angular momentum.

First Kepler observed that the perihelion of Mars was fixed in space and then Newton proved
that there is a direction, a vector, pointing to the periapsis, the point on the orbit closest to
the attracting body. This vector was rediscovered many times and has born the names of many
mathematicians — Laplace, Runge, Lenz et al. This vector is an integral of motion. As we know
from Noether’s work [38], integrals and symmetries are closely related and so there are additional
symmetries. Also, this extra integral implies that collision orbits are collinear, which leads to the
realization that the collision singularity was removable by the process which has become known as
regularization.

Regularization was started in 2 dimensions by Goursat [19], then continued by Levi-Civita [27]
using complex variable techniques and by Kustaanheimo –Stiefel using quaternions for 3 and 4
dimensions [26].

But regularization for the general n-dimensional problem uses the stereographic projection of
the sphere onto a coordinate plane. Indeed, the physicist Fock [18] exploited this projection in his
investigation of the spectrum of the hydrogen atom from a quantum mechanical point of view.
Moser [36] uses this projection to regularize the Kepler problem in n dimensions. Although there
are many important contributions (see, for instance, [1, 20, 22]), the work of Moser [36] explains
to us the additional integral, the extra symmetry, and the removable collision singularity while
providing coordinates well adapted to our perturbation analysis.

So we start by recalling the regularization of the Kepler problem in n dimensions due to
Moser [36]. We follow the presentation in [23]. First of all let us consider the usual rectangular
coordinates in the n-dimensional space, say (q, p) = (q1, . . . , qn, p1, . . . , pn), and introduce the
negative energy set Σ− = {(q, p) ∈ T0 R

n |H(q, p) < 0}, where T0 R
n = (Rn \ {0})×R

n and H refers
to the Hamiltonian of the Kepler problem, i. e.,

H(q, p) =
1
2
|p|2 − μ

|q| , (2.1)

where | | stands for the usual Euclidean norm and μ > 0 is the standard mass parameter of the
Kepler problem.

We also define the tangent bundle of the n-sphere by TSn = {(x, y) ∈ TR
n+1 = R

n+1 × R
n+1 |

|x| = 1, x · y = 0} and T+Sn = {(x, y) ∈ TSn | y �= 0} with the operator · being the dot product.

If np represents the north pole of Sn, i. e., np = x = (0, . . . , 0, 1) (with x ∈ R
n+1) we introduce

the Moser map [36] by

ΦM : T+(Sn \ {np}) → T0 R
n : (x, y) �→ (q, p) (2.2)

where

qi = −1
k

(yi + xiyn+1 − yixn+1) , pi =
kxi

1 − xn+1
, (2.3)

for i = 1, . . . , n, where k is the positive parameter satisfying h = −k2/2 for a fixed negative value
of the energy H = h.

The inverse of ΦM is

Φ−1

M : Σ− ⊆ T0 R
n → T+Sn : (q, p) �→ (x, y) (2.4)
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where

x = (x1, . . . , xn, xn+1) =
(

2k
|p|2 + k2

p ,
|p|2 − k2

|p|2 + k2

)
,

y = (y1, . . . , yn, yn+1) =
(
− 1

2k
(
(|p|2 + k2)q − 2(q · p)p

)
, −q · p

)
.

(2.5)

Moser regularization is accomplished by taking a new time, say s, introduced through

ds

dt
=

k

|q| .

Hence, the Kepler Hamiltonian must be scaled accordingly. Following Cushman [10], we define a
new Hamiltonian, specifically,

H̃(q, p) =
|q|
k

(
H(q, p) +

k2

2

)
+

μ

k
=

|q|
2k

(
|p|2 + k2

)
. (2.6)

Now we restrict q and p to lie in the level set H̃−1(μ/k). It corresponds to the level set H−1(−k2/2).
Applying the Moser map (2.2) and taking into account that x · y = 0 and |x| = 1, Hamil-

tonian (2.6) becomes

H∗(x, y) = |y|, (2.7)

which is the regularized Keplerian Hamiltonian defined on T+Sn. The flow of the Hamiltonian
vector field XH∗ is the geodesic flow on T+Sn, H∗ is smooth on T+(Sn \ {np}) and can be extended
smoothly to the whole T+Sn.

Transformation (2.4) is symplectic when restricting the standard symplectic form
∑n+1

i=1 dxi ∧ dyi

on TR
n+1 to T+(Sn \ {np}).

Rectilinear (i. e., collision) orbits of the Kepler problem correspond to the geodesic circles through
the north pole np. Moreover, collision states given by q = 0 and |p| = ∞ are transformed to x = np
and y = (y1, . . . , yn, 0) with |y| = μ/k.

Moser regularization works due to Hamilton’s theorem which states that the velocity vector
associated with any nondegenerate Keplerian orbit moves along a circle, see, for instance, [34].

3. MOSER REGULARIZATION IN TERMS OF DELAUNAY-LIKE COORDINATES

3.1. Lack of Analyticity on the Collision Manifold

We start by considering the Kepler problem in two dimensions attaching to it a small smooth
perturbation, see, for instance, [32]. As a prototype we choose the perturbation to be the radial
distance. Thus, our initial Hamiltonian reads as

Hε = H + εP =
1
2

(
R2 +

Θ2

r2

)
− μ

r
+ εr, (3.1)

in the well-known polar-symplectic set of coordinates (r, ϑ,R,Θ), where r and ϑ are the polar
coordinates, while R and Θ denote their respective momenta. In particular, R stands for the linear
momentum in the r direction and Θ represents the angular momentum, see [32]. The constant ε > 0
is considered as a small parameter. It is clear that Hε is analytic with respect to the four variables
provided we avoid collisions.

At this point planar Delaunay coordinates (�, g, L,G) are introduced, where � is the mean
anomaly, g the argument of perigee, L the action conjugate to � and G = Θ. Hamiltonian (3.1)
is transformed into

Hε = − μ2

2L2
+ εr, (3.2)
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where r cannot be written in terms of Delaunay elements explicitly due to the transcendental form
that r depends on. More specifically, one has

r = α (1 − e cos E) , where α =
L2

μ
, e2 = 1 − G2

L2
,

and E denotes the eccentric anomaly that depends on the Delaunay coordinates �, L and G through
the Kepler equation, that is,

� = E − e sin E = mt,

where m = μ2/L3 designates the mean motion and t is the time variable.
Since it is impossible to put E in terms of the Delaunay elements explicitly by using elementary

functions, we cannot express r as a function of this set, although we keep in mind that r depends
on �, L and G.

Focusing on the perturbation r written in Delaunay variables r = r(�, L,G), a crucial point is
that r is not analytic with respect to � when G = 0, that is, at collisions. Indeed, when G = 0 one
has e = 1 and r = α(1 − cos E). Hence, the Kepler equation reads

� = E − sin E = 1
6E3 + O(E5),

hence,

E = 61/3�1/3 + O(�),

from where we deduce that r in terms of � and L is given by

r =
32/3L2

21/3μ
�2/3 + O(�).

Therefore, r is not differentiable with respect to � at � = 0 when G = 0. However, we notice that
r is analytic with respect to E at collisions and everywhere else (the same is true with respect to
the other coordinates).

The above paragraph highlights the convenience of rescaling the Hamiltonian changing the
time in order to be able to consider motions of rectilinear type in a perturbed Kepler problem,
thus discarding the use of Ligon – Schaaf regularization, excepting possible situations where the
perturbation is analytic with respect to Delaunay coordinates, for instance, in the case where the
perturbation is a Fourier series in the mean anomaly.

3.2. Moser and Spatial Delaunay-like Coordinates

Now we fix n = 3 and want to establish the relationship between Delaunay and Moser
coordinates. As a first step we need to complete the set of planar Delaunay coordinates adding
the angle ν and its conjugate action N , where ν stands for the argument of the node and N the
projection of the angular momentum vector into the vertical axis, while G, the conjugate action of
g, represents the length of the angular momentum vector. We note that in the planar case G can
be negative or zero, whereas in the spatial case it is always nonnegative. The reader can see more
details on Delaunay variables in [5].

After fixing the passage through the perigee at the initial time, applying the Kepler equation
and taking into account the relationship between m and α, that is, μ = m2α3, we get

dE

dt
=

m

1 − e cos E
=

mα

r
,

where we have applied that r = |q| = α(1 − e cos E). Since L = mα2 =
√

μα and we fix an energy
level h = −k2/2 = −μ2/(2L2) we end up with

dE

dt
=

μ

Lr
=

k

r
=

ds

dt
.

Thus we notice that the new time s coincides essentially with the eccentric anomaly E.
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It is convenient to introduce a change of coordinates so that the eccentric anomaly gets
transformed into a canonical variable, replacing the role played by � as the fast angle. This
transformation was firstly given by Levi-Civita [27]. It has been applied by other authors, see, for
instance, [47] and more recently [17]. Starting from the symplectic set of polar-nodal coordinates
(r, ϑ, ν,R,Θ, N), we introduce a new set given by (E,φ, ψ, PE ,Φ,Ψ). The transformation is built
through a generating function which is written in terms of the “old” coordinates, r, ϑ and ν and
the “new” momenta PE , Φ and Ψ. See [17, 47] for details. Explicitly one has

r =
1√
2S

(
PE −

√
P 2

E − Φ2 cos E

)
,

ϑ = φ − tan−1

⎛
⎝ Φ sin E√

P 2
E − Φ2 − PE cos E

⎞
⎠ ,

ν = ψ,

R =

√
2S

√
P 2

E − Φ2 sin E

PE −
√

P 2
E − Φ2 cos E

,

Θ = Φ,

N = Ψ.

(3.3)

In (3.3) S plays the role of a parameter that has to be chosen adequately.

The change (3.3) converts Hamiltonian H in (3.1) into

H = −S − μ −
√

2SPE

r
. (3.4)

The parameter S is chosen to be minus the energy of the Kepler problem. In terms of the constant
k or the action L we readily get that

S =
k2

2
=

μ2

2L2
. (3.5)

Therefore, the phase flow determined by H of (3.4) on the manifold H = −S in the chart
(E,φ, ψ, PE ,Φ,Ψ, t) is in 1:1 correspondence with the phase flow determined by H∗ defined as

H∗ =
r√
2S

(H + S) +
μ√
2S

= PE

on the manifold PE = L in the chart (E,φ, ψ, PE ,Φ,Ψ, s), since μ/
√

2S = L. Notice that the factor
r/
√

2S is equivalent to |q|/k.

The relation between the times t and s is given by

t = s − 1
2S

√
P 2

E − Φ2 sin E.

From now on we identify φ = g, ψ = ν, Φ = G and Ψ = N . We stress that G = Θ � 0 and L
is no longer a variable but a parameter related with S and k by means of (3.5). The set (E, g, ν,
PE , G,N) is the one that we call Delaunay-like coordinates. They are also called Delaunay-similar
or Delaunay – Scheifele coordinates.

In order to express Moser coordinates in terms of Delaunay-like ones, we start by putting the
polar symplectic coordinates introduced in Section 3.1 in terms of rectangular planar coordinates
(u, v, U, V ) by means of

u = r cos ϑ, U = R cos ϑ − Θ
r

sin ϑ, v = r sin ϑ, V = R sin ϑ +
Θ
r

cos ϑ. (3.6)
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At this point we compose the transformation (3.6) with the rectangular coordinates (q, p) in the
three-dimensional space through

q1 = u cos ν − c̄v sin ν, q2 = u sin ν + c̄v cos ν, q3 = s̄v,

p1 = U cos ν − c̄V sin ν, p2 = U sin ν + c̄V cos ν, p3 = s̄V,
(3.7)

where s̄ = sin I =
√

1 − N2/Θ2, c̄ = cos I = N/Θ and I is the inclination angle between the orbital
and the equatorial planes.

After plugging (3.6) in (3.7), applying thereafter transformation (3.3) and simplifying the
intermediate expressions, we end up with

q1 =
L

μ
PE

((
(cos E − ẽ) cos g − η̃ sin E sin g

)
cos ν − c̄

(
η̃ sin E cos g + (cos E − ẽ) sin g

)
sin ν

)
,

q2 =
L

μ
PE

(
c̄
(
η̃ sin E cos g + (cos E − ẽ) sin g

)
cos ν +

(
(cos E − ẽ) cos g − η̃ sin E sin g

)
sin ν

)
,

q3 =
L

μ
PE s̄

(
η̃ sin E cos g + (cos E − ẽ) sin g

)
,

p1 =
μ

L(1 − ẽ cos E)

(
−

(
sin E cos g + η̃ cos E sin g

)
cos ν + c̄

(
sinE sin g − η̃ cos E cos g

)
sin ν

)
,

p2 =
μ

L(1 − ẽ cos E)

(
c̄
(
η̃ cos E cos g − sin E sin g

)
cos ν −

(
sin E cos g + η̃ cos E sin g

)
sin ν

)
,

p3 =
μ

L(1 − ẽ cos E)
s̄
(
η̃ cos E cos g − sin E sin g

)
,

(3.8)
where we have introduced η̃ = G/PE and ẽ =

√
1 − η̃2.

We link Moser coordinates of the spatial Kepler problem with Delaunay-like ones.

Proposition 1. When n = 3, Moser coordinates (2.5) are written in terms of spatial Delaunay-like
coordinates by means of the following formulae:

x1 = −η̃ cos E(sin g cos ν + c̄ cos g sin ν) − sin E(cos g cos ν − c̄ sin g sin ν),

y1 = PE η̃ sin E(sin g cos ν + c̄ cos g sin ν) − PE cos E(cos g cos ν − c̄ sin g sin ν),

x2 = − sin E(c̄ sin g cos ν + cos g sin ν) + η̃ cos E(c̄ cos g cos ν − sin g sin ν),

y2 = −PE cos E(c̄ sin g cos ν + cos g sin ν) − PE η̃ sin E(c̄ cos g cos ν − sin g sin ν),

x3 = s̄(η̃ cos E cos g − sin E sin g),

y3 = −PE s̄(η̃ sin E cos g + cos E sin g),

x4 = ẽ cos E,

y4 = −PE ẽ sin E.

(3.9)

Proof (of Proposition 1). First we apply (3.8) to (2.5), assuming n = 3. Next we simplify all the
resulting formulae arriving at (3.9). �

These formulae make sense in the domain where Delaunay-like coordinates are well defined, i. e.,
where the momenta satisfy |N | < G < PE , thus at the beginning one should exclude rectilinear,
circular and equatorial motions, although the above expressions can be extended to circular motions
(G = PE in Delaunay-like coordinates) and to equatorial ones (|N | = G). We shall go back to this
in Section 4.2.

The application of (3.9) to H∗ of (2.7) yields the Hamiltonian

H∗ = PE . (3.10)
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4. NORMALIZING A SPATIAL PERTURBED KEPLERIAN SYSTEM
4.1. Normalization in Delaunay-like Coordinates

Let us consider the perturbed Hamiltonian function

Hε(q, p) = H(q, p) + εP(q, p; ε) (4.1)

where H is the Hamiltonian of the Kepler problem given in (2.1),

P(q, p; ε) = P1(q, p) + εP2(q, p) + ε2P3(q, p) + . . .

is a regular perturbation and ε > 0 designates a small parameter. We keep n = 3 in this section.
Our plan is to average (i. e., normalize) Hε with respect to the solutions of the Keplerian part

but in the framework of Moser regularization. As in the unperturbed case, we fix an energy value,
say h < 0, thus we work on the energy level Hε = h and define k > 0 such that h = −k2/2. Then
we introduce the Hamiltonian

H̃ε(q, p) =
|q|
k

(
Hε(q, p) +

k2

2

)
+

μ

k
. (4.2)

We restrict q, p to lie in the level set H̃−1
ε (μ/k), which corresponds to the level set H−1

ε (−k2/2).
We also take into account that Hε is negative, thus perturbations of bounded Keplerian solutions
are treated.

Notice that the factor |q|/k in (4.2) after applying (2.3) reads as

f(x, y) =
1
k2

√
(y1 + y4x1 − y1x4)2 + (y2 + y4x2 − y2x4)2 + (y3 + y4x3 − y3x4)2.

After the scaling of time P(q, p; ε) gets transformed through (2.3) into the term P∗(x, y; ε) =
f(x, y)P(x, y; ε). Hence, Hamiltonian (4.2) becomes

H∗
ε(x, y) = |y| + εP∗(x, y; ε), (4.3)

which is the regularized Hamiltonian corresponding to Hε defined on T+S3. Besides, the flow of
the Hamiltonian vector field XH∗

ε
is the geodesic flow on T+S3 and H∗

ε is a smooth function on
T+(S3 \ {np}) that may be extended smoothly to the tangent bundle of S3 minus its zero section,
i. e., T+S3.

In our context, normalizing Hamiltonian H∗
ε means to perform a symplectic change of coordi-

nates, formally in powers of ε, up to a finite order, say p, so that H∗
ε gets transformed into

|y| + εH∗
1 + ε2H∗

2 + ε3H∗
3 + . . . + εpH∗

p + O(εp+1),

and each H∗
j (with 1 � j � p) commutes with |y|. The same idea applies to any dimension n of the

Kepler problem.

Proposition 2. The application of the map (3.9) to (4.3) produces a Hamiltonian in Delaunay-
like coordinates that is normalized by averaging with respect to the eccentric anomaly to obtain the
corresponding Hamiltonian in normal form.

Proof (of Proposition 2). We write down Hamiltonian H∗
ε in terms of Delaunay-like coordinates.

First notice that by virtue of (3.9) we get |y| = PE. Besides, since |q| = r, the factor f(x, y) becomes
f(r) = r/k, thus one gets P∗ = (r/k)P, where r is put in terms of E, PE and G and the parameter L.
If P is smooth with respect to x and y, then P∗ is smooth with respect to E, PE , g, ν, ẽ, η̃, c̄, s̄.
In particular, the dependence with respect to E occurs through terms of the form sin(jE) and
cos(jE) with j a nonnegative integer. The smooth character is maintained even for collision states,
that is, when E = 0 (mod 2π) and G = N = 0. When P is a polynomial in q and p and linear in p,
then P∗ is a finite Fourier series in the angles E, g and ν whose coefficients depend smoothly on
PE , c̄, s̄, ẽ and η̃. It is possible as well that P contain terms with |q| in its denominators.

Summarizing one is confronted with a perturbation problem with Hamiltonian

H∗
ε = PE + εP∗(E, g, ν, PE , G,N ; ε, L) = PE + εH∗

1 + ε2H∗
2 + . . . , (4.4)

where we identify H∗
0 with PE , H∗

k with P∗
k , and P∗

k = (r/k)Pk for k = 1, 2, . . ..
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An important feature of our regularization process is that L = μ/k and, as the perturbation
depends on E, all what we need to do is to normalize H∗

ε with respect to it, using, for instance, a
procedure based on Lie transformations [13, 32], ending up with a Hamiltonian function independent
of E up to a certain order, thence PE becomes a constant of motion, after truncating higher-order
terms. Finally, in order to recover the flow that corresponds to the Hamiltonian system prior to
regularization, one simply sets PE = L in the normalized Hamiltonian. �

Remark 1. When we do not consider near-collision motions, the application of Proposition 2, up
to first order in the small parameter, is equivalent to averaging with respect to the mean anomaly
in Delaunay elements, without regularizing. The reason is that the average of a certain function F
with respect to � is obtained as

F̄ =
1
2π

∫ 2π

0
Fd� =

1
2π

∫ 2π

0
(r/α)FdE,

whereas applying the above procedure, we get

F̃ =
1
2π

∫ 2π

0
(r/k)F&dE,

where F& refers to F written in Delaunay-like coordinates. Hence, on the manifold PE = L one
gets F̃ = (L3/μ2)F̄ (after setting PE = L in F̃ ). Note, however, that since we have regularized the
collisions r = 0 and � is not present in (4.4), H∗

ε can be extended smoothly to the collision set
(provided P∗ is smooth when r = 0) making our method valid for near-rectilinear motions. More
precisely, the solutions that are of rectilinear character can be dealt with using a set of canonical
variables defined from the Delaunay ones, see [49]. On the other hand, circular and equatorial
motions can be analyzed using adequate linear combinations of the Delaunay variables, see, for
instance, [24].

Remark 2. Sometimes it is convenient to use the true anomaly instead of the eccentric anomaly
in order to achieve the normalization of a perturbed Keplerian Hamiltonian when n = 2, 3. This
allows one to enlarge the set of functions where Delaunay normalization is applied up to a large
extent. An account of these techniques is given in [14, 39, 40].

4.2. Normalization in S2 × S2

As we have seen in the previous subsection, the regularized Hamiltonian is independent of � and
its conjugate action L plays the role of a constant. Thus, H∗

ε introduced in (4.4) can be expressed
as a function of the eccentric anomaly and the invariants that define the symplectic manifold
S2 × S2 (see [36]), where the reduced Hamiltonian lies. In fact, this is the space resulting after
normalizing to remove the dependence with respect to E.

To achieve the normalization process, one introduces the so-called Keplerian invariants, which
is a collection of six variables given by a = (a1, a2, a3) and b = (b1, b2, b3). On the energy level
H̃−1

ε (μ/k), a and b satisfy the constraints |a| = |b| = PE . These coordinates parameterize the
reduced space S2 × S2 and are defined in terms of the rectangular coordinates as follows:

a = G + LA, b = G − LA, (4.5)

where G = q × p is the angular momentum vector (by × we designate the cross product in R
3),

and A is the Laplace –Runge – Lenz vector given by

A =
1
μ

(p × G) − q

|q| . (4.6)

The invariants ai and bi belong to the interval [−PE , PE ].
The explicit expressions of a and b in terms of Delaunay variables are found in Cushman [8],

see also [40]. We modify them slightly to adapt the formulae to the case of Delaunay-like variables.
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We introduce:
a1 = s̄G sin ν + PE ẽ(cos g cos ν − c̄ sin g sin ν),
a2 = −s̄G cos ν + PE ẽ(cos g sin ν + c̄ sin g cos ν),
a3 = c̄G + PE s̄ẽ sin g,

b1 = s̄G sin ν − PE ẽ(cos g cos ν − c̄ sin g sin ν),
b2 = −s̄G cos ν − PE ẽ(cos g sin ν + c̄ sin g cos ν),
b3 = c̄G − PE s̄ẽ sin g.

(4.7)

Note that with the use of the invariants we avoid the problems caused by the indetermination of
Delaunay coordinates. In particular, from the identity 2G = |a + b|, whence G = 0 if and only if
b = −a. So the subset of S2 × S2 defined by

R = {(a,−a) ∈ R
6 | |a| = PE}

is a two-dimensional set diffeomorphic to S2 consisting of rectilinear trajectories. Note that the
collision state is also represented by the set R.

On the one hand, circular trajectories satisfy the condition G = PE in the spatial Delaunay
elements, and in terms of a and b this implies that a = b. Thus, circular motions define the following
two-dimensional set diffeomorphic to S2:

C =
{
(a, a) ∈ R

6 | |a| = PE

}
.

On the other hand, equatorial trajectories satisfy G = |N | and are given in terms of the invariants
by the two-dimensional set

E =
{
(a, b) ∈ R

6 | |a| = PE , b1 = −a1, b2 = −a2, b3 = a3

}
,

which is again diffeomorphic to S2.
The introduction of the Keplerian invariants a and b extends the use of Delaunay and Delaunay-

like coordinates, as we can include equatorial, circular and rectilinear solutions [51]. The other
points on S2 × S2 correspond to elliptic orbits of the spatial Kepler problem.

Regarding the planar case, we can use the invariants a = (a1, a2, a3) with a2
1 + a2

2 + a2
3 = P 2

E

introduced in [51], which define the reduced space S2 where the perturbed Hamiltonian lies. For a
generalization to the n-dimensional Kepler problem, one introduces a set of invariants related to
the angular momentum vector and the Laplace –Runge – Lenz vector in n dimensions, see [23] for
details. We shall study this latter situation in Section 5.

We are ready to state our next result.

Proposition 3. Moser coordinates (2.4) for n = 3 are written in terms of the Keplerian invari-
ants (4.5), E and PE by means of the map:

x1 =
1

PEκ

(
PE(b1 − a1) sin E + (a3b2 − a2b3) cos E

)
,

y1 =
1
κ

(
(a2b3 − a3b2) sin E + PE(b1 − a1) cos E

)
,

x2 =
1

PEκ

(
PE(b2 − a2) sin E + (a1b3 − a3b1) cos E

)
,

y2 =
1
κ

(
(a3b1 − a1b3) sin E + PE(b2 − a2) cos E

)
,

x3 =
1

PEκ

(
PE(b3 − a3) sin E + (a2b1 − a1b2) cos E

)
,

y3 =
1
κ

(
(a1b2 − a2b1) sin E + PE(b3 − a3) cos E

)
,

x4 =
κ

2PE
cos E,

y4 = −κ

2
sin E,

(4.8)
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where

κ = 2PE ẽ =
√

2(P 2
E − a · b).

The inverse of the map (4.8) is given by

a1 = x1y4 − x4y1 + x2y3 − x3y2, b1 = x4y1 − x1y4 + x2y3 − x3y2,

a2 = x3y1 − x1y3 + x2y4 − x4y2, b2 = x3y1 − x1y3 + x4y2 − x2y4,

a3 = x1y2 − x2y1 + x3y4 − x4y3, b3 = x1y2 − x2y1 + x4y3 − x3y4.

(4.9)

Proof (of Proposition 3). The transformation (4.8) is obtained as follows. Starting from the
relations (3.9) and putting later cos g, sin g, cos ν, sin ν, ẽ, η̃, c̄ and s̄ in terms of a and b by means
of the mapping (4.7), the transformation gives Moser coordinates as functions of the invariants a,
b and the canonical pair E/PE , that is, the expressions of (4.8).

To get (4.9) the invariants a and b are written in terms of the rectangular coordinates q and p
through (4.5). Next, we compose the resulting expressions with the map ΦM and perform some
simplifications, ending up with the formulae given in (4.9). �

Special care must be taken when κ = 0, that is, for circular trajectories, where Moser coordinates
make sense, although (4.8) does not apply in principle. We stress that circular motions are identified
by the conditions

x4 = y4 = 0, x2
1 + x2

2 + x2
3 = 1, x1y1 + x2y2 + x3y3 = 0, y2

1 + y2
2 + y2

3 = P 2
E .

Formulae (4.8) allow us to obtain the explicit expressions of the rectangular coordinates in terms
of the Keplerian invariants and the eccentric anomaly. Combining (2.3) with (4.8), we end up with

q1 =
L

2μκ

(
2(a3b2 − a2b3) sin E + (a1 − b1)(2PE cos E − κ)

)
,

p1 =
2μ

Lκ(κ cos E − 2PE)

(
PE(a1 − b1) sin E + (a2b3 − a3b2) cos E

)
,

q2 =
L

2μκ

(
2(a1b3 − a3b1) sin E + (a2 − b2)(2PE cos E − κ)

)
,

p2 =
2μ

Lκ(κ cos E − 2PE)

(
PE(a2 − b2) sin E + (a3b1 − a1b3) cos E

)
,

q3 =
L

2μκ

(
2(a2b1 − a1b2) sin E + (a3 − b3)(2PE cos E − κ)

)
,

p3 =
2μ

Lκ(κ cos E − 2PE)

(
PE(a3 − b3) sin E + (a1b2 − a2b1) cos E

)
.

(4.10)

By means of (4.10) a Hamiltonian function like (4.1) is written in terms of the Keplerian
invariants a and b and the angle-action pair E/PE . So, the perturbation becomes a function of E,
PE , a, b, the energy-parameter k, μ and perhaps other external parameters, thence it is expressed
as a function of the form P∗(a, b,E, PE ;μ, k). Notice that if the perturbation is linear in pi and
polynomial in qi, P∗ is a finite Fourier series in cos E, sinE, because κ cos E − 2PE = −2(μ/L)r
and the multiplication of P by f(r) avoids the occurrence of κ cos E − 2PE in the denominators
of P∗.
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We have to take into account the Poisson structure involving a, b, E and PE . Specifically, we
have

{a1, a2} = 2a3, {a2, a3} = 2a1, {a3, a1} = 2a2,

{b1, b2} = 2b3, {b2, b3} = 2b1, {b3, b1} = 2b2,

{ai, bj} = 0,

{ai, E} = −{bi, E} =
(bi − ai)PE

P 2
E − a1b1 − a2b2 − a3b3

,

{ai, PE} = {bi, PE} = 0,

{E, PE} = 1,

(4.11)

see [51] for the brackets involving a and b. In fact, the Poisson brackets of the ai correspond to the
Lie algebra so(3) and the same is true for the Poisson brackets of the bi. To obtain the brackets
{ai, E}, {bi, E}, we have put a and b in terms of Delaunay-like coordinates, have computed the
corresponding Poisson brackets in this set and have returned to the expressions in the invariants
a, b and PE .

We emphasize that the normalization process involving the invariants a, b, PE and E has to be
done in the framework of the constrained normal form theory [10, 12, 50] because the constraints
|a| = |b| = PE must be taken into consideration when carrying out the calculations.

All the ingredients are ready in order to perform the normalization of a given perturbed
Hamiltonian system with the aim of converting PE into an integral of motion, up to a certain
order in ε. One applies the Lie transformation to a certain order, using the Poisson structure given
in (4.11) to compute the intermediate Hamiltonians needed in the calculation of the Lie triangle.
As a final step, the higher-order terms are dropped. The resulting Hamiltonian is a function of the
invariants a and b and PE (apart from L and other parameters), thus valid for all kind of bounded
motions. The final step consists in setting PE = L so that we recover the flow corresponding with
the Hamiltonian before regularizing. Notice that in the reduced space S2 × S2 the length of a and
b is L and ẽ = e, η̃ = η.

We end up with the following result.

Proposition 4. The regularized Hamiltonian function (4.2) is normalized with respect to the
eccentric anomaly E after applying to it the map (4.10). The procedure is carried out by means of the
Lie transformation method taking into consideration that H∗ = PE. The corresponding calculations
for orders higher than one make use of the Poisson structure (4.11). If the perturbation P∗(x, y; ε)
in (4.3) is smooth on T+S3, the normalization is performed in the whole T+S3.

Proof (of Proposition 4). It follows from the preceding paragraphs. �

When κ = 0, the change (4.10) can still be applied to carry out an averaging obtaining the
normalized Hamiltonian and the corresponding generating function. Then, if the final expressions
after simplifications are singular for circular orbits, one should return to Moser coordinates
applying (4.9) and putting also PE , sin E, cos E in terms of x, y and check whether the terms are
well defined for circular motions. Specifically, one has to make the replacements κ = 2

√
|y|2x2

4 + y2
4 ,

PE = |y| and from the last two formulae of (4.8)

cos E =
|y|x4√

|y|2x2
4 + y2

4

, sin E = − y4√
|y|2x2

4 + y2
4

. (4.12)

One usually needs to simplify the resulting expressions by means of computer algebra techniques,
basically taking into account the existing constraints for x, y. More precisely, one starts by finding
a Gröbner basis formed by the invariants and the related constraints, and applying to the formula,
one wants to express in terms of the invariants the multivariate division algorithm with respect

REGULAR AND CHAOTIC DYNAMICS Vol. 23 No. 4 2018



NORMALIZATION IN N -DIMENSIONAL KEPLER PROBLEMS 401

to the Gröbner basis, see [48]. The remainder of the division is written in terms of the invariants,
see [41, 46] for more details. Thus, one checks whether the formulae in Moser coordinates are
valid for circular motions, that is, they are smooth in these variables. On the other hand, the
transformation obtained above is not smooth for the momenta pi in the collision state q = 0
because then sinE = 0, cos E = 1, κ = 2PE and κ cos E − 2PE = 0. Nevertheless, if the terms in
the perturbation P are linear in the momenta, but they do not present other singularities, then P∗

extends to a smooth function defined on the entire T+S3 and one can perform the normalization
applying (4.10). Analogously, if P is smooth for circular motions, the normalization can be achieved
through the steps described above.
Remark 3. At this point it is reasonable to compare the procedure followed in this section with
the one of van der Meer and Cushman [50] when n = 3. Both approaches lead to the same results
and one can relate the normalized Hamiltonians and their associated generating functions obtained
with the two methods using the formulae (4.9), (4.8) and (4.12). On the one hand, the method of
van der Meer and Cushman uses the fact that Hamiltonian (2.7) is a linear oscillator, thus its flow
is periodic, which allows for a splitting based on the normal form theory of Cushman [9]. On the
other hand, our result makes use of the fact that after applying (4.10), the action L becomes a
parameter and the normalization process is merely an average with respect to E. From a practical
point of view, generically the normalization in Moser coordinates involves simpler expressions.
This is the case if one proceeds carefully taking into account the constraints between x and y,
making use of Gröbner bases, avoiding the indetermination caused when κ = 0. Then one can
apply (4.8) to write down the resulting normal form in terms of the Keplerian invariants a, b.
Notice that, since the Hamiltonian is normalized, the final form of the Hamiltonian is independent
of E, whereas PE becomes an (approximate) integral. If one decides to proceed in Moser coordinates,
the following Poisson structure has to be taken into account when carrying out the computation of
the intermediate Hamiltonians. For 1 � i, j � 4 straightforward computations show that

{xi, xj} = 0, {yi, yj} = xjyi − xiyj, {xi, yi} = 1 − x2
i , {xi, yj} = −xixj (i �= j). (4.13)

Going back to the example of Section 3.1, the perturbation r given in Hamiltonian (3.1), but
thought as a perturbation of the spatial Kepler problem, is obtained in terms of a and b after
applying (4.10). One gets

r =
L

2μ
(2PE − κ cos E) ,

therefore, taking into account that Hamiltonian Hε has to be multiplied by r/k, the regularized
Hamiltonian becomes

H∗
ε = PE + ε

L3

4μ3
(2PE − κ cos E)2 ,

and its first-order average obtained after normalizing the perturbation over E yields

H∗
ε = PE + ε

L3

4μ3

(
5P 2

E − a1b1 − a2b2 − a3b3

)
+ O(ε2).

Finally, we have to set PE = L to deal with the normalized Hamiltonian in the right energy level,
thus

H∗
ε = L + ε

L3

4μ3

(
5L2 − a1b1 − a2b2 − a3b3

)
+ O(ε2).

The associated generating function is given by

W = −ε
L3

8μ3

(
8PE

√
2(P 2

E − a1b1 − a2b2 − a3b3) sinE + (a1b1 + a2b2 + a3b3 − P 2
E) sin(2E)

)
.

The normal form H∗
ε and the generating function W are written in terms of Moser coordinates

by applying (4.9). After some simplifications we end up with the expressions

H∗
ε = |y| + ε

L3

2μ3

(
|y|2(2 + x2

4) + y2
4

)
+ O(ε2), W = ε

L3

2μ3
|y|(4 − x4)y4.
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Due to the regularization and the application of the invariants a, b together with the pair E/PE ,
we can handle the analysis of all kind of bounded motions through symplectic reduction.

5. NORMALIZING AN n-DIMENSIONAL PERTURBED KEPLERIAN SYSTEM

5.1. Reduced Space of the n-dimensional Kepler Problem

The previous section can be generalized to any dimension without resorting to action-angle
coordinates. Specifically, one starts with the Kepler Hamiltonian with dimension n � 2 to which one
attaches a smooth perturbation in rectangular coordinates and then applies Moser mapping (2.2). A
generalization of the mapping (4.8) would yield the regularized perturbed Hamiltonian that would
be written in terms of the corresponding invariants and the pair of angle-action coordinates given
by E/PE with PE = |y|, similarly to the spatial case. A normalization process would eliminate E
up to a certain order.

It seems natural to construct the invariants of the n-dimensional Kepler problem that parame-
terize the reduced space. Besides the Keplerian invariants, we have to provide the fundamental
constraints that relate them. We emphasize that the reduced space is a symplectic manifold since
the reduction process lies within the context of regular symplectic reduction by Meyer [31] and
Marsden and Weinstein [30].

Theorem 1. In the phase space T+Sn the Keplerian invariants associated to the n-dimensional
regularized Kepler Hamiltonian given in (2.7) are taken as the components of the angular momentum
tensor plus the components of a scaled Laplace –Runge – Lenz vector. It leads to n(n + 1)/2
invariants, which in terms of Moser coordinates are the quadratic expressions:

ai,j = xiyj − xjyi, 1 � i < j � n + 1. (5.1)

These invariants are related through the (n2 − 3n + 4)/2 fundamental constraints given by:

a1,2a3,4 = a1,3a2,4 − a1,4a2,3,

· · ·

a1,2a3,n+1 = a1,3a2,n+1 − a1,n+1a2,3,

a1,2a4,5 = a1,4a2,5 − a1,5a2,4,

· · ·

a1,2a4,n+1 = a1,4a2,n+1 − a1,n+1a2,4,

· · ·

a1,2an−1,n = a1,n−1a2,n − a1,na2,n−1,

a1,2an−1,n+1 = a1,n−1a2,n+1 − a1,n+1a2,n−1,

a1,2an,n+1 = a1,na2,n+1 − a1,n+1a2,n,

∑
1�i<j�n+1

a2
i,j = P 2

E ,

(5.2)

where |ai,j| � PE.
The reduced space associated to (2.7) is a symplectic manifold of dimension 2(n − 1) diffeo-

morphic to G2,n+1 and it is parameterized by the n(n + 1)/2 invariants ai,j together with the
constraints (5.2) where in the last restriction we make PE = L with L = μ/k a positive parameter.
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Proof (of Theorem 1). The angular momentum tensor q ∧ p is an integral of motion for the
Hamiltonian function (2.7). It has n(n− 1) nonnull entries from which we select n(n − 1)/2, which
are the terms of the form ai,j = qipj − qjpi with 1 � i < j � n, see [23, 37, 50]. Applying (2.3) to
ai,j, we get that qipj − qjpi = xiyj − xjyi.

The Laplace – Runge –Lenz vector is another integral of (2.7). It is explicitly defined by the
n-dimensional vector

A =
1
μ

(
|p|2q − (q · p)p

)
− q

|q| ,

which is the generalization of (4.6) to any n. The application of (2.3) to A, restricting the
calculations to the level set H−1

ε (−k2/2) followed by the simplifications using the constraints
involving x and y, leads to

A =
k

μ

(
x1yn+1 − xn+1y1, x2yn+1 − xn+1y2, . . . , xnyn+1 − xn+1yn

)
. (5.3)

We define the remaining n invariants as

A∗ = (a1,n+1, . . . , an,n+1) =
μ

k
A. (5.4)

Therefore, we have obtained the n(n + 1) invariants given by ai,j with 1 � i < j � n + 1. They are
independent functions [50]. Moreover, they are global coordinates that parameterize the reduced
space, describing all types of bounded motions. Notice that the Keplerian invariants in terms of the
rectangular coordinates are given by the combinations qipj − qjpi together with the components
of A∗ put in terms of the entries of A in (5.3).

Choosing six different invariants, namely, ai,j, ak,l, ai,k, aj,l, ai,l, aj,k, it is easy to notice by
inspection that ai,jak,l = ai,kaj,l − ai,laj,k. There are basically (n + 1)n(n − 1)(n − 2)/24 different
constraints relating them where the subindices satisfy 1 � i < j < k < l � n + 1. We select those
such that i = 1, j = 2 and 2 < k < l � n + 1, thus we obtain a1,2ak,l = a1,ka2,l − a1,la2,k and there
are (n − 1)(n − 2)/2 of such constraints. Using the identities |x| = 1 and x · y = 0, we get

a2
1,2 + · · · + a2

1,n+1 + a2
2,3 + · · · + a2

2,n+1 + · · · + a2
n−2,n+1 + a2

n−1,n+1 + a2
n,n+1 = |y|2. (5.5)

Fixing a value for |y| which is an integral of motion of (2.7), say |y| = PE > 0, we conclude
that the last formula of (5.2) holds. We arrive at n(n + 1)/2 different invariants related through
(n2 − 3n + 4)/2 constraints, which is the right number for a space of dimension 2(n − 1). These
constraints are independent functions in the reduced space because their differentials are linearly
independent, in other words, the rank of the matrix with dimensions (n2 − 3n + 4)/2 × n(n + 1)/2
formed by the derivatives of the constraints with respect to the invariants is (n2 − 3n + 4)/2.
From (5.5) we get |ai,j| � |y|, therefore bounds |ai,j | � PE are fulfilled.

Setting PE = μ/k = L, we consider that the geodesic flow on the n-sphere Sn, i. e, M = T+Sn

has an associate Hamiltonian function, H0 : M → R : (x, y) �→ |y| (i. e., H0(x, y) is the length of the
vector y), N = {(x, y) ∈ M : |y| = L} is the L-sphere bundle and the reduced space is G2,n+1, the
Grassmannian manifold of oriented 2-planes in R

n+1, see, for instance, [35] and also [3, 4, 51]. �

When n = 3, the invariants a, b are related to the ai,j of (5.1) through formulae (4.9). Specifically,
we get

a1 = a1,4 + a2,3, a2 = −a1,3 + a2,4, a3 = a1,2 + a3,4,

b1 = −a1,4 + a2,3, b2 = −a1,3 − a2,4, b3 = a1,2 − a3,4.

In the spatial case we prefer to handle the invariants a and b instead of ai,j in order to compare
the results with those obtained in [33, 51].
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5.2. Normalization in the Invariants of G2,n+1

We start by generalizing the perturbed Keplerian Hamiltonians of Section 4 given by (4.1), (4.2)
and (4.3) to any n. We fix an energy value, say h = −k2/2 < 0, working on the energy level Hε = h
and introduce the Hamiltonian

H̃ε(q, p) =
|q|
k

(
Hε(q, p) +

k2

2

)
+

μ

k
, (5.6)

to which we apply ΦM arriving at

H∗
ε(x, y) = |y| + εP∗(x, y; ε), (5.7)

where this time the function f such that P∗(x, y; ε) = f(x, y)P(x, y; ε) becomes

f(x, y) =
1
k2

√√√√ n∑
i=1

(yi + yn+1xi − yixn+1)2.

We present the normalization procedure of perturbed Hamiltonian systems in any dimension by
means of the invariants of the Kepler problem and the action-angle pair PE/E.

Theorem 2. The regularized Hamiltonian (5.6) is normalized with respect to the angle coordinate
E after applying to it the map

qi =
L

μ

1
|A∗|

(
ai,n+1(PE cos E − |A∗|) − (Ci · A∗) sin E

)
,

pi =
μ

L

1
|A∗|(|A∗| cos E − PE)

(
(Ci · A∗) cos E + ai,n+1PE sin E

)
,

(5.8)

i = 1, . . . , n. The vectors Ci are defined as (−a1,i, . . . ,−ai−1,i, 0, ai,i+1, . . . , ai,n), i = 1, . . . , n while
A∗ is given in (5.4).

The procedure is carried out by means of the Lie transformation method for Hamiltonians by
normalizing the perturbation with respect to E and taking into consideration that H∗ = PE. The
corresponding calculations of higher orders make use of the Poisson structure among the ai,j , E
and PE, which is given by

{ai,j , ai,l} = aj,l (j < l), {ai,j , ai,l} = −al,j (l < j),

{ai,j , aj,l} = −ai,l,

{ai,j , ak,i} = ak,j,

{ai,j , ak,j} = −ak,i (k < i), {ai,j , ak,j} = ai,k (i < k),

{ai,j , ak,l} = 0, for any other combination of i, j, k, l,

{ai,j , E} = 0, i, j = 1, . . . , n,

{ai,n+1, E} = −ai,n+1PE

|A∗|2 , i = 1, . . . , n,

{ai,j , PE} = 0, {E, PE} = 1.

(5.9)

If the perturbation P∗(x, y; ε) in (5.7) is smooth on T+Sn, then the normalization is performed
in the whole T+Sn.
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Proof (of Theorem 2). We start by inverting the map (5.1), writing down Moser coordinates in
terms of the invariants ai,j and E, PE . This can be achieved after introducing explicitly E and PE .
Thus we set PE = |y| and define E by putting cos E and sinE in terms of xn+1, yn+1. Analogously
to what we got in (4.8) for n = 3, we set xn+1 = (|A∗|/PE) cos E and yn+1 = −|A∗| sin E. Next,
we make xk = Ok cos E + Qk sin E and yk = Rk cos E + Sk sin E for k = 1, . . . , n where Ok, Qk,
Rk and Sk are undetermined functions of ai,j and PE . We replace the expressions of xk, yk,
xn+1 and yn+1 in the equations xkyn+1 − xn+1yk = ak,n+1 and solve for the unknowns, obtaining
Ok = −Sk/PE , Qk = −ak,n+1/|A∗| and Rk = −ak,n+1PE/|A∗|. In order to determine the functions
Sk, k = 1, . . . , n, we make x1yk − xky1 = a1,k where Ok, Qk and Rk are written in terms of Sk and
ai,j. We get Sk = (S1ak,n+1 − |A∗|a1,k)/a1,n+1 for k = 2, . . . , n. To obtain S1, we impose |x| = 1
with the expressions of xk, yk put in terms of ai,j, S1 and cos E, sinE (firstly Ok is expressed in
terms of S1) and arrive at S1 = (C1 · A∗)/|A∗|, from which we deduce that Sk = (Ck · A∗)/|A∗|.
Finally, the map relating Moser coordinates with the Keplerian invariants is written as

xi = − 1
|A∗|

((Ci · A∗)
PE

cos E + ai,n+1 sinE
)
, i = 1 . . . , n,

yi =
1

|A∗|

(
− ai,n+1PE cos E + (Ci · A∗) sin E

)
, i = 1 . . . , n,

xn+1 =
|A∗|
PE

cos E,

yn+1 = −|A∗| sin E.

(5.10)

Formulae (5.10) make sense provided |A∗| �= 0. Besides, one has A∗ = 0 if and only if |A∗| = 0 and
it corresponds to the case

xn+1 = yn+1 = 0, x2
1 + · · · + x2

n = 1, x1y1 + · · · + xnyn = 0, y2
1 + · · · + y2

n = P 2
E .

This case is the generalization of circular motions. In principle one can apply the mapping (5.10)
and check if the formulae obtained after simplifying are singular for |A∗| = 0. If this happens, one
should return to Moser coordinates.

The composition of Moser map (2.2) with (5.10), after some simplifications, leads to the
map (5.8).

The transformation (5.8) is not well defined when |A∗| = 0 and when |A∗| cos E = PE . This latter
situation corresponds to the collision state because it implies xn+1 = 1 and x1 = . . . = xn = 0,
thus x = np. Besides, since |A∗| � PE , we have cos E = 1, sinE = 0, ai,j = 0 for 1 � i < j � n
and Ci = 0. It is emphasized that if the perturbation is linear in pi and polynomial in qi,
then |A∗| cos E − PE = −(μ/L)|q| and the multiplication of P by |q|/r makes that P∗ is a finite
trigonometric Fourier series in E.

In terms of the invariants ai,j , “circular” motions satisfy ai,n+1 = 0, for i = 1, . . . , n, therefore
we obtain n(n − 1)/2 different invariants. Moreover, the (n2 − 3n + 4)/2 restrictions of (5.2) get
reduced to (n2 − 5n + 8)/2 fundamental constraints, hence the dimension of the set containing this
type of motions is 2(n − 2), which for n = 2 represents a point in the reduced space, and when
n = 3, it is a two-dimensional set diffeomorphic to S2, that is, the set C of Section 4.2.

Rectilinear motions (q ∧ p = 0) and the collision state (q = 0) satisfy ai,j = 0 for 1 � i < j � n.
Moreover, ai,n+1 = xiyn+1 − xn+1yi = −yi, i = 1, . . . , n and the set of restrictions (5.2) gets reduced
to only one, namely,

∑n
i=1 a2

i,n+1 = P 2
E , thus this type of motions is represented in the reduced space

by an (n − 1)-dimensional set which is diffeomorphic to Sn−1.
Plugging (5.10) in (5.7), equivalently (5.8) in (5.6), our regularized perturbed Hamiltonian

P∗(ai,j , E, PE ;μ,L, ε) is ready in order to perform the normalization with respect to the angle
coordinate E. We stress that, by virtue of the transformation (5.8), L is a parameter for (5.10)
and the normalization is performed as an average with respect to E, where one needs to take into
account that PE is the conjugate momentum to E. One needs to introduce the Poisson brackets
among the ai,j and E. The relations (5.9) are obtained straightforwardly from the Poisson structure
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of Moser coordinates (4.13), which is trivially extended to any n. The Poisson brackets {ai,j, E}
are determined after putting E in terms of x and y by means of

cos E =
|y|xn+1√

|y|2x2
n+1 + y2

n+1

, sin E = − yn+1√
|y|2x2

n+1 + y2
n+1

, (5.11)

which is deduced from the last two formulae of (5.10).
Once the higher-order terms are discarded, PE becomes a constant of motion and the transformed

Hamiltonian is an autonomous function of the invariants ai,j independent of E, thus all types of
bounded motions can be analyzed in the reduced space. In fact, regardless of whether or not the
perturbation in (5.7) is smooth on T+Sn, the normalization can be achieved in the whole space in
Moser coordinates.

As a final step, one restricts the normalized Hamiltonian to the adequate energy level by setting
PE = L. This Hamiltonian is defined in the reduced space, that is, the symplectic manifold G2,n+1,
by means of the global coordinates ai,j and the constraints of (5.2). �

From the point of view of the applications one has to calculate the Gröbner basis formed by the
invariants ai,j written in terms of q, p (or in terms of x and y if one decides to work with Moser
coordinates) as well as all the (n + 1)n(n − 1)(n − 2)/24 constraints among the invariants plus the
one of formula (5.5). Then, given a function (usually a polynomial) in terms of rectangular (or
Moser) coordinates, one applies the multivariate division algorithm with respect to the Gröbner
basis, and the remainder of it yields this function in terms of the invariants alone. This procedure
has been applied successfully in [41–43, 46] in the setting of the three-body problem. Similarly, the
generating functions appearing when pushing the normalization to higher orders can be simplified
in the same way, taking into account that they are finite Fourier series in E whose coefficients are
functions of the invariants ai,j.

Remark 4. As we did in Remark 3, we compare our procedure with the approach of van der Meer
and Cushman [50]. One gets equivalent formulae with both methods. By means of (5.1) we pass from
the normalized Hamiltonian and its generating function to Moser coordinates. The normalization
in Moser coordinates usually leads to shorter calculations. Moreover, as long as n increases, the
number of the invariants ai,j and the related constraints grows quickly, while dealing with x,
y one always has 2n + 2 coordinates with three restrictions and may avoid the indetermination
occurring for |A∗| = 0. As a consequence, a wise idea seems to be to perform the whole process
in Moser coordinates, applying van der Meer and Cushman’s approach, and apply (5.10) to get
the normalized Hamiltonian as a function independent of E, that is, in the reduced space. We
also set PE = L to restrict the Hamiltonian to the right energy level. Notice that working with
Moser coordinates involves the use of the Poisson brackets (4.13). Alternatively, one can proceed
in terms of x, y for the intermediate computations and at the time of getting the average and
the generating function, apply (5.10) and normalize with respect to E. After obtaining the normal
form Hamiltonian and the generating function in terms of the invariants, one returns to x and y
by means of (5.1), simplifying the resulting expressions through the application of Gröbner bases.

6. APPLICATION TO THE LUNAR CASE OF THE RESTRICTED PROBLEM

6.1. The Problem, Regularization and Averaging

The Hamiltonian of the spatial circular restricted three-body problem is given in a rotating
frame by the function

H =
1
2
(p2

1 + p2
2 + p2

3) − (q1p2 − q2p1) −
μ̄√

(q1 − 1 + μ̄)2 + q2
2 + q2

3

− 1 − μ̄√
(q1 + μ̄)2 + q2

2 + q2
3

, (6.1)

where μ̄ represents the mass parameter given by μ̄ = m1/(m1 + m2) such that m1 and m2 refer to
the masses of the primaries and it is assumed that m1 � m2. See [32] and also [10, 51].

We change coordinates in order to bring H into a suitable form. By doing so we restrict H
to a particular regime where the infinitesimal particle is moving around one of the primaries, the
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so-called lunar case of the circular spatial restricted three-body problem. The details can be seen
in [25], see also [51]. The transformed Hamiltonian is the function

Hε = 1
2(p2

1 + p2
2 + p2

3) −
1√

q2
1 + q2

2 + q2
3

− ε3(q1p2 − q2p1) +
1
2
ε6μ̄(−2q2

1 + q2
2 + q2

3) + O(ε8). (6.2)

Our Hamiltonian is already written in the desired form, that is, as a perturbation of the spatial
Kepler problem with mass parameter μ = 1, and our aim is to apply the procedure of the previous
sections. We have performed the normalization with respect to the mean anomaly in [33], but in
the context of Ligon – Schaaf regularization, thus the problem with the loss of analyticity for � = 0
when G = 0 (i. e., at the collision state) remains. Therefore, we need to resolve this issue in order
to conclude the existence of invariant 3-tori of rectilinear type, and eventually the vertical periodic
solutions of [51].

We first proceed in mixed polar-nodal and Delaunay coordinates. Expressing Hε in these two
sets of variables, we get

Hε = − 1
2L2

− ε3N

+
1
8
ε6μ̄r2

(
1 − 3c̄2 − 3(1 − c̄2) cos(2ϑ) + 6c̄ sin(2ϑ) sin(2ν)

− 3
(
1 − c̄2 + (1 + c̄2) cos(2ϑ)

)
cos(2ν)

)
+ O(ε8).

In [33] we normalized Hamiltonian Hε with respect to the mean anomaly � and reduced
the resulting system after truncating terms of order O(ε8). Here we apply Moser regularization
described in Section 2 in order to make the approach valid even for rectilinear motions. The
procedure is carried out by fixing a negative value of the energy, say h, so that we introduce
k > 0 with h = −k2/2. Besides, we apply the transformation (3.3) expressing the Hamiltonian
in Delaunay-like coordinates. The unperturbed term (the spatial Kepler Hamiltonian) is converted
into PE , whereas the perturbation, i. e., the terms factorized by ε3 and higher powers are multiplied
by r/k = Lr. After some simplifications, the Hamiltonian reads as

H∗
ε = PE − ε3L2PEN(1 − ẽ cos E)

− 1
16

ε6μ̄L4P 3
E(1 − ẽ cos E)

(
(3c̄2 − 1)(ẽ2 − 4ẽ cos E + 2)

+ 6s̄2(1 − ẽ cos E)2 cos(2ν)

+ 6 sin(2g)
(
2η̃(ẽ − cos E)

(
s̄2 − (s̄2 − 2) cos(2ν)

)
sinE

+ c̄ẽ(4 cos E − 3ẽ) sin(2ν)
)

+ 3cos(2g)
(
ẽ(3ẽ − 4 cos E)

(
s̄2 − (s̄2 − 2) cos(2ν)

)

+ 8c̄η̃(ẽ − cos E) sin E sin(2ν)
)

+ cos(2E)
(
ẽ2(2 − 3s̄2)

+ 3(ẽ2 − 2)
(
cos(2g)

(
(s̄2 − 2) cos(2ν) − s̄2

)

+ 2c̄ sin(2g) sin(2ν)
)))

+ O(ε8).

(6.3)

Remark 5. Hamiltonian H∗
ε can be interpreted as the regularized Hamiltonian related to H in (6.1)

after changing coordinates and introducing a small parameter. In fact, starting from H, we could
have defined the intermediate H∗ as

H∗ =
|q|
k

(
H +

k2

2

)
+

1
k
.
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Then one could have applied Moser map (2.2) to H∗ and introduce the small parameter ε together
with the adequate transformations in terms of x and y in order to define the lunar problem.
Then, after passing from rectangular to polar-nodal and Delaunay-like coordinates, we would have
obtained the same Hamiltonian H∗

ε of (6.3).

Hamiltonian H∗
ε may be viewed as an analytic function of ẽ, η̃, cos ν, sin ν, G, N , PE , cos E

and sin E. Indeed, it is 2π-periodic with respect to the eccentric anomaly E. It also depends on
the parameters L and μ̄. Alternatively one can start with (6.2), apply first the mapping (2.2) and
then (3.9). After simplifying we arrive at the same Hamiltonian function H∗

ε.

Normalizing the Hamiltonian with respect to E applying Lie transformations where the
unperturbed term is PE , see, for instance, [13, 32], we end up with

H∗
ε = PE − ε3L2PEN

+
1
16

ε6L4P 3
E

(
− 8c̄2η̃2 + 30μ̄c̄ẽ2 sin(2g) sin(2ν)

+ μ̄(2 + 3ẽ2)
(
1 − 3c̄2 − 3(1 − c̄2) cos(2ν)

)

− 15μ̄ẽ2 cos(2g)
(
1 − c̄2 + (1 + c̄2) cos(2ν)

))
+ O(ε8).

(6.4)

To complete the normalization process, one has to set PE = L in order to adjust the right energy
level. The resulting Hamiltonian keeps the same name.

If we drop the unperturbed terms in the expression of Hε of Eq. (12) in Ref. [33] and in H∗
ε, set

PE = L, call the transformed Hamiltonians with the same names and compare them, we end up
with the identity

Hε = m

(
H∗

ε +
1
2
ε6L5N2

)
, (6.5)

with m = 1/L3, at least up to terms in O(ε8). This Hamiltonian in normal form is well defined for
rectilinear motions, but one should replace the angles g and ν by other angles which make sense for
this type of motions, see, for instance, [49]. We shall see below that the extra term of H∗

ε compared
to Hε does not essentially modify the dynamics of the reduced system.

Alternatively we may work with the Keplerian invariants a and b. After regularizing, but before
normalization, we make the replacement of q and p in (6.2) in terms of E, PE , a, b and the parameter
L. The resulting Hamiltonian is a function of the invariants and PE whose coefficients are finite
Fourier series in E that we normalize with respect to E up to terms of order O(ε6), getting

H∗
ε = PE − 1

2
ε3L2PE(a3 + b3)

− 1
8
ε6L4PE

(
(a3 + b3)2 + 2μ̄

(
3(a1 − b1)2 + 3a2b2 + 3a3b3 − 2P 2

E

))
+ O(ε8).

(6.6)

If we drop the unperturbed term in (6.6), set PE = L and scale the Hamiltonian dividing by
ε3, keep the same name for the Hamiltonian and compare it with Hamiltonian H̄ appearing in [51]
(Formula (21)) or in [33] (Formula (15)), we get

H̄ = m

(
H∗

ε +
1
8
ε6L5(a3 + b3)2

)
. (6.7)

We will see that the flow of the reduced system defined through H̄ and analyzed in [33, 51] agrees
with the flow of the vector field related to the regularized reduced Hamiltonian H∗

ε. Finally, notice
that H∗

ε is analytic on the whole reduced space S2 × S2.
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6.2. Periodic Solutions of Rectilinear Type

The vector field associated to (6.6) may be studied in order to extract some qualitative
information of system (6.1), in particular, to obtain periodic solutions, invariant tori and quasi-
periodic solutions for the full problem. However, the analysis provided by this vector field about
the periodic solutions is the same as the one corresponding to the nonregularized version studied
in [33, 51]. The reason is that the existence of the periodic solutions is derived from the terms of
order three in ε and the Hamiltonian of [33, 51] agrees with H∗

ε up to ε3.
In particular, in [51] we studied the flow associated to Hamiltonian Hε on the reduced space

S2 × S2 determining four relative equilibrium points of the type (a, b), namely, (0, 0,±L, 0, 0,±L)
and (0, 0,±L, 0, 0,∓L). These equilibria remain the same when adding the additional terms
in (6.7). The two first points correspond to circular coplanar motions, whereas the other two
correspond to rectilinear motions in the axis perpendicular to the equatorial plane. Applying Reeb’s
theorem [45, 51], we concluded the existence of four families (one for each equilibrium) of periodic
solutions for Hamiltonian (6.1) parameterized by the action L, whose periods are T = 2πL3 +O(ε3).
We also dealt with the stability character of these periodic solutions, proving that they were of
elliptic type. Specifically, the periodic solutions nearly rectilinear generalize the solutions found
by Belbruno [2] for small μ, whereas the nearly circular equatorial solutions correspond to the
well-known circular periodic solutions of the planar restricted problem.

Far from the near-rectilinear solutions we do not need to use Moser regularization since the
study made in [51] was fine. However, for the rectilinear type of solutions the averaging process
performed in [51] is not fully justified due to the loss of analyticity when G = 0 at � = 0 pointed
out in Section 1. Thus, we tackle this issue applying Moser regularization in the context of this
paper.

Focusing on the points of rectilinear character, i. e., points with coordinates (0, 0,±L, 0, 0,∓L),
we first notice that the averaging procedure performed is valid for this type of motions. In this case,
due to the equivalence of the nonregularized and regularized reduced Hamiltonians established by
means of (6.7), the analysis achieved in [51] is valid for the regularized system. Thus, as H∗

ε is a 2π-
periodic function with respect to E, we conclude that the regularized Hamiltonian H∗ corresponding
to H in (6.1) has families of periodic solutions related to the points (0, 0,±L, 0, 0,∓L). Their periods
are T = 2π + O(ε3).

Returning to Hamiltonian (6.2), the conclusion is that there are families of periodic solutions
that are near-rectilinear, but also near-perpendicular to the plane defined by the primaries whose
periods are of the type T = 2πL3 + O(ε3). These families are parameterized by L or by the energy
h. As studied in [51], the eccentricity of these solutions is e = 1 − 11025

512 ε10μ̄2(1 − μ̄)2/3L10 + . . .,
while the length of the angular momentum vector is G = 105

16 ε5μ̄(1 − μ̄)1/3L6 + . . . and N =
−33075

512 ε13μ̄(1 − μ̄)2/3L14 + . . .. See [51] for more details. We stress that these values have not
changed after adding the additional terms in (6.7).

6.3. Invariant 3-tori and Quasi-periodic Solutions of Rectilinear Type

To ensure the persistence of invariant 3-tori, we can apply the Han – Li – Yi theorem [21]. In
particular, we can achieve it without resorting to an isoenergetic version of the theorem, but
performing the whole approach without restricting ourselves to a specific energy level. For this,
we need to work with PE instead of L.

There are three families of KAM 3-tori related to near-rectilinear motions, see [33, 51]. Two
of them correspond to the periodic solutions of the previous subsection, i. e., they are related to
the equilibria (0, 0,±PE , 0, 0,∓PE), whereas the third one represents rectilinear motions in the
equatorial plane. This last family is deduced from an equilibrium point on the twice-reduced space
obtained after normalizing (6.4) over the argument of the node and reducing the resulting system
accordingly. The essential analysis to achieve the persistence of these KAM tori is carried out in [33],
in particular, the rectilinear perpendicular solutions are studied in Section 4.3 of this paper, while
the rectilinear equatorial solutions are analyzed in Section 5.3.3.

Due to the equivalence of the nonregularized and regularized reduced flows the normal form
calculations and the analysis carried out in [33, 51] are adapted easily. One can also deal with a
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second normal form computation in order to normalize Hamiltonian (6.4) with respect to ν using
the invariants a and b, but starting with Hamiltonian (6.6), similarly to the strategy developed in
Ref. [11].

6.3.1. Persistence of the 3-tori of near-rectilinear perpendicular type

Following [33, 51], we introduce two actions, namely, J1 and J2, and write down the corresponding
Hamiltonian system in a suitable form, beginning from Hamiltonian (6.6), we arrange it properly,
eliminating by averaging the dependence of the angles conjugate to Ji, i. e., ψi, and apply to it the
Han – Li – Yi theorem to conclude the persistence of invariant tori for the regularized Hamiltonian
H∗ using J1, J2 and PE for the third action. A similar process is applied to the family of near-
rectilinear equatorial tori reconstructed from the second reduction.

Concretely, for the equilibria (0, 0,±PE , 0, 0,∓PE) we proceed as follows. Firstly, we move the
origin to the relative equilibria

a1 = ā1, a2 = ā2, a3 = ā3 ± PE , b1 = b̄1, b2 = b̄2, b3 = b̄3 ∓ PE ,

and define the local symplectic coordinates

Q1 =
ā2√

2PE ± ā3
, Q2 =

b̄2√
2PE ∓ b̄3

, P1 = ∓ ā1√
2PE ± ā3

, P2 = ± b̄1√
2PE ∓ b̄3

. (6.8)

Now the idea is to introduce a pair of action-angle variables Jj/ψj from Q, P and remove the
dependence of the Hamiltonian on the angles ψ1, ψ2. The process is lengthy, but customary and is
described in [33, 51]. After performing some manipulations the following normal form is obtained:

H∗
ε = PE +

1
4
ε6L2PE

(
5μ̄L2P 2

E + 4(J1 − J2)
)

+
3
√

15
4

ε9μ̄L4P 2
E(J1 + J2)

+
1
32

ε12
(
− 16L4PE(J1 − J2)2 + 48μ̄L4PE(J1 + J2)2 + 45μ̄2L6P 3

E(J1 − J2)
)

+ O(ε15).

(6.9)

The details on the introduction of the action-angle coordinates and how to obtain (6.9) are
analogous to those given in [33]. Using the notation of [51], we take a = 3, m1 = 6, m2 = 9
and m3 = 12, n0 = 1, n1 = n2 = n3 = 3, In0 = (PE), In1 = In2 = In3 = (PE , J1, J2), Īn0 = (PE),
Īn1 = Īn2 = Īn3 = (J1, J2). Besides, h0 is PE , while h1, h2 and h3 are the terms in (6.9) of order
ε6, ε9 and ε12, respectively. The vector of frequencies is given by

Ω(I) =
(

∂h0

∂PE
,

∂h1

∂J1
,

∂h1

∂J2
,

∂h2

∂J1
,

∂h2

∂J2
,

∂h3

∂J1
,

∂h3

∂J2

)

and the 4 × 6-matrix with rows Ω(I), ∂Ω(I)/∂PE , ∂Ω(I)/∂J1 and ∂Ω(I)/∂J2 has rank four, thus
Hamiltonian (6.9) satisfies the hypotheses of the Han – Li – Yi theorem. Thence, one concludes
with the persistence of KAM 3-tori of rectilinear perpendicular type related to the vector field
associated with H∗

ε . Setting PE = L and returning to the coordinates prior to regularization, one
concludes the persistence of KAM 3-tori of rectilinear perpendicular type related to the vector field
associated with H in (6.2). These invariant tori form a majority in the sense that the measure of
the complement of their union is of order O(ε12).

6.3.2. Persistence of the 3-tori of near-rectilinear equatorial type

We follow the construction made in Section 5.3.3 of [33]. As a first step, Hamiltonian (6.4)
is averaged with respect to ν. Then one applies singular reduction theory and puts the averaged
Hamiltonian in terms of the global coordinates τ = (τ1, τ2, τ3) that define the twice-reduced space,
which we call TPE,N . The equilibrium point of interest for the reduced Hamiltonian in the reduced
space has coordinates τ =

(
0, 0, N2 − P 2

E

)
and the invariant 3-tori that are nearly rectilinear arise

when N ≈ 0.
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In order to reconstruct this kind of tori, we need a set of action-angle coordinates. Two candidates
are PE and N and the third one, which we name J , is built in the normal form process. The
coordinates PE , N and E behave properly for near-rectilinear motions, and although ν is not well
defined, one can use the angle φa, the longitude of aphelion, which is conjugate to N , see [49].

Specifically, the construction of J and its conjugate angle ϕ is based on the form of the reduced
Hamiltonian derived from Eq. (27) in [33] in the twice-reduced space. A previous step to get J and
ϕ is to introduce a rectangular pair of local symplectic coordinates, Q, P , in terms of the invariants
of the twice-reduced space TPE ,N . Concretely, we set

τ1 = P, τ2 =
√(

P 2
E − (N + P )2

)(
P 2

E − (N − P )2
)

sin (2Q),

τ3 = −
√(

P 2
E − (N + P )2

)(
P 2

E − (N − P )2
)

cos (2Q),
(6.10)

and Q, P are adequate coordinates in a neighborhood of the point
(
0, 0, N2 − P 2

E

)
.

The corresponding normal form Hamiltonian is

H∗
ε = PE − ε3L2NPE − 1

8
ε6μ̄L4PE

(
5μ̄P 2

E + (4 − 3μ̄)N2
)

+
3
√

2
4

ε7μ̄L4PE

√
5P 2

E − 3N2J + O(ε8).

(6.11)

The details on how to introduce J and ϕ in terms of Q, P and get the normal form (6.11) appear
in [33] (see in particular Section 5.3.3 and Eq. (38)). In the process of getting the normal form we
apply the stretching (Q̄, P̄ ) = ε1/2(Q,P ) of [33].

This time a = 3, m1 = 3, m2 = 6, m3 = 7, n0 = 1, n1 = n2 = 2, n3 = 3, In0 = (PE), In1 = In2 =
(PE , N), In3 = (PE , N, J), Īn0 = (PE), Īn1 = Īn2 = (N), Īn2 = (J), h0 = PE and h1, h2 and h3

correspond, respectively, to the terms in (6.11) of orders 3, 6 and 7 in ε. The rank of the matrix
formed by the frequency vector

Ω(I) =
(

∂h0

∂PE
,

∂h1

∂N
,

∂h2

∂N
,

∂h3

∂J

)
,

and its derivatives with respect to PE , N and J is three. Thus, as it is proved in [33],
Hamiltonian (6.11) satisfies the hypotheses of the Han –Li –Yi theorem as before, establishing
the persistence of KAM 3-tori of rectilinear equatorial type related to H∗

ε. Setting PE = L and
going back to the nonregularized coordinates, we get the persistence of KAM 3-tori of rectilinear
equatorial type related to H given in (6.2). The measure of the excluded tori is of order O(ε10).

Remark 6. The solutions obtained in Sections 6.3.1 and 6.3.2 are quasi-periodic only in the
regularized time s, but not in t.

6.4. Checking the Transversality of the Manifolds

The final step in the discussion of the periodic and quasi-periodic solutions in the previous
subsections is to show that a set of positive measure of invariant tori intersects transversely the
collision set in submanifolds of codimension at least two. The reason is that among those invariant
tori found for the regularized system, the ones that could meet the collision set only form a set
of relative measure of a certain order of the small parameter ε, as it is studied in [29]. Hence our
aim is to prove that most of the trajectories on the tori determined in the previous subsection pass
arbitrarily close to the collision set, but without intersection. We also apply this technique in [43].
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6.4.1. Transversality condition for the invariant tori of rectilinear perpendicular type

We start by studying the transversality condition in the manifold S2 × S2 corresponding to
(0, 0,±PE , 0, 0,∓PE). First of all, we observe that the invariant 3-tori are projected into invariant
2-tori with angles ψ1 and ψ2 and main frequencies given by the derivatives of H∗

ε with respect to
J1 and J2 in (6.9).

It is not difficult to prove that near the points (0, 0,±PE , 0, 0,∓PE), the rectilinear motions
expressed in terms of the coordinates Qi and Pi introduced in (6.8), satisfy the conditions Q1 = −Q2

and P1 = P2. Applying the successive canonical changes required to get (6.9), up to terms of order
three in ε, these conditions in the transformed coordinates become

J1 = J2 +
3
√

15
2

ε3μ̄L2PEJ2 sin(2ψ1) + O(ε6), ψ1 + ψ2 =
3π
2

+
3
√

15
4

ε3μ̄L2PE cos(2ψ1) + O(ε6).

We stop at order three because it is going to be enough for our purposes.

The collision set for the whole Hamiltonian system can be determined easily in the action-angle
coordinates (E,ψ1, ψ2, PE , J1, J2). It is named Col and is defined through

E = O(ε6),

ψ2 =
3π
2

− ψ1 +
3
√

15
4

ε3μ̄L2PE cos(2ψ1) + O(ε6),

J1 = J2 +
3
√

15
2

ε3μ̄L2PEJ2 sin(2ψ1) + O(ε6),

(6.12)

while no condition is imposed on the rest of coordinates. We remark that E has to be transformed
while performing the changes of coordinates to get the normal form, but its main significant
variation occurs at order ε6. The intersection of the set (6.12) with an invariant 3-torus obtained
from (6.9), namely, (PE , J1, J2) = (c1, c2, c3) + O(ε15) with fixed ci > 0 are the points satisfying(

E,ψ1, ψ2, PE , J1, J2

)

=
(

0 , ψ1 ,
3π
2

− ψ1 +
3
√

15
4

ε3μ̄c1L
2 cos(2ψ1) , c1 , c3 +

3
√

15
2

ε3μ̄c1c3L
2 sin(2ψ1) , c3

)
+ O(ε6),

and the additional relation

c2 = c3 +
3
√

15
2

ε3μ̄c1c3L
2 sin(2ψ1) + O(ε6). (6.13)

Assuming that c2 is chosen as c2 = c3 + ε3c∗3 = c3 +O(ε3), the intersection of the collision manifold
with the single 3-torus are the four points obtained after solving (6.13) for ψ1, say ψ∗,i

1 with
i ∈ {1, 2, 3, 4}, therefore it is of codimension 3 in the fixed torus.

The next step consists in calculating the normal vector spaces to the 3-torus and to the set
Col at the intersection points and in checking that the intersection is transversal. It suffices to
show that both vectors are not parallel, using the theory of intersection of manifolds [15]. We need
to compute the Jacobians of the constraints that define both sets. Arranging these variables as
before, i. e., putting E, ψ1, ψ2, PE , J1, J2, the rows of the Jacobian matrices contain the partial
derivatives of the corresponding constraints with respect to the six coordinates in the order we have
established. For the 3-torus at the intersection points we get

JT =

⎛
⎜⎜⎜⎝

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎞
⎟⎟⎟⎠ + O(ε6). (6.14)
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For the collision set we obtain

JCol =

⎛
⎜⎜⎜⎝

1 0 0 0 0 0

0 1 + ε3k1 1 0 0 0

0 ε3k2 0 0 1 −1 − ε3k1

⎞
⎟⎟⎟⎠ + O(ε6), (6.15)

where k1 = 3
√

15
2 μ̄c1L

2 sin(2ψ∗,i
1 ) and k2 = −3

√
15μ̄c1c3L

2 cos(2ψ∗,i
1 ). The normal vectors to the

collision set and to the torus at the intersection points are given by the vector spaces spanned by
the rows of the Jacobian matrices. They are, respectively,

NT =
(
0, 0, 0, t4, t5, t6

)
+ O(ε6),

NCol =
(
s1, s2 + ε3(s2k1 + s3k2), s2, 0, s3,−s3 − ε3s3k1

)
+ O(ε6),

(6.16)

where sj, tk are arbitrary real numbers. Provided k2 �= 0, it is readily deduced that the two vectors
can be parallel only when si = ti = 0, thus the normal vectors intersect transversely. But k2 = 0 is
equivalent to ψ∗,1

1 = π/4, ψ∗,2
1 = 3π/4, ψ∗,3

1 = 5π/4, ψ∗,4
1 = 7π/4 and these situations can be avoided

by selecting c∗3 carefully so that, when (6.13) is solved for ψ1, we do not obtain the roots π/4, 3π/4,
5π/4, 7π/4.

The final step is the application of Lemma 7.4 in [52], which says that, if K is a submanifold of
the n-torus Tn having codimension at least two in Tn, almost all the orbits of the linear flow defined
by the angle coordinates on the torus do not intersect K. According to this lemma, most of the
trajectories on those tori intersecting Col transversely do not intersect Col. Moreover, since the flow
is irrational on these invariant tori of H∗, almost all the trajectories pass arbitrarily close to Col
without intersecting this set. A single (periodic or quasi-periodic) trajectory gives rise to a (periodic
or quasi-periodic) solution of noncollision type of the system defined by Hamiltonian (6.2), which
is close to the collision set {q1 = q2 = q3 = 0}. Such motions form a set of positive measure where
the massless particle passes arbitrarily close to one of the primaries without colliding with it, but
following a periodic or quasi-periodic motion.

6.4.2. Transversality condition for the invariant tori of rectilinear equatorial type

We observe that in the twice-reduced space TPE ,N the rectilinear motions are given by (τ1, 0, τ3)
with τ3 = τ2

1 − P 2
E and N = 0, see also [33]. Translated to the coordinates Q,P of (6.10), the

transformed conditions where rectilinear motions occur become Q = N = 0, thence in the angle-
action pair we obtain ϕ = π/2 and N = 0.

We proceed analogously to the case of rectilinear perpendicular tori. An invariant 3-torus
obtained from (6.11) is given by (PE , N, J) = (c1, c2, c3) + O(ε8) where ci > 0. Then we have to
determine the collision set in the transformed coordinates (also called normal form coordinates as
they are the variables introduced to average over ν) and the process is a bit laborious. We start by
considering the corresponding set in the variables before the normal form transformation that has
led to the averaging with respect to ν. From the previous paragraph we deduce that the collision
set is given by E = 0, ϕ = π/2 and N = 0.

In order to get the collision set in the normal form coordinates E, φa, ϕ, N and J , we apply Lie
transformations. The main difficulty in achieving it is that we calculated the generating function
of the normal form transformation in terms of g, ν, G and N , but we really need it in the new
variables, taking into account that g, ν are undefined for collision orbits. As an intermediate step, we
obtain the backward change associated to the normal form that puts the untransformed coordinates
in terms of the transformed ones. The process is done in terms of the canonical set of variables
introduced in [49], concretely, the angles �, θa, φa and their respective conjugate actions L, I2, N .
The angle θa refers to the latitude of the aphelion, while I2 is a function that depends on the
Delaunay elements G, N and g. Note that (θa, φa) represent the spherical polar coordinates of
a unit vector pointing from the origin to the aphelion. In our setting we have replaced �/L by
E/PE , keeping the whole set symplectic and valid near rectilinear motions. Assuming that in these
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variables the collision set is given by the equalities E = 0, I2 = N = 0, we end up with the following
expression:

θ̃a = θa + O(ε5), φ̃a = φa + O(ε5), P̃E = PE ,

Ẽ = −15
8

ε3μ̄L2PE sin(2φa) sin2(θa) + O(ε5),

Ĩ2 =
15
16

ε3μ̄L2P 2
E sin(2φa) sin(2θa) + O(ε5),

Ñ =
15
8

ε3μ̄L2P 2
E cos(2φa) sin2(θa) + O(ε5),

where the tilde’s variables stand for the transformed coordinates. The above formulae give the
collision set in the normal form coordinates that are parameterized in terms of the untransformed
ones. From now on we drop the tildes.

In the next step we replace θa, I2 by ϕ, J . The procedure is lengthy and involves carrying out
calculations in powers of ε up to ε3. We stress that PE is untouched as we have not made use of
the generating function related to the average over E. After many simplifications the collision set
Col in the normal form variables reads as

E = −15
8

ε3μ̄L2PE sin(2φa) + O(ε5), ϕ =
π

2
+ O(ε3),

N =
15
8

ε3μ̄L2P 2
E cos(2φa) + O(ε4).

(6.17)

The intersection of the 3-torus and the collision set results in

E = −15
8

ε3μ̄c1L
2 sin(2φa) + O(ε5), ϕ = π

2 + O(ε3),

PE = c1 + O(ε8), N =
15
8

ε3μ̄c2
1L

2 cos(2φa) + O(ε4), J = c3 + O(ε8),

together with the constraint

c2 = ε3c∗2 =
15
8

ε3μ̄c2
1L

2 cos(2φa) + O(ε4), (6.18)

with c∗2 > 0. Then it is deduced that φa can be fixed after putting it in terms of c∗2, μ̄, c1 and L,
leading generically to four possible values, namely, φ∗,i

a , i = 1, . . . , 4. Thus, the intersection of the
single 3-torus with Col is given by two points, so it is of codimension 3 in the fixed torus.

Next, we have to obtain the normal vector spaces to the 3-torus and to the set Col, checking
that the two vectors are never parallel and thus the intersection of the manifolds is transversal.
Firstly, we sort the coordinates as E, φa, ϕ, PE , N , J . For the set Col we get

JCol =

⎛
⎜⎜⎜⎝

1 ε3k1 0 ε3k2 0 0

0 0 1 0 0 0

0 2ε3c2
1k2 0 −ε3k1 1 0

⎞
⎟⎟⎟⎠ + O(ε3), (6.19)

with k1 = 15
4 c1L

2μ̄ cos(2φ∗,i
a ), k2 = 15

8 L2μ̄ sin(2φ∗,i
a ). The corresponding normal vector at the

intersection points is

NCol =
(
s1, ε

3(s1k1 + 2s3c
2
1k2), s2, ε

3(s1k2 − s3k1), s3, 0
)

+ O(ε3),
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with si ∈ R. For the 3-torus the corresponding Jacobian at the intersection becomes

JT =

⎛
⎜⎜⎜⎝

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎞
⎟⎟⎟⎠ + O(ε3). (6.20)

The normal vector to the 3-torus is

NT =
(
0, 0, 0, t1, t2, t3

)
+ O(ε3), (6.21)

where tj are real parameters. When k2 �= 0, NT and NCol are parallel only when si = ti = 0 and
the transversality condition holds. If k2 = 0, then φ∗,1

a = 0, φ∗,2
a = π/2, φ∗,3

a = π and φ∗,4
a = 3π/2.

However, we can avoid getting k2 = 0 by choosing c∗2 in such a way that (6.18) does not contain
the roots 0, π/2, π, 3π/2.

Concluding, the vectors NCol and NT intersect transversely, Lemma 7.4 of [52] can be applied
and most of the trajectories on those tori intersecting Col transversely do not intersect Col. A
single quasi-periodic trajectory of rectilinear equatorial character gives rise to a quasi-periodic
solution of noncollision type of the system defined by Hamiltonian (6.2) that passes closely to
{q1 = q2 = q3 = 0}. These motions form a set of positive measure.

Remark 7. The transversality check performed for the two types of invariant tori is equivalent to
prove that the rank of the Jacobian matrix formed by JCol and JT is maximal, which in this case
is six.

Remark 8. The invariant tori we get in the nonregularized phase space are indeed invariant
“punctured” tori as they have punctures that correspond to the inner collisions, where the
infinitesimal particle gets arbitrarily close to its primary an infinite number of times.
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16. Féjoz, J., Averaging the Planar Three-Body Problem in the Neighborhood of Double Inner Collisions,
J. Differential Equations, 2001, vol. 175, no. 1, pp. 175–187.

17. Ferrer, S. and Lara, M., Families of Canonical Transformations by Hamilton – Jacobi –Poincaré Equation:
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