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Abstract—In this paper we consider an attracting heteroclinic cycle made by a 1-dimensional
and a 2-dimensional separatrices between two hyperbolic saddles having complex eigenvalues.
The basin of the global attractor exhibits historic behavior and, from the asymptotic properties
of these nonconverging time averages, we obtain a complete set of invariants under topological
conjugacy in a neighborhood of the cycle. These invariants are determined by the quotient
of the real parts of the eigenvalues of the equilibria, a linear combination of their imaginary
components and also the transition maps between two cross sections on the separatrices.
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1. INTRODUCTION

The classification of vector fields according to their topological properties is a major concern
in the study of dynamical systems, and it has been often addressed in recent years in order
to distinguish what seems to be similar dynamical systems and to study the stability of their
properties. Dimension three is the lowest dimension where one finds chaos for flows, but even in
this low-dimensional setting a vast catalogue of exotic dynamical phenomena is already known.
For instance, the Lorenz attractor [9, 25, 26], or the homoclinic cycle associated to a saddle-focus
studied by Shilnikov [20, 21], or else the spiralling attractors generated by heteroclinic networks
that Bykov introduced in [3, 4]. The latter has recently attracted more attention due to the need
to understand the global dynamical properties induced by the nonreal eigenvalues at the equilibria
and the presence of homoclinic or heteroclinic networks; see [11] for background material, related
accounts and references therein.

It is known that a vector field f which exhibits a heteroclinic tangency cannot be structurally
stable [18]. This gives rise to interesting invariants under topological conjugacy and implies the
existence of an uncountable number of different conjugacy classes in any small neighborhood
of f . However, it might be possible to describe all possible conjugacy classes with finitely many
independent real parameters, which would provide, in particular, a workable description of the
systems near f . If this is the case, it is said that the modulus of stability of f is finite and equal to
the minimum number of parameters.

1.1. Modulus for Heteroclinic Connections

Regarding invariants for vector fields on 3-dimensional manifolds, Dufraine discussed in [7] vector
fields with two saddle-focus equilibria σ1 and σ2, with eigenvalues

−C1 ± i ω1 and E1 (1.1)
E2 ± i ω2 and −C2,

*E-mail: mpcarval@fc.up.pt
**E-mail: alexandre.rodrigues@fc.up.pt

227



228 CARVALHO, RODRIGUES

where
ω1, ω2 > 0, C1 > E1 > 0, C2 > E2 > 0. (1.2)

It is also assumed that the equilibria are connected by their 1-dimensional invariant manifolds
(unstable for σ1 and stable for σ2). Aware of the invariant γ1 = C1

E2
introduced by Palis in [17],

which involves the eigenvalues not related with the connection manifold, the author computes
another conjugacy invariant associated to the complex parts of the eigenvalues of the vector field
at the equilibria, namely, ω1 + γ1 ω2. Dufraine also claims that these two invariants constitute a
complete set if the transition map along the 1-dimensional connection is a homothety-rotation.

Generalizing this approach, but this time aiming at a complete characterization up to topological
equivalence, Bonatti and Dufraine considered in [2] the same setting of [7] while assuming that
the transition map along the 1-dimensional connection, when expressed in suitable coordinates,

is linear, with matrix

⎛
⎝ 1 0

0 λ

⎞
⎠ for some λ � 1, and conformality constant c = 1

2

(
λ + 1

λ

)
. Then

they showed that a complete set of invariants for orientation-preserving topological equivalence
essentially depends on Palis’ invariant and c. More precisely, given two such vector fields whose
transition maps have conformality constants c and c̃ sufficiently small (a size measured by an
adequate continuous function ψ � 1 which depends on ω1, ω2, C1 and E2), then the vector fields
are topologically equivalent in a neighborhood of the corresponding connections, and they are
positively topologically equivalent if and only if one of the following conditions is satisfied: either

c = c̃ = 1 and ω1 − γ1 ω2 = 0 = ω̃1 − γ̃1 ω̃2 (1.3)

or else
(ω1 − γ1 ω2) (ω̃1 − γ̃1 ω̃2) > 0.

Although not relevant to our setting, we notice that the authors also proved that, when c and c̃
are both too big, then a complete set of invariants is made by the quotient ω1

γ1 ω2
and the value at

(ω1
C1

, ω2
E2

, c) of a function related to ψ.
Finally, in [22], Simó and Suśın analyzed vector fields with a heteroclinic 2-dimensional

connection between σ1 and σ2, and proved that the classes of conjugacy of these systems can
be characterized by one parameter only, depending on the eigenvalues of the equilibria which are
not related to the two-dimensional manifold, namely,

γ2 =
C2

E1
.

1.2. Modulus for Heteroclinic Cycles

Concerning heteroclinic cycles, for planar vector fields and based on Bowen’s example, Takens
described in [23] a complete set of topological invariants under topological conjugacies for attracting
heteroclinic cycles with two 1-dimensional connections between two hyperbolic saddles with real
eigenvalues −C1 < 0, E1 > 0 and −C2 < 0, E2 > 0, respectively. Takens assumes that the transition
maps on 1-dimensional cross sections are linear, namely, the identity map and x �→ ax for some
0 < a < 1. The set of the three invariants characterized by Takens includes, as expected, the ones
previously reported by Palis in [17] associated to each 1-dimensional connection of the cycle, that
is,

γ1 =
C1

E2
and γ2 =

C2

E1
.

In addition to these, Takens found another invariant which is primarily determined by the transition
maps and is given by

1
E1

(1 + γ1) log a.

Takens’ construction of the conjugacy uses asymptotic properties of nonconverging Birkhoff time
averages, the so-called historic behavior [19], which we will recall in Section 3.2.
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1.3. Modulus of Stability for a Bykov Attractor

In this work, we will consider vector fields acting on the 3-dimensional sphere with two hyperbolic
equilibria admitting complex eigenvalues satisfying (1.1) and (1.2), and exhibiting both a one-
dimensional separatrix as in [7] and a two-dimensional connection like the one in [22]. This network
is called a Bykov attractor. The behavior of such a vector field f in the vicinity of the connections
is essentially given, up to conjugacy, by the linear part of f in linearizing neighborhoods of the
equilibria and by the transition maps between two discs transversal to f and contained in those
neighborhoods. Therefore, we expect to revisit the two invariants described in [7], the one introduced
in [22] and the invariant Takens found in [23].

Following the strategy of Takens [23], we will select suitable 2-dimensional cross sections at
the connections and assume, as done in [2, 23] and [3], that in appropriate coordinates the
transition maps are linear, whose 2 × 2 matrices are diagonal and have nonzero determinants,

namely,

⎛
⎝ 1

a 0

0 a

⎞
⎠ and

⎛
⎝ 1 0

0 λ

⎞
⎠, for some 0 < a < 1 and some λ � 1. We will assume, as done

in [23] for a heteroclinic connection between two saddles with real eigenvalues, that the transition
along the one-dimensional connection is the identity map (that is, λ = 1) for all the vector fields
under consideration. This simplifies the computations without demanding more invariants. Indeed,
according to Bonatti and Dufraine’s result (1.3), only if we are looking for an orientation-preserving
topological equivalence is it required that either ω1

γ1ω2
is equal to 1 for each conjugated pair of vector

fields or the sign of ω1 − γ1 ω2 is identical for both vector fields. We observe that, since γ1 and
ω1 + γ1ω2 are invariants by conjugacy (cf. [7]), using the equality

ω1 + γ1ω2 = ω1

(
1 +

γ1ω2

ω1

)

we conclude that the value of ω1
γ1ω2

is equal for two conjugate Bykov attractors if and only if the
values of ω1 and ω2 are the same for the two vector fields. This outcome resembles the topological
invariants found by Dufraine in [7] for homoclinic orbits of saddle-focus type, the so-called Shilnikov
cycles.

We will also suppose, as in [23], that the transitions along the one-dimensional and two-
dimensional connections happen instantaneously. This is a reasonable assumption due to the fact
that, as the Bykov attractor is asymptotically stable (cf. [15]), if P belongs to its basin, then the
period of time spent by the orbit

(
ϕ(t, P )

)
t∈R+ inside small neighborhoods of σ1 and σ2 tends

to infinity as t → +∞, whereas the time used to travel between these two neighborhoods remains
uniformly bounded in length. Afterwards, we will analyze the sequence of hitting times of each orbit
at chosen cross sections and show that a complete set of invariants under topological conjugacy for
these Bykov vector fields is given by

γ1 =
C1

E2
, γ2 =

C2

E1
, ω1 + γ1 ω2,

1
E1

(1 + γ1) log a.

2. DESCRIPTION OF THE VECTOR FIELDS

Let f : S3 → R
4 be a Cr, r � 3, vector field on the C∞ Riemannian 3-dimensional differential

manifold

S3 =
{
(x1, x2, x3, x4) ∈ R

4 : x2
1 + x2

2 + x2
3 + x2

4 = 1
}

whose corresponding flow is given by the unique solutions t ∈ R �→ x(t) = ϕ(t, x0) ∈ S3 of the initial-
value problem ⎧⎨

⎩
ẋ(t) = f

(
x(t)
)

x(0) = x0.
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We will request that the organizing center of f satisfies the following conditions:

P1. The vector field f is equivariant under the action of Z2 ⊕Z2 on S3 induced by the two linear
maps on R

4

Γ1(x1, x2, x3, x4) = (−x1,−x2, x3, x4)
Γ2(x1, x2, x3, x4) = (x1, x2,−x3, x4).

That is, f ◦ Γ1 = Γ1 ◦ f and f ◦ Γ2 = Γ2 ◦ f .

P2. The set Fix (Z2 ⊕ Z2) =
{
Q ∈ S3 : Γ1(Q) = Γ2(Q) = Q

}
reduces to two equilibria, namely,

σ1 = (0, 0, 0, 1) and σ2 = (0, 0, 0,−1), which are hyperbolic saddle-foci whose eigenvalues are,
respectively,

−C1 ± ω1 i and E1

E2 ± ω2 i and −C2

where
ω1 > 0, ω2 > 0, C1 > E1 > 0, C2 > E2 > 0. (2.1)

P3. The flow-invariant circle Fix
(
Z2(Γ1)

)
=
{
Q ∈ S3 : Γ1(Q) = Q

}
consists of the two equilibria,

σ1 and σ2, and two heteroclinic trajectories from σ1 to σ2 we denote by [σ1 → σ2]ext and
[σ1 → σ2]int, whose union will be simply called [σ1 → σ2].

P4. The flow-invariant sphere Fix
(
Z2(Γ2)

)
=
{
Q ∈ S3 : Γ2(Q) = Q

}
is made of the two equilibria

σ1 and σ2 and a two-dimensional heteroclinic connection from σ2 to σ1.

P5. The saddle-foci σ1 and σ2 have the same chirality (which means that near σ1 and σ2 all
trajectories turn in the same direction around the one-dimensional connections [σ1 → σ2]ext

and [σ1 → σ2]int; see [16] for more information).

We denote by Xr
Byk(S

3) the set of Cr, r � 3, smooth Z2 ⊕ Z2-equivariant vector fields on S3

that satisfy the assumptions P1–P5, endowed with the Cr-Whitney topology. Figure 1 illustrates
the previous information concerning Fix (Γ1) and Fix (Γ2).

Fig. 1. Heteroclinic connections of the organizing center. Left: The invariant circle Fix (Γ1), parameterized

in S3 by x2
3 + x2

4 = 1, consists of σ1 and σ2 and two trajectories connecting them. Right: The invariant sphere
Fix (Γ2), parameterized in S3 by x2

1 + x2
2 + x2

4 = 1, is a two-dimensional connection between σ2 and σ1.

The two equilibria σ1 and σ2, the two trajectories listed in P3 and the two-dimensional
heteroclinic connection from σ2 to σ1 referred to in P4 build a heteroclinic network we will denote
hereafter by Af . This set is the global Bykov attractor of the dynamical system f in an open set
V 0 ⊂ S3. More precisely, the heteroclinic network Af is asymptotically stable, that is, there exists
an open neighborhood V 0 of Af in S3 such that every solution starting in V 0 remains inside V 0

for all positive times and is forward asymptotic to the network Af .
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Remark 1. The assumptions P1–P5 define a degenerate set of vector fields exhibiting heteroclinic
connections, a dynamical phenomenon which is natural within systems with symmetry. If we slightly
perturb a vector field in Xr

Byk(S
3) in order to break the connection Fix

(
Z2(Γ2)

)
while preserving the

Γ1-equivariance, generically we obtain what the authors of [16] call a Bykov cycle, with saturated
horseshoes accumulating on it. Finding a complete set of invariants for these Bykov cycles is still
an open problem.

3. MAIN DEFINITIONS
To be easier to locate, this section brings together the most relevant concepts we will use.

3.1. Invariants under Conjugacy

Given two systems ẋ = f1(x) and ẋ = f2(x), defined in domains D1 ⊂ S3 and D2 ⊂ S3,
respectively, let ϕi(t, x0) be the unique solution of ẋ = fi(x) with initial condition x(0) = x0, for
i ∈ {1, 2}. We say that the corresponding flows are topologically equivalent in subregions U1 ⊂ D1

and U2 ⊂ D2 if there exists a homeomorphism h : U1 → U2 which maps solutions of the first system
onto solutions of the second preserving the time orientation. If h is also time-preserving, that is,
if for every x ∈ S3 and every t ∈ R, we have ϕ1

(
t, h(x)

)
= h
(
ϕ2(t, x)

)
, the flows are said to be

topologically conjugate and h is called a topological conjugacy.
A functional I defined on a set V of vector fields is an invariant under topological conjugacy if,

whenever two vector fields f and f̃ in V are conjugate, then I(f) = I(f̃). A set of invariants under
topological conjugacy is said to be complete if, given two systems with equal invariants, there exists
a topological conjugacy between the corresponding flows. For the sake of simplicity, in what follows
we will talk about a topological conjugacy between two vector fields while meaning a conjugacy
defined on some neighbourhood of the global attractors of the associated flows.

3.2. Historic Behavior

We say that the orbit of a point P by a flow ϕ : R × X → X has historic behavior if, for some
continuous function G : X → R, the Birkhoff averages of G along the orbit of P

(
1
t

∫ t

0
G
(
ϕ(s, P )

)
ds

)

t∈R+

does not converge.
4. CONSTANTS

For future use, we settle the following notation:

γ1 =
C1

E2
, γ2 =

C2

E1
, δ1 =

C1

E1
, δ2 =

C2

E2
,

K =
1
E1

(ω1 + γ1 ω2) , τ =
1

E1
(1 + γ1), δ = γ1γ2 = δ1δ2 =

C1C2

E1E2
.

According to the assumptions stated in (2.1), we have K > 0, τ > 0, δ1 > 1 and δ2 > 1.

5. MAIN RESULTS
There are well-known examples of dynamical systems with interesting sets of orbits exhibiting

historic behavior, as the logistic family [10], the example of Bowen [23], the full shifts on finite
symbols [1, 5, 10, 13, 24], Gaunersdorfer’s systems on a simplex [8] and the Lorenz attractor [14].
Following the arguments of Takens in [23] and Gaunersdorfer in [8], we will add to this list another
example in Proposition 1. Indeed, although the points in the attractor Af do not have historic
behavior since the ω-limit and α-limit of their orbits are either σ1 or σ2, all elements in its proper
basin of attraction

B(Af ) =
{
P ∈ S3 : the accumulation points of

(
ϕ(t, P )

)
t∈R+ belong to Af

}
\ Af

display this kind of behavior.
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Proposition 1. Let f be a vector field in Xr
Byk(S

3). Given a continuous map G : S3 → R and
P ∈ B(Af ), there exists a sequence (tk)k ∈N, which depends on P and G, such that

lim
i→+∞

1
t2i

∫ t2i

0
G
(
ϕ(t, P )

)
dt =

1
1 + γ1

G(σ1) +
γ1

1 + γ1
G(σ2)

and

lim
i→+∞

1
t2i+1

∫ t2i+1

0
G
(
ϕ(t, P )

)
dt =

γ2

1 + γ2
G(σ1) +

1
1 + γ2

G(σ2).

Consequently, every point in B(Af) has historic behavior.

As happens in the context of Bowen’s planar vector fields [23], the previous result is the source
of four invariants under topological conjugacy, generated by the sequences of hitting times at two
cross sections appropriately chosen in a neighborhood of the attractor Af . We will also show that
they build a complete set of invariants.

Theorem 1. Let f be a vector field in Xr
Byk(S

3). Then γ1, γ2, ω1 + γ1ω2 and τ log a form a complete
set of invariants for f under topological conjugacy.

6. DYNAMICS IN B(Af )

We will analyze the dynamics near the network Af of a vector field f ∈ Xr
Byk(S

3), r � 3, using
local maps that approximate the dynamics near and between the two equilibria in the network.

6.1. Local Coordinates

In order to describe the dynamics in a neighborhood of the Bykov cycle Af of f , we need a
workable expression of the Poincaré map of f at a suitable cross section inside this neighborhood.
For this, up to a conjugacy, we will select the linearizing coordinates near the equilibria σ1 and σ2

introduced in [6]. In these coordinates, and after a linear rescaling of the variables, if needed, we
consider two cylindrical neighborhoods Vσ1 and Vσ2 in S3 of σ1 and σ2, respectively, with base-radius
1 and height 2 (see Fig. 2). Moreover, the boundaries of Vσ1 and Vσ2 have three components:

1. The cylinder wall, parameterized in cylindrical coordinates (ρ, θ, z) by

θ ∈ [0, 2π], |z| � 1 �→ (1, θ, z).

2. Two discs, the top and bottom of each cylinder, parameterized by

ρ ∈ [0, 1], θ ∈ [0, 2π] �→ (ρ, θ,±1).

Observe that the local stable manifold W s
loc(σ1) of the equilibrium σ1 is the disk in Vσ1 given by{

(ρ, θ, z) : 0 � ρ � 1, 0 � θ � 2π, z = 0
}
. The local stable manifold W s

loc(σ2) of σ2 is the z-axis in
Vσ2 ; the local unstable manifold W u

loc(σ2) of σ2 is parameterized by z = 0 in Vσ2 .
In Vσ1 , we will use the following notation:

Out+(σ1) := top of Vσ1 , that is,
{
(ρ, θ, 1): 0 � ρ < 1, θ ∈ [0, 2π]

}
.

Out−(σ1) := bottom of Vσ1 , that is,
{
(ρ, θ, −1): 0 � ρ < 1, θ ∈ [0, 2π]

}
.

In+(σ1) := upper part of the cylinder wall of Vσ1 , that is, the set{
(1, θ, z) : θ ∈ [0, 2π], 0 < z < 1

}
.

In−(σ1) := lower part of the cylinder wall of Vσ1 , that is, the set{
(1, θ, z) : θ ∈ [0, 2π], −1 < z < 0

}
.
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Fig. 2. Local cylindrical coordinates in Vσ2 and Vσ1 . Left: The flow enters the cylinder Vσ2 crossing transversely
the top/bottom In (σ2) and leaves it transversely through the wall Out (σ2). Right: The flow enters the cylinder
Vσ1 transverse to the wall In (σ1) and leaves it transversely across the top/bottom Out (σ1).

In (σ1) := In+(σ1) ∪ In−(σ1); its elements enter Vσ1 in positive time.
Out (σ1) := Out+(σ1) ∪ Out−(σ1); its elements leave Vσ1 in positive time.

By construction, the flow is transverse to these sections. Similarly, we define the cross sections for
the linearization around σ2. We will refer to In (σ2), the top and the bottom of Vσ2 , consisting of
points that enter Vσ2 in positive time; Out (σ2), the cylinder wall of Vσ2 , made of points that go
inside Vσ2 in negative time, with Out+(σ2) denoting its upper part and Out−(σ2) its lower part.
Notice that [σ1 → σ2] connects points with z > 0 in Vσ1 (respectively z < 0) to points with z > 0
(respectively z < 0) in Vσ2 .

Let
Σ1 = Out (σ1) and Σ2 = Out (σ2) (6.1)

be two relative-open cross sections transverse to the connections [σ1 → σ2]ext and the invariant
sphere Fix (Γ2), respectively. Geometrically each connected component of Σ1 \ [σ1 → σ2] is a
punctured disk; on the other hand, Σ2 \ Fix (Γ2) is an annulus, as illustrated in Fig. 3.

Fig. 3. Σ1 and Σ2.

6.2. Local Maps near the Saddle-foci

As the dynamics sends points with z > 0 in Vσ1 (respectively z < 0) to points with z > 0
(respectively z < 0) in Vσ2 , and is symmetric with respect to the two-dimensional sphere Fix (Γ2),
it is enough to analyze the orbits of initial conditions (ρ, θ, z) in the invariant upper part z > 0.
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In cylindrical coordinates (ρ, θ, z) the linearization of the dynamics at σ1 and σ2 is specified by
the following equations: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ρ̇ = −C1ρ

θ̇ = ω1

ż = E1z

and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ̇ = E2ρ

θ̇ = ω2

ż = −C2z.

(6.2)

Therefore, a trajectory whose initial condition is (1, θ, z) ∈ In+(σ1) arrives at Out+(σ1) after a
period of time equal to

− log z

E1
. (6.3)

Moreover, the trajectory of such a point (1, θ, z) leaves Vσ1 through Out+(σ1) at the point of
Out+(σ1) given by

Φ+
1 (1, θ, z) =

(
zδ1 + S1(1, θ, z),

[
− ω1

E1
log z + θ + S2(1, θ, z)

]
mod 2π, 1

)
, (6.4)

where S1, S2 are smooth functions such that, for i = 1, 2 and every k, � ∈ N0,∣∣∣∣
∂k+� Si(1, θ, z)

∂θk ∂z�

∣∣∣∣ = O
(
zδ1 (1+ε)

)
(6.5)

for some positive constant ε < 1 (cf. [6]). Dually, a point (ρ, θ, 1) ∈ In+(σ2) leaves Vσ2 through
Out+(σ2) after a period of time equal to

− log ρ

E2
(6.6)

at the point of Out+(σ2)

Φ+
2 (ρ, θ, 1) =

(
1,
[
− ω2

E2
log ρ + θ + T1(ρ, θ, 1)

]
mod 2π, ρδ2 + T2(ρ, θ, 1)

)
, (6.7)

where T1, T2 satisfy a condition similar to (6.5). The maps S1, S2, T1 and T2 represent asymptotically
small terms that vanish when either ρ or z goes to zero.

6.3. The First Transition

Points in Out+(σ1) near W u(σ1) are mapped into In+(σ2) along a flow-box around the connection
[σ1 → σ2]ext. Up to a change of coordinates (see [23, §3.1], [2, §1.1]), corresponding to homotheties
and rotations which leave invariant the local expressions of the flows in neighborhoods of the
equilibria, we may assume that the transition map

Ψ+
1→2 : Out+(σ1) → In+(σ2)

is the identity map. This assumption is compatible with the hypothesis P3, and admissible due to
the fact that the equilibria σ1 and σ2 have the same chirality (cf. P5).

Denote by η+ the map

η+ = Φ+
2 ◦ Ψ+

1→2 ◦ Φ+
1 : In+(σ1) → Out+(σ2).

Up to higher-order terms (which we will replace by dots), from (6.4) and (6.7) we infer that the
expression of η+ in local coordinates is given by

η+(1, θ, z) =
(

1,
[
− ω1E2 + δ1ω2E1

E1E2
log z + θ

]
mod 2π, zδ1δ2

)
+ (. . .) (6.8)

or, in a simpler notation (see Section 4),

η+(1, θ, z) =
(
1, (−K log z + θ) mod 2π, zδ

)
+ (. . .). (6.9)
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6.4. The Second Transition

Up to the above-mentioned change of coordinates, the action of the linear part of the transition
map

Ψ+
2→1 : Out+(σ2) → In+(σ1)

may be seen (cf. [4]) as a composition of transpositions (either rotations of the coordinate axes or
homothetic changes of scales). In what follows, we will assume that

Ψ+
2→1(1, θ, z) =

(
1,

1
a

θ, a z

)
(6.10)

for some 0 < a < 1.

6.5. The Poincaré Map

The f -solution of every initial condition (1, θ, z) ∈ B(Af ) ∩ In+(σ1) returns to In+(σ1), thus
defining a first return map

P+ = Ψ+
2→1 ◦ η+ : B(Af ) ∩ In+(σ1) → In+(σ1) (6.11)

which is as smooth as the vector field f and acts as follows:

P+(1, θ, z) =
(

1,
1
a

[
(−K log z + θ) mod 2π

]
, a zδ

)
+ (. . .).

In an analogous way, we define the return map P− from In−(σ1) to itself.

7. HITTING TIMES

In what follows, we will obtain estimates of the amount of time a trajectory spends between
consecutive isolating blocks. We are assuming, as done by Gaunersdorfer [8] and Takens in [23],
that the transitions from Out+(σ2) to In+(σ1) and from Out+(σ1) to In+(σ2) are instantaneous.

Starting with the initial condition (1, θ0, z0) ∈ Out+(σ2) at time t0, its orbit hits Out+(σ1) after
a time interval equal to

t1 = − 1
E1

log (a z0) (7.1)

at the point

(ρ1, θ1, 1) = Φ+
1 ◦ Ψ+

2→1(1, θ0, z0) = Φ+
1

(
1,

1
a

θ0, a z0

)

that is,
(ρ1, θ1, 1)

=
(

(a z0)
δ1 + S1

(
1,

1
a

θ0, a z0

)
,

[
− ω1

E1
log (a z0) +

1
a

θ0 + S2

(
1,

1
a

θ0, a z0

)]
mod 2π, 1

)
.

Then the orbit goes instantaneously to In+(σ2) and proceeds to Out+(σ2), hitting the point

(1, θ2, z2) = Φ+
2 (ρ1, θ1, 1) ∈ Out+(σ2)

whose second and third coordinates are (see (6.7))

θ2 =
(
− ω2

E2
log ρ1 + θ1 + T1(ρ1, θ1, 1)

)
mod 2π

=
[
− ω2

E2
log
(

(a z0)δ1 + S1

(
1,

1
a

θ0, a z0

))
+ θ1 + T1(ρ1, θ1, 1)

]
mod 2π,
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z2 = ρδ2
1 + T2(ρ1, θ1, 1)

=
(

(a z0)
δ1 + S1

(
1,

1
a

θ0, a z0

))δ2

+ T2(ρ1, θ1, 1)

and spending in the whole path a time equal to

t2 = t1 +
(
− 1

E2
log ρ1

)

that is,

t2 = t1 −
1

E2
log
(

(a z0)
δ1 + S1

(
1,

1
a

θ0, a z0

))
= t1 −

δ1

E2
log (a z0) + O

(
(az0)δ1 ε

)
. (7.2)

And so on for the other time values.
We may assume, without loss of generality, that t0 = 0: this amounts to considering the solutions

starting at Σ2, a valid step since every orbit in B(Af ) eventually crosses this cylinder. Notice also
that, as the transition maps are linear with diagonal matrices, up to higher-order terms the sequence
of times (tj)j∈N depends essentially on the cylindrical coordinates ρ and z. Figure 4 summarizes
the previous information.

Fig. 4. The sequence (ti)i ∈ N0
of hitting times for a point (1, θ0, z0) ∈ Out+(σ2).

8. THE INVARIANTS

In this section, we will examine how the hitting times sequences generate the set of invariants
we will use. Starting with a point P = (1, θ0, z0) ∈ Out+(σ2) at time t0 = 0, consider the sequences
of times (tj)j ∈N

constructed in the previous subsection and define for each i ∈ N0 = N ∪ {0}
{

P2i := ϕ(t2i, P ) = (1, θ2i, z2i) ∈ Out+(σ2)

P2i+1 := ϕ(t2i+1, P ) = (ρ2i+1, θ2i+1, 1) ∈ Out+(σ1).
(8.1)

We divide the trajectory
(
ϕ(t, P )

)
t∈R

+
0

in periods of time corresponding to its sojourns in either
Vσ1 (that is, the differences t2i+1 − t2i for i ∈ N0) or inside Vσ2 (that is, t2i+2 − t2i+1 for i ∈ N0)
during its travel paths that begin and end at Out+(σ2).

Lemma 1. Let P = (1, θ0, z0) ∈ Out+(σ2) and take the defined sequence (tj)j ∈N0. Then:

1. limi→+∞ (t2i+1 − t2i) − γ2 (t2i − t2i−1) = − 1
E1

log a.

2. limi→+∞ (t2i+2 − t2i+1) − γ1 (t2i+1 − t2i) = 0.
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3. limi→+∞ (t2i+2 − t2i) − δ (t2i − t2i−2) = −τ log a.

4. For each i ∈ N, there exists Ri ∈ R such that
∑∞

i=1 i |Ri| < ∞ and

(t2i+2 − t2i) − δ (t2i − t2i−2) = −τ log a + Ri.

Proof. Using (7.1) and (7.2), we may write

(t2i+1 − t2i) − γ2 (t2i − t2i−1) = − 1
E1

log
(
a ρδ2

2i−1 + O
(
ρ

δ2(1+ε)
2i−1

))
+

γ2

E2
log (ρ2i−1).

Using the fact that

log
(
a ρδ2

2i−1 + O
(
ρ

δ2(1+ε)
2i−1

))
= log

⎛
⎝a ρδ2

2i−1

⎛
⎝1 +

O
(
ρ

δ2(1+ε)
2i−1

)

a ρδ2
2i−1

⎞
⎠
⎞
⎠

= log a + δ2 log ρ2i−1 + log
(
1 + O

(
ρδ2 ε
2i−1

))

= log a + δ2 log ρ2i−1 + O
(
ρδ2 ε
2i−1

)
,

we deduce that
(t2i+1 − t2i) − γ2 (t2i − t2i−1) = − 1

E1
log a − C2

E1E2
log (ρ2i−1) +

C2

E1E2
log (ρ2i−1) + O

(
ρδ2 ε
2i−1

)

= − 1
E1

log a + O
(
ρδ2 ε
2i−1

)
.

Therefore, as limi→+∞ ρδ2 ε
2i−1 = 0 due to the asymptotic stability of Af , we get

lim
i→+∞

(t2i+1 − t2i) − γ2 (t2i − t2i−1) = − 1
E1

log a.

Similarly,

(t2i+2 − t2i+1) − γ1 (t2i+1 − t2i) = − 1
E2

log
(
(a z2i)δ1 + O

(
(a z2i)δ1(1+ε)

))
− γ1

E1
log (a z2i)

= − C1

E1E2
log (a z2i) +

C1

E1E2
log (a z2i) + O

(
(a z2i)δ1 ε

)
, (8.2)

thus,
lim

i→+∞
(t2i+2 − t2i+1) − γ1 (t2i+1 − t2i) = 0.

Up to higher-order terms (which we will replace by dots), we have

t2i+2 − t2i = − 1
E1

log (a z2i) −
1

E2
log (ρ2i+1) + . . .

= − 1
E1

log a − 1
E1

log
(
ρδ2
2i−1

)
− 1

E2
log
(
(a z2i)δ1

)
+ . . .

= − 1
E1

log a − δ2

E1
log
(
(a z2i−2)δ1

)
− δ1

E2
log a − δ1

E2
log (z2i) + . . .

= − 1
E1

log a − δ

E1
log (a z2i−2) −

δ1

E2
log a − δ1

E2
log
(
(ρ2i−1)δ2

)
+ . . .

= − 1
E1

log a − δ

E1
log a − δ

E1
log (z2i−2) −

δ1

E2
log a − δ

E2
log
(
(a z2i−2)δ1

)
+ . . .

= − 1
E1

log a − δ

E1
log a − δ

E1
log (z2i−2) −

δ1

E2
log a − δδ1

E2
log
(
(a z2i−2)

)
+ . . .

= −
[

1
E1

+
δ

E1
+

δ1

E2
+

δδ1

E2

]
log a −

[
δ

E1
+

δδ1

E2

]
log (z2i−2) + . . . .
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On the other hand,

t2i − t2i−2 = − 1
E1

log (a z2i−2) −
1

E2
log (ρ2i−1) + . . .

= − 1
E1

log a − 1
E1

log (z2i−2) −
1

E2
log
(
(a z2i−2)δ1

)
+ . . .

= −
[

1
E1

+
δ1

E2

]
log a −

[
δ1

E2
+

1
E1

]
log (z2i−2) + . . . .

Therefore,

lim
i→+∞

(t2i+2 − t2i) − δ (t2i − t2i−2) = −
[

1
E1

+
δ1

E2

]
log a = −τ log a.

For each i ∈ N0, let
Ti = t2i+2 − t2i.

Then
Ti − δ Ti−1 = (t2i+2 − t2i) − δ (t2i − t2i−2) = −τ log a + O

(
(a z2i)δ1 ε

)
.

So, if we define

i ∈ N �→ Ri = O
(
(a z2i)δ1 ε

)
,

then, as

i
√

i |Ri| = i

√
i
∣∣O((a z2i)δ1 ε

)∣∣ = i
√

i
∣∣∣O
(
(a z2i)

δ1 ε

i

)∣∣∣
lim

i→+∞
i
√

i = 1 and 0 < (a z2i)δ1 ε < O
(
(a z0)i

)
,

we obtain
lim sup
i→+∞

i
√

i |Ri| � a z0 < 1.

Hence, using the root test, we conclude that the series
∑∞

i=1 i |Ri| converges. �
A straightforward computation gives additional information on the speed of convergence of

the previous sequences and the connection between the return times sequences and the invariant
ω1 + γ1 ω2.

Corollary 1.

1. limi→+∞
t2i+2 − t2i+1

t2i+1 − t2i
= γ1.

2. limi→+∞
t2i+1 − t2i

t2i − t2i−1
= γ2.

3. limi→+∞
t2i+2 − t2i

t2i − t2i−2
= δ.

4. limi→+∞
ω1 (t2i+1 − t2i)+ω2 (t2i+2 − t2i+1)

t2i+2 − t2i
= (ω1 + γ1 ω2) 1

γ1 + 1 .

Proof. The first three items are immediate. Concerning the last one, it is enough to notice that
ω1 (t2i+1 − t2i) + ω2 (t2i+2 − t2i+1)

(t2i+2 − t2i+1) + (t2i+1 − t2i)

=
ω1 (t2i+1 − t2i) + ω2 (t2i+2 − t2i+1)

t2i+1 − t2i
× t2i+1 − t2i

(t2i+2 − t2i+1) + (t2i+1 − t2i)
and use the equalities

lim
i→+∞

t2i+2 − t2i+1

t2i+1 − t2i
= γ1 and lim

i→+∞

t2i+1 − t2i

(t2i+2 − t2i+1) + (t2i+1 − t2i)
=

1
γ1 + 1

.

�
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9. PROOF OF PROPOSITION 1

The reasoning presented in this section follows Takens’ proof of Theorem 1 in [23]; a proof is
included for the reader’s convenience. Let P ∈ B(Af ) and (ti)i∈N0

be its hitting times sequence.
Taking into account the estimates obtained in Section 8, consider � ∈ N0 big enough so that the
remainders in the computations to prove Lemma 1 are arbitrarily small. Then, for every continuous
map G : S3 → R, we have

1
t2�+2i − t2�

∫ t2�+2i

t2�

G
(
ϕ(t, P )

)
dt =

1
t2�+2i − t2�

i−1∑
k=0

[∫ t2�+2k+2

t2�+2k

G
(
ϕ(t, P )

)
dt

]

=
1

t2�+2i − t2�

i−1∑
k=0

[∫ t2�+2k+1

t2�+2k

G
(
ϕ(t, P )

)
dt +

∫ t2�+2k+2

t2�+2k+1

G
(
ϕ(t, P )

)
dt

]

and so, applying Lemma 1(2), we get

lim
i→+∞

1
t2�+2i − t2�

∫ t2�+2i

t2�

G
(
ϕ(t, P )

)
dt

= lim
i→+∞

1
t2�+2i − t2�

i−1∑
k=0

[
(t2�+2k+1 − t2�+2k)G(σ1) + (t2�+2k+2 − t2�+2k+1)G(σ2)

]

= lim
i→+∞

1
t2�+2i − t2�

i−1∑
k=0

[
(t2�+2k+1 − t2�+2k)G(σ1) + γ1 (t2�+2k+1 − t2�+2k)G(σ2)

]

= lim
i→+∞

1
t2�+2i − t2�

i−1∑
k=0

(t2�+2k+1 − t2�+2k) [G(σ1) + γ1 G(σ2)]

= [G(σ1) + γ1 G(σ2)] lim
i→+∞

1
t2�+2i − t2�

i−1∑
k=0

(t2�+2k+1 − t2�+2k) .

Additionally,

[G(σ1) + γ1 G(σ2)] lim
i→+∞

1
t2�+2i − t2�

i−1∑
k=0

(t2�+2k+1 − t2�+2k) =
1

1 + γ1
G(σ1) +

γ1

1 + γ1
G(σ2)

because, during the period of time [0, t2�+2i], the ratio between the time spent in the linearizing
neighborhood of σ1 and the total t2�+2i − t2� approaches 1

1+γ1
as i goes to +∞.

We observe that we may replace P by either σ1 or σ2 in the previous computation due to the
fact that its orbit alternately approaches one of these two equilibria as the time goes to infinity, and
G is continuous. Moreover, while changing (t2�+2k+2 − t2�+2k+1) into γ1 (t2�+2k+1 − t2�+2k), we are
omitting the higher-order terms explicit in (8.2); yet, this does not affect the limit of the averages(

1
t2�+2i−t2�

∑i−1
k=0 (t2�+2k+1 − t2�+2k)

)
i∈N

since the remainder O
(
(a z2�+2i)δ1 ε

)
goes exponentially

fast to zero (cf. (6.2)), so the corresponding series converges; besides, limi→+∞ t2�+2i − t2� = +∞
(cf. Section 7).

An analogous computation yields the second part of Proposition 1:

lim
i→+∞

1
t2�+2i+1 − t2�

∫ t2�+2i+1

t2�

G
(
ϕ(t, P )

)
dt =

γ2

1 + γ2
G(σ1) +

1
1 + γ2

G(σ2).
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Notice now that(
γ2

1 + γ2
G(σ1) +

1
1 + γ2

G(σ2)
)
−
(

1
1 + γ1

G(σ1) +
γ1

1 + γ1
G(σ2)

)

=
(

1 − γ1 γ2

(1 + γ1)(1 + γ2)

) [
G(σ2) − G(σ1)

]
.

So, if we choose a continuous map G : S3 → R such that G(σ1) �= G(σ2) (whose existence is
guaranteed by Urysohn’s lemma on the compact metric space S3), then, as by assumption we
have γ1 γ2 > 1 (see Section 4), we conclude that

γ2

1 + γ2
G(σ1) +

1
1 + γ2

G(σ2) �=
1

1 + γ1
G(σ1) +

γ1

1 + γ1
G(σ2)

and therefore

lim
i→+∞

1
t2�+2i − t2�

∫ t2�+2i

t2�

G
(
ϕ(t, P )

)
dt �= lim

i→+∞

1
t2�+2i+1 − t2�

∫ t2�+2i+1

t2�

G
(
ϕ(t, P )

)
dt,

confirming that the sequence of Birkhoff averages of G along the orbit of P does not converge.

Remark 2. As limi→+∞
t2i+2 − t2i

t2i − t2i−2
= δ, the historic behavior in B(Af ) is of type B1 according to

the labeling proposed in [12].

10. PROOF OF THEOREM 1

We already know from [7, 17, 23] and [22] that the numbers γ1, γ2, τ log a and ω1 + γ1 ω2 are
invariants under topological conjugacy. We are left to prove that these invariants form a complete
set. The argument we will present was suggested by Takens’ ideas in [23], although we had to clarify
several significant details of [23] and make a few adjustments.

Let f and g be vector fields in Xr
Byk(S

3) with invariants

γ1, γ2, ω1 + γ1ω2, τ log a

and

γ1, γ2, ω1 + γ1 ω2, τ log a,

respectively, and such that

γ1 = γ1, γ2 = γ2, ω1 + γ1ω2 = ω1 + γ1ω2, τ log a = τ log a. (10.1)

We will show that these numbers enable us to construct a conjugacy between f and g in a
neighborhood of the respective heteroclinic cycles Af and Ag. Notice that for a conjugacy between f
and g to exist it is necessary that the conjugated orbits have hitting times sequences, with respect
to fixed cross sections, that are uniformly close. With this information in mind, we will start
associating to f and any point P in a fixed cross section Σ another point P̃ whose f -trajectory has
a sequence of hitting times (at a possibly different but close cross section Σ̃) which is determined
by and uniformly close to the hitting times sequence of P , but is easier to work with (see, for
instance, the computation (10.13)). This is done by slightly adjusting the cross section Σ (which a
topological conjugacy need not preserve) using the flow along the orbit of P ; and then to find an
injective and continuous way of recovering the orbits from the hitting times sequences. Afterwards,
repeating this procedure with g we find a point Q whose g-trajectory has hitting times at some
cross section equal to the ones of P̃ . Due to the fact that the invariants of f and g are the same,
the map that sends P to Q is the aimed conjugacy. In the next subsections we will explain in detail
this construction.
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10.1. A Sequence of Time Intervals

Fix P = (ρ0, θ0, z0) ∈ B(Af ) and let (ti)i∈N0
be the times sequence defined in (8.1). We start

defining, for each i ∈ N0, a finite family of numbers

T̃
(i)

0 , T̃
(i)

1 , T̃
(i)

2 , . . . , T̃
(i)

i

satisfying the following properties:

T̃
(i)

i = Ti = t2i+2 − t2i

T̃
(i)

j − δ T̃
(i)

j−1 = −τ log a, ∀ j ∈ {1, 2, . . . , i}. (10.2)

For instance, as Ti = t2i+2 − t2i and t0 = 0, we deduce from the previous equalities that

T̃
(0)

0 = T0 = t2 − t0 = t2,

T̃
(1)

1 = T1 = t4 − t2, T̃
(1)

0 =
T̃

(1)
1 + τ log a

δ
=

T1 + τ log a

δ
,

T̃
(2)

2 = T2 = t6 − t4, T̃
(2)

1 =
T2 + τ log a

δ
, T̃

(2)
0 =

T2 + (1 + δ) τ log a

δ2
,

T̃
(3)

3 = T3 = t8 − t6, T̃
(3)

2 =
T3 + τ log a

δ
, T̃

(3)
1 =

T3 + (1 + δ) τ log a

δ2
,

T̃
(3)

0 =
T3 + (1 + δ + δ2) τ log a

δ3
.

By finite induction, it is straightforward to generalize these examples and show that, for every
i ∈ N,

T̃
(i)

0 =
Ti +

(∑i−1
j=0 δj

)
τ log a

δi
. (10.3)

Therefore, we have:

Lemma 2. For every i ∈ N0, we have T̃
(i+1)

0 − T̃
(i)

0 = Ri+1

δi+1 .

Proof. This is immediate after (10.3) and Lemma 1(4):

T̃
(i+1)

0 − T̃
(i)

0 =
Ti+1 + τ log a

(∑i
j=0 δj

)

δi+1
−

Ti + τ log a
(∑i−1

j=0 δj
)

δi

=
Ti+1 − δTi

δi+1
+

τ log a
(∑i

j=0 δj −
∑i

j=1 δj
)

δi+1

=
Ti+1 − δTi

δi+1
+

τ log a

δi+1
=

Ri+1

δi+1
.

�
Now, Lemma 2 yields

T̃
(i)

0 = T̃
(i−1)

0 +
Ri

δi

= T̃
(i−2)

0 +
Ri−1

δi−1
+

Ri

δi

= T̃
(i−3)

0 +
Ri−2

δi−2
+

Ri−1

δi−1
+

Ri

δi

...

= T̃
(0)

0 +
i∑

j=1

Rj

δj
.
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As δ > 1, the series
∑∞

j=1
Rj

δj converges, and so the sequence
(
T̃

(i)
0

)
i∈N0

converges. Denote its limit

by

T̃0 := lim
i→+∞

T̃
(i)

0 = T
(0)
0 +

∞∑
j=1

Rj

δj
= T0 +

∞∑
j=1

Rj

δj
. (10.4)

Remark 3. A small change in the value of t2 (or in any other time value ti) with the same
order of magnitude of O(zc

0), for a positive constant c, does not alter the limit T̃0, because such a
perturbation only requires us to consider a slightly different value for each Ri.

10.2. A Sequence of Adjusted Hitting Times

For i � 1, consider the sequence (T̃i)i∈N0 satisfying

T̃i = δ T̃i−1 − τ log a ∀ i ∈ N (10.5)

where T̃0 was computed in (10.4). For example,

T̃1 = δ T̃0 − τ log a

T̃2 = δ2 T̃0 − (1 + δ) τ log a

T̃3 = δ3 T̃0 − (1 + δ + δ2) τ log a.

Lemma 3. The series
∑+∞

i=0 (Ti − T̃i) converges.

Proof. We notice that, by construction, for every i ∈ N0 we have |Ti − T̃i| �
∑∞

j=i+1 |Rj |. Conse-
quently, for every � ∈ N0, we get

�∑
i=0

|Ti − T̃i| �
�∑

i=0

∞∑
j=i+1

|Rj |

=
(
|R1| + |R2| + |R3| . . .

)
+
(
|R2| + |R3| + |R4| . . .

)
+
(
|R3| + |R4| + . . .

)
+ . . .

= |R1| + 2 |R2| + 3 |R3| + . . . + i |Ri| + . . .

=
�∑

i=1

i |Ri|.

As, according to Lemma 1(4), the series
∑+∞

i=1 i |Ri| converges, the proof is complete. Notice that
this result implies that limi→+∞(Ti − T̃i) = 0. �

Lemma 3 ensures that we may take a sequence
(
t̃2i

)
i∈N0

of positive real numbers such that

t̃0 = 0

T̃i = t̃2i+2 − t̃2i

lim
i→+∞

(t2i − t̃2i) = 0. (10.6)

Moreover, by construction (see (10.5)) we have

(t̃2i+2 − t̃2i) − δ (t̃2i − t̃2i−2) = −τ log a. (10.7)

Afterwards, we take a sequence
(
t̃2i+1

)
i∈N0

satisfying, for every i ∈ N0,

t̃2i+2 − t̃2i+1 = γ1 (t̃2i+1 − t̃2i). (10.8)

REGULAR AND CHAOTIC DYNAMICS Vol. 23 No. 3 2018



COMPLETE SET OF INVARIANTS FOR A BYKOV ATTRACTOR 243

Therefore,

ω1

(
t̃2i+1 − t̃2i

)
+ ω2

(
t̃2i+2 − t̃2i+1

)
(
t̃2i+2 − t̃2i

) =
ω1

(
t̃2i+1 − t̃2i

)
+ γ1 ω2

(
t̃2i+1 − t̃2i

)
(
t̃2i+2 − t̃2i+1

)
+
(
t̃2i+1 − t̃2i

)

=
ω1 + γ1 ω2

γ1 + 1
. (10.9)

Lemma 4. The following equalities hold:

1. limi→+∞ (t2i+1 − t̃2i+1) = 0.

2. limi→+∞ (t̃2i+1 − t̃2i) − γ2 (t̃2i − t̃2i−1) = − 1
E1

log a.

Proof. Taking into account (10.8), we have

t̃2i+1 − t2i+1 =
t̃2i+2 + γ1 t̃2i

1 + γ1
− t2i+1 =

t̃2i+2 + γ1 t̃2i − t2i+1 − γ1 t2i+1

1 + γ1
,

and so, from (10.6), we conclude that

lim
i→+∞

(1 + γ1)
(
t̃2i+1 − t2i+1

)
−
[
(t2i+2 − t2i+1) − γ1 (t2i+1 − t2i)

]

= lim
i→+∞

(
t̃2i+2 + γ1 t̃2i − t2i+1 − γ1 t2i+1

)
−
[
(t2i+2 − t2i+1) − γ1 (t2i+1 − t2i)

]

= lim
i→+∞

(t̃2i+2 − t2i+2) + γ1 (t̃2i − t2i) = 0.

Therefore, using the information of Lemma 1(2), we get

lim
i→+∞

t̃2i+1 − t2i+1 = 0.

Concerning the second part of the lemma, notice that[
(t̃2i+1 − t̃2i) − γ2 (t̃2i − t̃2i−1)

]
−
[
(t2i+1 − t2i) − γ2 (t2i − t2i−1)

]

= (t̃2i+1 − t2i+1) − (t̃2i − t2i) − γ2 (t̃2i − t̃2i) + γ2 (t̃2i−1 − t2i−1),

thus, from Lemma 4(1), Definition (10.6) and Lemma 1(1) we obtain

lim
i→+∞

(t̃2i+1 − t̃2i) − γ2 (t̃2i − t̃2i−1) = lim
i→+∞

(t2i+1 − t2i) − γ2 (t2i − t2i−1) = − 1
E1

log a.

�

As we are mainly interested in conjugacies and the asymptotic behavior of the sequence
(ti)i∈N0

, the construction of
(
t̃2i

)
i∈N0

must be independent of the starting difference t2 − t0 and
so irrespective of the size of the cross sections (with a smaller section we may miss the first few
intersections of the orbits with the sections). More precisely,

Lemma 5. Consider N ∈ N0, the difference TN = t2N+2 − t2N and the sequence
(
T̃

(i)
0,N

)
i∈N0

defined as in (10.2), but starting with TN instead of T0. Then

T̃0,N := lim
i→+∞

T̃
(i)

0,N = T̃N .

Proof. Consider N = 1 and observe that, according to (10.3),

T̃
(i)

0,1 =
Ti+1 +

(∑i−1
j=0 δj

)
τ log a

δi
,
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so

T̃
(i+1)

0,1 − T̃
(i)

0,1 =
Ri+2

δi+1
.

Therefore,

T̃0,1 = T1 +
+∞∑
j=1

Rj+1

δj
= δ T̃0 − τ log a.

By induction in N , we get

T̃0,N = TN +
+∞∑
j=1

Rj+N

δj
= δN T̃0 −

⎛
⎝

N−1∑
j=0

δj

⎞
⎠ τ log a = T̃N .

�

Consequently, up to a shift of the indices from i to i− 2N , we obtain the same sequence
(
t̃i
)
i∈N0

if we build it using the equalities in (10.6) and (10.8), but starting with t2N = 0 and T̃N instead of
t0 = 0 and T̃0.

10.3. Realization of the Sequence of Times

As any solution of f in B(Af) eventually hits Out (σ2), we may apply the previous construction
to all the orbits of f in B(Af ). So, given any P0 ∈ B(Af ), we take the first nonnegative hitting
time of the forward orbit of P0 at Out (σ2), defined by

tΣ2(P0) = min
{
t ∈ R

+
0 : ϕ(t, P0) ∈ Out (σ2)

}
.

As Out+(σ2) and Out−(σ2) are relative open sets, this first-hitting-time map is continuous with P0.
Afterwards, given

P = ϕ
(
tΣ2(P0), P0

)
= (1, θ0, z0) ∈ Out (σ2),

we consider its hitting times sequence
(
t

(P )
i

)
i∈N0

and build the sequence
(
t̃

(P )
i

)
i∈N0

as explained

in the previous section.
We now proceed as follows. Adjusting the cross sections Σ1 and Σ2, we find a point P̃ ∈ Out (σ2)

in the f -trajectory of P whose hitting times sequence is precisely
(
t̃

(P )
i

)
i∈N0

. Notice that the new

cross sections are close to the previous ones since the sequences (ti)i∈N0
and
(
t̃i
)
i∈N0

are uniformly
close (cf. (10.6) and Lemma 4(1)). We are left to show that there exists only one such trajectory

with hitting times sequence
(
t̃

(P )
i

)
i∈N0

.

10.3.1. Uniqueness of P̃

Given a sequence of times
(
t̃i
)
i∈N0

satisfying t̃0 = 0, Lemma 4 and the properties (10.6)–(10.9),
one may recover from its terms the coordinates of a point (1, θ0, z0) ∈ Out+(σ2) whose ith hitting
time is precisely t̃i. Firstly, we solve the equation (see (7.1))

t̃1 = − 1
E1

log (a z0), (10.10)

obtaining z0. Then, using (7.2)

t̃2 = t̃1 −
1
E2

log (ρ1), (10.11)
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we compute ρ1. And so on, getting from such a sequence of times all the values of the radial and
height cylindrical coordinates (ρ2i+1)i∈N0

and (z2i)i∈N0
of the successive hitting points at Out+(σ1)

and Out+(σ2), respectively. Not knowing an explicit expression for the function S1, however, nothing
has been disclosed about θ0 from these computations.

Concerning the evolution in R
+ of the angular coordinates, the spinning in average inside the

cylinders is given, for every i ∈ N0, by

θ2i+2 − 1
a θ2i

t̃2i+2 − t̃2i

=
(θ2i+2 − θ2i+1) + (θ2i+1 − 1

a θ2i)

t̃2i+2 − t̃2i

=
ω2 (t̃2i+2 − t̃2i+1) + ω1 (t̃2i+1 − t̃2i)

t̃2i+2 − t̃2i

=
ω1 + γ1 ω2

γ1 + 1

(10.12)

(cf. (6.2) and (10.9)). Moreover, (10.8) indicates that

θ2i+1 − 1
a θ2i

θ2i+2 − θ2i+1
=

ω1 (t̃2i+1 − t̃2i)
ω2

(
t̃2i+2 − t̃2i+1

) =
ω1

γ1 ω2
.

So

θ2i+2 − θ2i = (θ2i+2 − θ2i+1) +
(

θ2i+1 −
1
a

θ2i

)
+

1
a

θ2i

= (θ2i+2 − θ2i+1)
(

ω1

γ1 ω2
+ 1
)

+
1
a

θ2i

= ω2 (t̃2i+2 − t̃2i+1)
(

ω1

γ1 ω2
+ 1
)

+
1
a

θ2i

=
ω1 + γ1 ω2

γ1
(t̃2i+2 − t̃2i+1) +

1
a

θ2i.

On the other hand, from (10.12) we get

θ2i+2 − θ2i =
(

θ2i+2 −
1
a

θ2i

)
+ θ2i

(
1
a
− 1
)

=
ω1 + γ1 ω2

γ1 + 1
(t̃2i+2 − t̃2i) + θ2i

(
1
a
− 1
)

.

Consequently,

ω1 + γ1 ω2

γ1
(t̃2i+2 − t̃2i+1) +

1
a

θ2i =
ω1 + γ1 ω2

γ1 + 1
(t̃2i+2 − t̃2i) + θ2i

(
1
a
− 1
)

,

from which the angular coordinate θ2i is uniquely determined:

θ2i = (ω1 + γ1 ω2)

[
t̃2i+2 − t̃2i

γ1 + 1
− t̃2i+2 − t̃2i+1

γ1

]
. (10.13)

In particular, we confirm that there is a unique solution θ0.

10.4. The Conjugacy Between f and g

Let σ1 and σ2 be the two hyperbolic saddle-foci of g whose eigenvalues are, respectively,

−C1 ± ω1 i and E1

E2 ± ω2 i and −C2,
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where
ω1 > 0, ω2 > 0, C1 > E1 > 0 and C2 > E2 > 0

whose values define the invariants of g which, by assumption, satisfy equalities (10.1).
Consider linearizing neighborhoods of σ1 and σ2, with the corresponding cylindrical coordinates,

and take a point P = (1, z0, θ0) ∈ Σ2 ∩Out+(σ2), the corresponding hitting times sequence (ti)i∈N0

at cross sections Σ1 and Σ2 and the sequence of times
(
t̃i
)
i∈N0

obtained in Section 10.2. Next, we

find a unique point QP , given in local coordinates by (1, z0, θ0), as done for f in Section 10.3.1
using estimates similar to (10.10), (10.11) and (10.13):

z0 =
e−E1 �t1

a
(10.14)

ρ1 = e−E2 (�t2−�t1)

θ0 = (ω1 + γ1 ω2)

[
t̃2

γ1 + 1
− t̃2 − t̃1

γ1

]
. (10.15)

The set of these points builds cross sections Σ1 and Σ2 for g at which the points QP have the
prescribed hitting times

(
t̃i
)
i∈N0

by the action of g. Afterwards, we take the map

H : P ∈ Σ2 ∩ Out+(σ2) �→ QP

and extend it using the flows ϕ and ϕ of f and g, respectively: for every t ∈ R, set H
(
ϕt(P )

)
=

ϕt

(
H(P )

)
. An analogous construction is repeated for Out−(σ2).

Lemma 6. H is a conjugacy.

Proof. Firstly, given two initial points P1 �= P2 in Σ2 ∩ Out+(σ2), their hitting times sequences
(cf. (7.1) and (7.2)) are not only different, but not even uniformly close due to the expanding
components of the saddle-type dynamics in the linearizing neighborhoods of σ1 and σ2. Therefore,
P1 and P2 are mapped under H into different points. So H is injective.

Notice that, for this conclusion, it is essential that Af and Ag are global attractors, ensuring
that the ρ and z coordinates decrease to 0 as time goes to +∞ along the orbits of initial conditions
different from the equilibria. This in turn implies that: (i) the time deviations (which are expressed
by the maps Sj and Tj in the formulas of Section 6.2) from the time estimates done in Section 7 are
asymptotically arbitrarily small, and so their impact is negligible; (ii) the time increments caused
by the twisting around the equilibria (cf item (4) of Corollary 1) are the same for f and g because
ω1 + γ1 ω2 = ω1 + γ1 ω2, and so their impact may be discarded. We also remark that, if we repeat
the previous construction starting with g instead of f , we obtain a map that must be the inverse
of H. And, indeed, so it is since ω1 + γ1 ω2 = ω1 + γ1 ω2, because the angular deviations, which are
due to twisting around the equilibria and which intervene in the computation (10.15), are the same
for f and g.

Secondly, if P1 and P2 are close enough, then the first terms of the corresponding hitting times
sequences are sufficiently near to ensure that P̃1 is arbitrarily close to P̃2 (cf. (10.14) and (10.15)).
Thus, H is continuous in Σ2 ∩ Out+(σ2), and its extension to B(Af ) is continuous by definition.
This ends the proofs of the lemma and Theorem 1.

Finally, we observe that the conjugacy H extends to Af . �
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