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Abstract—Contrast agent microbubbles, which are encapsulated gas bubbles, are widely used
to enhance ultrasound imaging. There are also several new promising applications of the contrast
agents such as targeted drug delivery and noninvasive therapy. Here we study three models of
the microbubble dynamics: a nonencapsulated bubble oscillating close to an elastic wall, a simple
coated bubble and a coated bubble near an elastic wall. We demonstrate that complex dynamics
can occur in these models. We are particularly interested in the multistability phenomenon of
bubble dynamics. We show that coexisting attractors appear in all of these models, but for
higher acoustic pressures for the models of an encapsulated bubble. We demonstrate how several
tools can be used to localize the coexisting attractors. We provide some considerations why the
multistability can be undesirable for applications.
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1. INTRODUCTION

Ultrasound contrast agents are encapsulated gas bubbles with radius on the order of a few
micrometers [1–3]. They are currently widely used in ultrasound visualization [1–3]. Such bubbles
are injected into blood stream to enhance acoustic contrast between the blood and the surrounding
tissues. There are also several promising new applications of microbubbles such as targeted drug
delivery and noninvasive therapy [4, 5]. Therefore, mathematical modelling of the dynamics of
contrast agent microbubbles is an important problem.

Almost all mathematical models of the contrast agents dynamics are based on the Rayleigh
equation for the growth and collapse of an empty spherical cavity in a liquid [6]. Later this equation
was generalized to include into consideration fluid viscosity and the gas core of a bubble [7]. This
model is now called the Rayleigh – Plesset equation. After practical usage of first contrast agents,
which were unshelled, it has become clear that in order to improve their stability it is necessary to
use encapsulated bubbles [8]. This has led to development of mathematical models of coated bubbles
(see, e. g., [9] and references therein). All of the above-mentioned models are one-dimensional
oscillators, which usually include periodic force that describes an external acoustic pressure field.
Thus, such models are three-dimensional dynamical systems in which complex dynamics can occur.

Although there are a lot of models for the description of encapsulated bubbles dynamics which
are suitable for different types of shells and different situations, only few of them were thoroughly
studied from the dynamical systems point of view. We can mention the works [10, 11], where the
dynamics of the unshelled bubbles was considered. In [12, 13] the case of encapsulated bubbles
was studied. However, in [12] an inappropriate model of the shell was considered (see [9] for a
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discussion), while in [13] fluid compressibility was not fully taken into account and only one model
of the shell was considered. In addition, there is a new model of bubbles dynamics which takes into
account the impact of an elastic wall near which a bubble oscillates [14]. As far as analytical studies
of the models of bubbles dynamics are concerned, one can mention the works [15–17], though in
these studies nondissipative cases were considered. Thus, it is interesting to thoroughly study a
model of bubble dynamics which fully incorporates fluid compressibility, bubble’s shell and the
impact of an elastic wall. This is the main aim of this work.

Firstly, we consider a model of bubble dynamics without taking into account the influence of its
shell. We provide a discussion of this model for the sake of comparison with later ones. Secondly,
we investigate a model for a simple coated bubble. We use the de-Jong approach (see [9, 18, 19]) to
describe the impact of the shell on the dynamics. Although this model is quite simple and cannot
represent some effects arising in real bubbles dynamics (like the compression-only behavior, for
details see the discussion in [9]), it can fairly well describe the effects connected with the shell
when its thickness is small in comparison with the bubble diameter. In addition, there are a lot of
parameters available for different types of contrast agents for this model (see, e. g., [20]), which are
often hard or impossible to find for some more complicated models because of lack of experimental
data. Lastly, we study a model that incorporates the influence of both the shell and the wall near
which the bubble is oscillating. We show that in both models of encapsulated bubble dynamics
complex dynamics may occur. In particular, we show the possibility of coexistence of attractors in
these models. For a detailed discussion, see Section 4. In the last section we briefly summarize and
discuss our results.

2. MATHEMATICAL MODELS

In this section we provide three models of the bubble contrast agents, which are studied in this
work. In all of them we take into account fluid viscosity and compressibility in accordance with
the Keller – Miksis model [21]. The applied ultrasound field is described by the periodic external
pressure field in the equations considered. The impact of the shell is taken into account according
to the de Jong model [18, 19].

For the nonshelled bubble we investigate the following equation [9, 22]:(
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R is the bubble radius, Pstat = 100 kPa is the static pressure, Pv = 2.33 kPa is the vapor pressure,
P0 = Pstat − Pv, Pac is the magnitude of the pressure of the external field, σ = 0.0725 N/m is the
surface tension, ρ1 = 1000 kg/m3 is the density of the fluid inside the blood vessel, ρ2 = 1060 kg/m3

is the blood vessel wall density, ρ3 = 1000 kg/m3 is the density of the fluid surrounding the blood
vessel, η = 0.001 Ns/m3 is the viscosity of the fluid, c = 1500 m/s is the sound speed, γ = 4/3 is
the polytropic exponent (the process is assumed to be adiabatic), ν is the Poisson ratio, ν = 0.5 for
an elastic wall, and ν = 0 for a rigid wall, β = ρ2ν/(1− ν) is a characteristic of the wall, h = 1 mm
is the thickness of the wall, d denotes the distance between the wall and the center of the bubble
and is close to R0.

For the encapsulated bubble, we consider two models. The first one that does not include the
influence of an elastic wall is(
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Ṙ

c
+

R

c

d

dt

] [
P − Pac sin(ωt)

]
, (2.3)

REGULAR AND CHAOTIC DYNAMICS Vol. 23 No. 3 2018



NONLINEAR DYNAMICS OF BUBBLE CONTRAST AGENTS 259

where

P =
(

P0 +
2σ
R0

)(
R0

R

)3γ

− 4ηLṘ
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3c

)
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where P is the same as in the previous case, and W is given by (2.2). In Eqs. (2.3) and (2.4) all
parameters are the same as in Eq. (2.1) with the exception of χ and κs, which denote the shell
elasticity and shell surface viscosity, respectively. We use the following values of these parameters:
χ = 0.22 N/m and κS = 2.510−9 kg/s, which correspond to the SonoVueR© contrast agent with
equilibrium radius R0 = 1.72 μm [20].

In this work we focus on the multistability phenomenon in Eqs. (2.1), (2.3) and (2.4). In other
words, we investigate the possibility of coexistence of several attractors at the same values of the
control parameters in these models. An attractor is called hidden if its basin does not intersect with
any small neighborhood of a fixed point [23]. Thus, such an attractor cannot be found by picking
the initial data in a neighborhood of an unstable fixed point. One can note that all the dynamical
systems corresponding to Eqs. (2.1), (2.3) and (2.4) do not have any fixed points. Consequently,
all the attractors are hidden according to the definition. If there is only one attractor for the given
parameter value, the system will converge to it from any initial conditions (if they are acceptable
for the model). But in the instance of coexistence of multiple attractors, the initial values problem
becomes nontrivial.

One of the tools we try to apply to localize coexisting attractors is the perpetual points
method [23, 24]. However, below we show that it does not give us the desirable results for the
physically relevant values of the control parameters. Perpetual points are defined by the following
system of equations:

R̈ = 0, ˙̈R = 0, (2.5)

which are rational equations with respect to R, Ṙ. Equations (2.5) are periodic with respect to
time with period T = 2π/ω. Consequently, we solve this system for the entire time period with
a sufficiently small time step to find out if the number of solutions would be different for any
specific time in this interval. Our aim at this point is to find the time values for which the number
of solutions would be the highest. However, for Eqs. (2.5), corresponding to (2.1) and (2.4), the
number of solutions remains almost the same on the whole interval, starting from t = 0, except for
some specific time values for which no solutions exist at all. For all the parameter values for which
we have calculated the perpetual points, the maximum number of solutions was always the same
as calculated at time t = 0.

Another method we use here for localizing coexisting attractors is based on the numerical
continuation [25–28]. According to this idea, we take the state of the system at the last time step of
computation for current values of the parameters as the initial conditions for the next calculation
with respect to the control parameters. If the step size between the consequent parameter values
is small enough, the system should not switch from one attractor to another, because deformation
of the basins of attractors should not be large enough for this to happen. However, this might
not always be true if a bifurcation point is passed on the path variation of the control parameters
(see [25]). On the other hand, if the step size is not sufficiently small, it becomes possible for
the initial data chosen in this way (in a small neighborhood of the attractor for the current
parameter value) to find themselves in the basin of another attractor for the next value of the
control parameters.

Throughout this work, for all numerical calculations the fourth-fifth order Runge – Kutta method
is used [29]. We have compared the results of calculations with those of [12] and have found
satisfactory agreement. For the calculations of the Lyapunov spectra we use the standard algorithm
by Bennetin [30]. We have tested our numerical code on the results of [31] for the driven Van-
der-Pol oscillator and the Lorentz system and have found satisfactory agreement. Note that all
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calculations have been performed in the following nondimensional variables R = R0R
∗, t = ω−1

0 τ ,
where ω2

0 = 3κP0/(ρR2
0) + 2(3κ − 1)σ/R0 + 4χ/R0 is the natural frequency of bubble oscillations.

We denote the nondimensional radial speed as R∗
τ . Here, and throughout the remainder of the text,

we denote the largest of the Lyapunov exponents by λmax. We provide only λmax, because, given
the structure of the system, one of the exponents is always zero, while the sum of the other two
must be below zero, because the systems considered are dissipative. Thus, the sign of λmax gives us
the criterion of the presence of chaos in the system. We provide the λmax for the nondimensional
system, as we are interested only in the sign of the λmax.

3. A NONENCAPSULATED BUBBLE CASE
In this section, we consider the nonshelled bubble model corresponding to Eq. (2.1). For the

uncoated bubble we use the following equilibrium bubble radius: R0 = 10 μm [10]. We investigate
two different control parameter regions, where one can observe the multistability in the model.
The first of them is Pac = 90 kPa, ω/2π ∈ [110, 125] kHz. We seek for the perpetual points in the
following subset of the initial conditions space: 0 < R,R < 50 · R0, |Ṙ| < c. Multiplier 50 is quite
arbitrary, but it is relatively clear that our model is not applicable for larger initial radii, on the
other hand, we wanted it to be large enough for us not to lose generality. In this area of the control
parameters, we can obtain only one perpetual point in this subset. One can note that there is one
more solution of the system (2.5) for these values of the control parameters, which is located in a
neighborhood of infinity compared to the subset mentioned above (R ∼ 2.5 · 103R0 for this solution).
But we cannot use such points as initial conditions to numerically solve Eq. (2.1). However, there
are two coexisting attractors in this area of parameters. Thus, we cannot obtain all of the coexisting
attractors by means of the perpetual points method.

The system has the following attractors for these parameters: there are two periodic attractors
if ω/2π � 110 kHz and ω/2π � 125 kHz, one of which is 1-periodic and the other is 2-periodic. If
we decrease the frequency from the higher end, the 2-periodic attractor goes through the period-
doubling cascade and becomes chaotic, then at approximately 110 kHz it becomes 2-periodic again
(see Fig. 1), while the 1-periodic attractor remains almost the same in this entire set of parameters.
λmax for different attractors are shown in Fig. 2. One perpetual point that we have here for any given
frequency always leads us to the same attractor — the one which goes through the period-doubling
cascade.

Fig. 1. Bifurcation diagrams for P = 90 kPa, ω/2π ∈ [110, 120] kHz. 1-periodic attractor (left) and the
periodid-doubling cascade for the 2-periodic attractor (right).

Thus, we need some more tools to localize all the attractors. Here we use the numerical
continuation approach. The step size by the control parameter is an important issue with this
method. Our experiments show that if we choose the step size so that the adjacent frequencies in
the diagram differ by ∼ 1%, the deformation of the attractor basins can be large enough for the
system to switch from chaotic motion to periodic and vice versa for the consequent values of the
frequencies (see [32]). If we consider a physically realistic system in which there always exist finite
perturbations and errors in measurements of the control parameters, we can treat our step size as
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Fig. 2. λmax for the 1-periodic attractor (left) and the chaotic one (right).

a finite disturbance in the system. We can conclude that if these perturbations are relatively large,
it can lead to an unpredictable behavior: the system can suddenly shift from chaotic motion to
periodic and vice versa. We consider this effect to be undesirable for applications.

The bifurcation diagrams built by means of the numerical continuation method are shown in
Fig. 1. Here we used the decreasing frequency sequence, and the step size is such that the difference
between neighboring frequencies is about ≈ 0.3%. As the initial data for the first calculation we
used a point leading to a certain attractor. For the 2-periodic attractor we used the perpetual
point obtained earlier. And for the 1-periodic attractor we used an experimentally obtained initial
condition that converges to this attractor. The diagram with the period-doubling cascade can be
obtained either way: by using the perpetual points or with the numerical continuation. On the
other hand, we can achieve the diagram corresponding to the 1-periodic attractor only with the
numerical continuation as a result of the lack of the perpetual point that leads to this attractor.

Fig. 3. Bifurcation diagrams for different attractors, 500 kHz � ω/2π � 650 kHz.

Now let us consider another area of the control parameters: Pac = 300 kPa, ω/2π ∈ [500, 650]
kHz. In this interval, we can also see various examples of multistability. For some parameters a
chaotic attractor coexists with a periodic one, for some other parameters, two periodic attractors
coexist. However, there are no perpetual points at all in a subset of the initial conditions space which
we talked about earlier. The bifurcation diagrams and the dependence of the λmax on the ω for
these parameter regions are shown in Figs. 3, 4. It can be seen that a chaotic attractor coexists with
a periodic one in a wide range of frequencies. For other frequencies, two periodic attractors coexist
(like a 2-periodic and a 3-periodic for ω/2π ≈ 630 kHz, which can be seen from the bifurcation
diagram in Fig. 3). The situation in general has some similarities to the one we investigated before.
Two periodic attractors coexist, one of which becomes chaotic for certain frequencies, while the
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Fig. 4. λmax (left) — for the attractor which undergoes a period-doubling sequence, (right) — oscillations
between chaotic and periodic attractors in the multistability zone.

Fig. 5. Coexisting attractors at Pac = 300 kPa, ω/2π = 635 kHz: 3-periodic attractor (left), 2-periodic after
a couple of flip bifuractions (right).

other remains periodic. However, the periodic attractors in this case are more complex (like those
in Fig. 5). The transition to chaos with the decreasing frequency for one of the attractors looks like
a period-doubling cascade (see Fig. 3).

4. THE CASE OF A BUBBLE ENCAPSULATED IN A SHELL
In this section we investigate Eqs. (2.3) and (2.4) for the dynamics of an encapsulated bubble.

As a quick comparison to the previous model, we can make a statement that a shell in general
inhibits the emergence of chaos. Thus, chaotic motion in general arises at much higher pressures
than in the model described by Eq. (2.1). So does the multistability phenomenon. Below we show
that the coexistence of a periodic and a chaotic attractor arises at significantly higher acoustic
pressures than we discussed in the previous section. We investigate the following region of the
control parameters: Pac ∈ [0, 4] MPa, ω ∈ [1 · 107, 10 · 107] s−1, because they are meaningful for
applications [3]. Let us consider the same subset of the initial conditions space as in the previous
section: 0 < R,R < 50 · R0, |Ṙ| < c. Unfortunately, we have not found any perpetual points at all
in this subset for either of the two shelled bubble models (2.3), (2.4) in this domain of the control
parameters. Consequently, we have to use the continuation tool to seek for coexisting attractors.
First, we consider the simpler one.

4.1. Pure de Jong Model

Let us investigate the dynamics of bubbles oscillations described by Eq. (2.3).
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We start by studying the dynamics of bubble oscillations described by Eq. (2.3), i. e., we do
not take into account the influence of a blood vessel wall. In Fig. 6 we demonstrate bifurcation
diagrams with respect to the frequency and magnitude of the acoustic pressure field. In the right
area of Fig. 6 we see a sharp change from a 1-periodic attractor to a 3-periodic one. This fact
suggests the possibility of coexisting attractors near the corresponding value of ω.

Fig. 6. Bifurcation diagrams for model (2.3) for different values of the acoustic pressure (left) at ω/2π =

4.7 · 106 and different values of the acoustic frequency (right) at Pac = 1.5 · 106 Pa.

To support the qualitative results presented in Fig. 6, we demonstrate the dependence of the λmax
on the control parameters in Fig. 7. One can see that the value of the λmax demonstrated in Fig. 7
correlates with the regular and chaotic regions in bifurcation diagrams. Note also oscillations of
λmax in the right region of the first plot in Fig. 7, which again suggests the possibility of coexistence
of two periodic attractors.

Fig. 7. The dependence of the λmax for model (2.3) for different values of the acoustic pressure (left) at

ω/2π = 4.7 · 106 and different values of the acoustic frequency (right) at Pac = 1.5 · 106 Pa.

Indeed, in this case two different periodic attractors coexist. In Fig. 8 we demonstrate phase
portraits of two different coexisting attractors at ω = 1.9π · 107 and P = 1.5 · 106 for two different
initial conditions R(0) = 0.8 · R0 (one periodic) and R(0) = R0 (three periodic).

We also demonstrate the dependence of the λmax on the initial bubble strain, i. e., on R(0)/R0,
and the initial radial speed R∗

τ .

From Fig. 9 we see that there are two different values of the λmax, which corresponds to the
existence of two different attractors at the same values of the parameters. Therefore, we can
distinguish the coexisting periodic attractors by calculating the dependence of Lyapunov spectra
on the initial conditions.
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Fig. 8. Phase portraits of two coexisting attractors for model (2.3) at ω = (19/20) · 107 and P = 1.5 · 106:
1-periodic (left) and 3-periodic (right).

Fig. 9. The dependence of the λmax on the initial bubble strain R(0)/R0 (left) and initial nondimensional
bubble speed R∗

τ (0) (right).

4.2. Encapsulated Bubble Close to an Elastic Wall

Here we investigate the dynamics of a bubble, described by Eq. (2.4), which differs from Eq. (2.3)
by the presence of the term corresponding to the interaction with an elastic wall (see (2.2)). Firstly,
let us consider the following parameters: Pac = 1.5 MPa, ω ∈ [1, 7] · 107 s−1. The bifurcation diagram
and the corresponding λmax are provided in Fig. 10. Let us compare the results obtained with the
diagram for the same control parameters but for the de Jong model, which is depicted in Fig. 6.
The region of chaos in Fig. 10 is shorter than that in Fig. 6, corresponding to model (2.3). The wall
slighlty stabilizes the bubble behavior and suppresses chaos for some frequencies. Just as in the
previous model, two coexisting attractors can be found here for this value of the acoustic pressure,
namely, a 1-periodic and a 3-periodic attractor. The coexistence appears for higher frequencies in
the above-mentioned range. It emerges at ω slightly lower than 6 · 107 s−1. The diagram we built
here does not have switches from one of the coexisting attractors to another, but we will prove the
presence of the multistability a bit later (see Fig. 14). We do not provide a phase portrait of the
coexisting periodic attractors here, because they look pretty much the same as those in Fig. 8 (as
a result of proximity of the models described by Eqs. (2.4) and (2.3)).

Secondly, we fix the ω = 6.9 · 107 (for which 3-periodic and 1-periodic attractors coexist for a wide
range of pressures) and vary the acoustic pressure. The bifurcation diagram and the corresponding
λmax are provided for Pac ∈ [1, 4] MPa. The diagrams in Fig. 11 are built with the help of the
numerical continuation method for increasing pressure sequences. For the diagram, starting with
the 3-periodic attractor, we start from Pac = 2 MPa, because the emergence of the 3-periodic
attractor for ω = 6.9 · 107 happens at pressures slightly lower than 2 MPa (see Fig. 14), and there
is no need to pick Pac close to this bifurcation point with high precision as the initial point. We
choose the increasing frequencies instead of decreasing ones because we were able to localize both
the 1-periodic and the 3-periodic attractor for lower pressures, and we can use them to start the
procedure and build the diagrams. However, if we started from Pac = 4 MPa, where only a chaotic
attractor exists, we would be unable to achieve these diagrams for either of the attractors that exist
at lower pressures.
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Fig. 10. Bifurcation diagram (left) and λmax (right) for P = 1.5 MPa, ω ∈ [1, 7] · 107.

Fig. 11. Bifurcation diagrams for ω = 6.9 · 107, left: P ∈ [1, 4] MPa, right: P ∈ [2, 4] MPa. Bifurcations of
different attractors.

Fig. 12. λmax corresponding to attractors in the bifurcation diagrams in Fig. 11. (left) and (right) correspond
to the left and right panels in Fig. 11, respectively.

Here we discover that the 3-periodic attractor undergoes the period-doubling cascade starting
at Pac ≈ 2.6 MPa and becomes chaotic (see Fig. 11). After that, at Pac ≈ 3.02 it faces a crisis
and disappears. For higher pressures we have found only one attractor at this frequency. The 1-
periodic attractor remains the same until Pac ≈ 2.94. At this point the first flip bifurcation of the
period-doubling cascade for this attractor occurs. The next bifurcation happens at Pac ≈ 3.3 MPa.
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Fig. 13. Coexisting attractors at Pac = 2.9 MPa, ω = 6.9 · 107 s−1. Poincaré section of the chaotic attractor
(left), phase portrait of the 1-periodic attractor (right).

The attractor becomes chaotic after this cascade. There are few windows of regular behavior for
higher pressures, though. We have not found any coexisting attractors there. To support these
results quantitatively, we have calculated the largest of the Lyapunov exponents (see Fig. 12). As
an example of coexisting attractors, we provide the phase portrait of the 1-periodic attractor and
the Poincaré section of the chaotic attractor at Pac = 2.9 MPa. They are shown in Fig. 13.

Fig. 14. Bifurcation diagrams showing the emergence of the 3-periodic attractor for different frequencies. Left
panel: ω = 6.9 · 107 s−1, P ∈ [1.8, 2.0] MPa, middle panel: ω = 6.0 · 107 s−1, P ∈ [1.1, 1.65] MPa, right panel:

ω = 5.8 · 107 s−1, P ∈ [1.4, 1.7] MPa.

To demonstrate the fact of coexistence of the 1-periodic and the 3-periodic attractor for the
higher end of frequencies at Pac = 1.5 MPa, and also explain the choice of the pressure range for
the right panel in Fig. 11, we provide a couple of bifurcation diagrams showing the bifurcation point,
where the 3-periodic attractor emerges. To achieve this, we use the decreasing pressure sequences.
We know that this attractor exists for the higher pressures for sure from Fig. 11. We can decrease
Pac with sufficiently small steps to obtain the point at which the 3-periodic attractor ceases to exist
and there will be only the 1-periodic attractor left. The results are shown in Fig. 14. The acoustic
pressure for which the 3-periodic attractor emerges depends on the ω in a complicated fashion.
This also proves that there is a lower boundary of the pressure under which the multistability
does not exist in the model, corresponding to Eq. (2.4), in the set of the control parameters under
investigation.

Now we discuss the bifurcation structure for varying acoustic pressures with fixed driving
frequencies. Here we consider the following frequencies: ω = 2.5 · 107 s−1 (see Fig. 15), ω = 2.8 · 107

s−1 (see Fig. 16), ω = 5 · 107 s−1 (see Figs. 17), ω = 5.5 · 107 s−1 (see Figs. 18–20). In Fig. 15 we see
a transition to chaos through a period-doubling cascade, which happens at relatively low pressures.
It is followed by a window of periodic motion, after which chaos arises again (with a few periodic
windows later). We have not found any coexisting attractors here. In Fig. 16 quite a similar picture
can be observed, but without such a large periodic window. The scenario happening in Fig. 17 is very
similar, but the chaos emerges for much higher pressures. For all three regions of control parameters
discussed above, we have not found any multistability. In Figs. 18 and 19 we can observe a much
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Fig. 15. Bifurcation diagram and λmax for ω = 2.5 · 107, P ∈ [0.5, 3] MPa.

Fig. 16. Bifurcation diagram and λmax for ω = 2.8 · 107, P ∈ [0.5, 3] MPa.

Fig. 17. Bifurcation diagram and λmax for ω = 5 · 107, P ∈ [0.5, 3] MPa.

more complicated situation. In the beginning there is a 1-periodic attractor, which undergoes a flip
bifurcation, which is the first one in the period-doubling cascade for this attractor. The next period-
doubling bifurcation occurs at Pac = 2.101 MPa. For almost the same acoustic pressure a 3-periodic
attractor emerges. Note that, although these two bifurcations happen at visually indistinguishable
pressures, this does not mean that these points coincide. In our calculations they differ by ≈ 0.4%:
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Fig. 18. Bifurcation diagram and λmax for ω = 5.5 · 107, P ∈ [1, 3] MPa.

Fig. 19. Bifurcation diagram and λmax for ω = 5.5 · 107, P ∈ [1, 3] MPa.

Fig. 20. Bifurcation diagram and λmax for ω = 5.5 · 107, P ∈ [3, 6] MPa.

the 3-periodic attractor emerges at Pac ≈ 2.091 MPa and the period-doubling bifurcation occurs at
Pac ≈ 2.101 MPa (we performed calculations with much higher precision for the difference between
these points to significantly exceed possible numerical errors). In our previous calculations the
bifurcation points for different attractors did not coincide (see Figs. 11 and 12), even though they
lay close to each other. Thus, we conclude that these two bifurcation points are likely different, but

REGULAR AND CHAOTIC DYNAMICS Vol. 23 No. 3 2018



NONLINEAR DYNAMICS OF BUBBLE CONTRAST AGENTS 269

located very close to each other. The emergence of the 3-periodic attractor looks quite similar to
those in Fig. 14. With the increasing pressure, the 3-periodic attractor stays as it is for Pac � 3 MPa,
while the other one becomes chaotic after the period-doubling cascade. These attractors coexist
until the chaotic one disappears in a crisis, and the 3-periodic attractor is the only remaining one.
If we increase the Pac still further (slightly higher than appears to be common in applications), we
will observe the period-doubling cascade for this 3-periodic attractor (see Fig. 20). From all of the
above, we can conclude that there is a lower boundary of frequencies under which the multistability
is not possible for the range of pressures under investigation.

Fig. 21. Bifurcation diagram and λmax for P = 3 MPa, ω ∈ [1.5, 7] · 107 s−1, starting from the periodic
attractor at the maximal frequency.

Fig. 22. Bifurcation diagram and λmax for P = 3 MPa, ω ∈ [1.5, 7] · 107 s−1, starting from the chaotic attractor
at the maximal frequency.

For the next calculations we fix the pressure at Pac = 3 MPa and vary ω in the same set as in
Fig. 10. The bifuraction diagrams and the corresponding λmax are shown in Figs. 21 and 22. The
areas of chaos are largely expanded in comparison with Fig. 10. One could expect that to happen
given the above-mentioned diagrams with varying pressures. The multistability phenomenon can
be observed for the high frequencies in our range. We show two different diagrams to emphasize the
fact of coexistence of a periodic and a chaotic attractor at the right end of the diagrams. To build
the diagrams and the dependence of the λmax on ω, we have used the continuation method with
decreasing frequency sequences, starting from the different attractors at ω = 7 · 107 s−1. These
attractors were obtained from those we already had for ω = 6.9 · 107 s−1 and Pac = 3 MPa (see
Figs. 11, 13) by changing the control parameters with small steps.
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Fig. 23. Bifurcation diagram and λmax P = 3.5 MPa, ω ∈ [1, 7] · 107 s−1.

Finally, we consider the following parameters: P = 3.5 MPa, ω ∈ [1, 7] · 107 s−1. The diagram
and λmax are provided in Fig. 23. We see that areas of chaos are prevailing over ranges of regular
behavior. The multistability disappears for this pressure, and we observe a single attractor for all
the frequencies in the range. Thus, there is a higher boundary of the pressures, after which the
multistability does not exist in the system.

5. CONCLUSION
In this work we have studied three models describing the behavior of a bubble contrast agent:

Eqs. (2.1), (2.3) and (2.4). The acoustic pressure and the driving frequency have been considered
as the control parameters. In all of these models we have found complicated dynamics and the
multistability phenomenon. We have demonstrated that the perpetual points method cannot always
fully solve the initial values problem for these models. Another method we have used is based on the
numerical continuation. By applying the last one, we could move from a region where the structure
of coexisting attractors is simpler and easier to identify to other areas of the control parameters
where it can be much more complicated. Also, it can help to understand how each of the attractors
changes while passing through the bifurcations points.

We have demonstrated that, for the nonencapsulated bubble, complicated behavior like coex-
istence of a chaotic and a periodic attractor can be found for a relatively low acoustic pressure
(see Fig. 1). If the pressure is increased, attractors with more complicated structure can develop
in the areas where multistability takes place. On the contrary, for the encapsulated bubble, higher
pressures are required for the system to exhibit such sort of complicated dynamics. In these models,
the coexistence of periodic attractors becomes possible for lower pressures than the coexistence of
a chaotic attractor with a periodic one. We have shown that in the set of the control parameters
under investigation there exists a lower boundary of frequencies, under which the multistability is
not possible. Also, we have demonstrated that there are both the lower and the higher boundaries
of the acoustic pressure, in limits of which the multistability is possible. These boundaries depend
on the frequency (see Figs. 11, 12, 18, 19, 23). Outside of these limits we have not found any
coexisting attractors in the domain of parameters investigated in this paper. From the diagrams in
Figs. 11, 12, 16–19, we can conclude that for lower frequencies chaotic behavior tends to emerge
for lower pressures than it does for higher frequencies. On the other hand, for higher frequencies
the system tends to exhibit the multistability phenomenon to a greater extent. We have provided
regions of coexistence of different attractors for wide ranges of the control parameters along with
areas where only one attractor exists (for example, only periodic or only chaotic motion is possible).

According to [3, 13], chaotic motion can be good for ultrasound diagnostics because the bubble
response differs significantly from the echoes of surrounding tissues. We think that the coexistence
of a periodic attractor with a chaotic one is not beneficial for applications. We make this conclusion,
because this kind of multistability can lead to unpredictable behavior. We cannot control the initial
conditions after the injection of contrast agents into the blood flow and can never know to which
attractor the system will converge when we begin to apply the ultrasound field. Furthermore, there
are a lot of sources of perturbations in the model, like finite measurement errors in the control
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parameters, some sound waves propagating in the blood flow, etc. These disturbances can force the
system to sharply shift from one attractor to another. Thus, the experimenter could observe a lot of
sharp shifts between periodic and chaotic motion modes and vice versa. Therefore, we assume that
the areas of the control parameters for which coexisting attractors are found should be avoided in
applications.
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