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Abstract—A chain of quadratic first integrals of general linear Hamiltonian systems that have
not been represented in canonical form is found. Their involutiveness is established and the
problem of their functional independence is studied. The key role in the study of a Hamiltonian
system is played by an integral cone which is obtained by setting known quadratic first integrals
equal to zero. A singular invariant isotropic subspace is shown to pass through each point
of the integral cone, and its dimension is found. The maximal dimension of such subspaces
estimates from above the degree of instability of the Hamiltonian system. The stability of
typical Hamiltonian systems is shown to be equivalent to the degeneracy of the cone to an
equilibrium point. General results are applied to the investigation of linear mechanical systems
with gyroscopic forces and finite-dimensional quantum systems.
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1. LINEAR HAMILTONIAN SYSTEMS

Consider a linear system of differential equations

Γẋ = −Px, x ∈ R
r. (1.1)

Here, Γ is a skew-symmetric operator and P is a symmetric operator (with respect to the scalar
product (, ) in R

r). These operators are assumed to be nondegenerate. Since |Γ| �= 0, r is even. Let
r = 2n be the dimension of phase space.

The system (1.1) is Hamiltonian. The symplectic structure is given by the nondegenerate 2-form

Ω(ξ, η) = (Γξ, η), (1.2)

and the quadratic form

H =
1
2
(Px, x) (1.3)

serves as the Hamiltonian. In invariant notation, the Hamiltonian property of the system (1.1)
means the following:

ivΩ = −dH,

where iv is the inner product of the vector field v(x) = −Γ−1Px and the 2-form Ω. Indeed,

ivΩ = (Γv, η) = −
(
Γ(Γ−1Px), η

)
= −(Px, η) = −dH(η).
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LINEAR HAMILTONIAN SYSTEMS 27

By a nondegenerate linear transformation the matrix of the operator Γ can be reduced to the
symplectic identity matrix

⎛

⎝ 0 En

−En 0

⎞

⎠, (1.4)

where En is the identity matrix of the nth order. If x = (x1, . . . , x2n), then the variables xk and
xn+k (k � 1) will be canonically conjugate. Conversely, the matrix of the symmetric operator P
can be reduced to a diagonal matrix with elements on the diagonal +1 or −1.

The system (1.1) admits the nondegenerate quadratic integral (1.3) (energy integral). On the
other hand, any nondegenerate linear system in R

r = {x} (with the only equilibrium point x = 0)
which admits an integral in nondegenerate quadratic form is Hamiltonian [1].

The spectrum of a linear Hamiltonian system is symmetric with respect to the real and imaginary
axes of the complex plane. If i+ and i− are the indices of inertia of the quadratic integral (1.3),
then for the degree of instability of u (the number of roots of the equation |Γ−1P + λE| = 0 from
the right complex half-plane) we have the inequality

u � min(i−, i+). (1.5)

For linear conservative mechanical systems with gyroscopic forces the estimate (1.5) is estab-
lished in [2]. For general linear systems with a nondegenerate quadratic integral, inequality (1.5) is
proved in [3].

Further,

u ≡ i− (mod 2). (1.6)

In particular, if the negative index of inertia of the energy integral is odd, then the equilibrium
point x = 0 of the system (1.1) is unstable (according to a generalized Kelvin theorem). Since
i− + i+ = 2n, one can replace i− in (1.6) with i+.

Hamiltonian systems in general form (1.1) (when the skew-symmetric matrix is not reduced
to the symplectic identity matrix (1.4)) are often encountered in applications. As an example, we
consider small oscillations of a mechanical system in a potential force field, taking gyroscopic forces
into account. The equations of motion linearized near an equilibrium point are brought to the
following form:

ẍ + Gẋ + Wx = 0, x ∈ R
n. (1.7)

Here, G is the skew-symmetric matrix of gyroscopic forces and the symmetric matrix W generates
the potential energy of the system

1
2
(Wx, x).

Equations (1.7) can be represented in the form (1.1):
⎛

⎝ G E

−E 0

⎞

⎠

⎛

⎝x

y

⎞

⎠

.

= −

⎛

⎝W 0

0 E

⎞

⎠

⎛

⎝x

y

⎞

⎠, y = ẋ. (1.8)

Here,

Γ =

⎛

⎝ G E

−E 0

⎞

⎠, P =

⎛

⎝W 0

0 E

⎞

⎠, (1.9)

H = 1
2 (y, y) + 1

2(Wx, x) is the total energy of the mechanical system. The skew-symmetric matrix
Γ is obviously nondegenerate, and |P | = |W |. Consequently, |P | �= 0 if x = 0 is the only equilibrium
point of the system (1.7).
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28 KOZLOV

We now replace G with NG and introduce a fast time variable τ = Nt in (1.7), assuming N
to be a large parameter. Dividing (1.7) by N2 and letting N tend to infinity, we obtain a linear
equation for the velocity y = x′:

dy

dτ
+ Gy = 0, y ∈ R

n. (1.10)

If we introduce a slow time variable τ = t/N and make a formal passage to the limit N → ∞
in (1.7), we obtain a system of the form (1.1):

G
dx

dτ
= −Wx, x ∈ R

n. (1.11)

Suppose the matrix of gyroscopic forces G is nondegenerate (then the number of degrees of
freedom n is even). In this case, both systems (1.10) and (1.11) are Hamiltonian and all eigenvalues
in (1.10) are purely imaginary and different from zero. Moreover, the trivial equilibrium y = 0
of the system (1.10) is stable. Thus, the problem of stability of the equilibrium of the initial
system (1.7) with asymptotically large gyroscopic forces reduces to that of conditions for stability
of the Hamiltonian system (1.11) with half as many degrees of freedom.

A detailed analysis of passages to the limit from the system (1.7) to the linear systems (1.10)
and (1.11) is presented, for example, in [4]. As N → ∞, the phase space of the system (1.7) breaks
down into a direct sum of two invariant subspaces of dimension n, and the restrictions of the initial
system to these subspaces are Hamiltonian systems. It turns out that such a breakdown takes place
for sufficiently large values of ‖G‖ [5].

2. QUADRATIC INTEGRALS

Theorem 1. The Hamilton equations (1.1) admit a family of quadratic first integrals

Φm =
1
2
(
P (P−1Γ)mx, (P−1Γ)mx

)
, m ∈ Z, (2.1)

where

1) all Φm are nondegenerate quadratic forms and their signatures coincide with that of the total
energy H = Φ0,

2) the function (2.1) are pairwise in involution (in the symplectic structure given by the
nondegenerate skew-symmetric operator Γ).

We first prove that Φ̇m = 0. Indeed,

2Φ̇m = −
(
P (P−1Γ)mΓ−1Px, (P−1Γ)mx

)

−
(
P (P−1Γ)mx, (P−1Γ)mΓ−1Px

)

= 2(−1)m+1
(
(ΓP−1)2m−1Px, x

)
= 0,

since

(ΓP−1)2m−1P +
[
(ΓP−1)2m−1P

]∗ = (ΓP−1)2m−1P − P (P−1Γ)2m−1 = 0.

The symbol ∗ stands for conjugation.
The inverse substitution

x 	→ (P−1Γ)mx

transforms the quadratic form Φm into the form H. Consequently, their signatures coincide.
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LINEAR HAMILTONIAN SYSTEMS 29

In order to calculate the Poisson bracket of the functions Φm and Φk, we consider a Hamiltonian
system of the form (1.1) with the Hamiltonian Φm

Γx′ = −∂Φm

∂x
= −(−ΓP−1)mP (P−1Γ)mx (2.2)

and calculate the derivative of the quadratic form Φk by virtue of the system (2.2). This is just the
Poisson bracket {Φk, Φm}, which, up to sign, is equal to

2
(
(Λ∗)kPΛkΓ−1(Λ∗)mPΛmx, x

)
, (2.3)

where Λ = P−1Γ. It is easy to calculate the product of the operators in (2.3). It is equal to

(ΓP−1)2sΓ, s = k + m − 1.

Since

(ΓP−1)2sΓ +
[
(ΓP−1)2sΓ

]∗ = 0,

the quadratic form (2.3) is zero. This proves the theorem.
The question arises: How many functionally independent quadratic forms are there in the

chain (2.1)? It is well known from symplectic geometry that there are no more than n of them.
On the other hand, if Γ is the symplectic identity matrix (1.4) and P = En, then all Φm coincide
and therefore all these integrals reduce to an energy integral. However, in the family of quadratic
forms (2.1) there are typically n functionally independent ones.

Theorem 2. If the spectrum of the linear Hamiltonian system (1.1) is simple (i. e., there are no
multiple eigenvalues), then the first integrals

Φ0, Φ−1, . . . , Φ−n+1

are functionally independent.

We recall that the presence of multiple roots of a characteristic polynomial is due to the fact that
its discriminant vanishes. The discriminant in turn polynomially depends on the coefficients of the
characteristic polynomial. In particular, the simplicity of the spectrum of the linear Hamiltonian
system can be defined without solving the characteristic equation.

Remark. If among the squares of eigenvalues there are q different ones, then the rank of the Jacobi
matrix

∂(Φ0, Φ−1, . . . , Φ−n+1)
∂(x1, . . . , xn, . . . , x2n)

is no less than q.

Theorem 2 is proved using the theory of real normal forms of linear Hamilton equations (which
goes back to Williamson [6, 7]; see also [8, 9]). According to Williamson, the phase space R

2n can be
decomposed into a direct sum of skew-orthogonal (with respect to the symplectic structure (1.2))
subspaces in such a way that the matrix of the operator Γ has the “canonical” form (1.4) and the
Hamiltonian is represented as a sum of quadratic forms (partial Hamiltonians) on these subspaces,
and

(a) the real pair ±a of eigenvalues corresponds to the Hamiltonian

−apq

(here and in what follows, p and q denote a pair of conjugate canonical variables),

(b) the purely imaginary pair ±ib corresponds to

b

2
(
p2 + q2

)
,
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30 KOZLOV

(c) the quadruple of eigenvalues ±a± ib corresponds to

−a(p1q1 + p2q2) + b(p1q2 − p2q1).

In these canonical variables the matrix Γ takes the block-diagonal form

diag

[⎛

⎝ 0 1

−1 0

⎞

⎠, . . . ,

⎛

⎝ 0 1

−1 0

⎞

⎠
]

,

and the matrix of the symmetric operator P also has block-diagonal form, where the diagonal is
filled with matrices corresponding to cases (a), (b) and (c), respectively,

⎛

⎝ 0 −a

−a 0

⎞

⎠,

⎛

⎝b 0

0 b

⎞

⎠ and

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

0 −a 0 b

−a 0 −b 0

0 −b 0 −a

b 0 −a 0

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

. (2.4)

It is easy to calculate that the symmetric matrix of the quadratic form Φ−m (i. e., the matrix

(Γ−1P )∗mP (Γ−1P )m)

in these coordinates has the same form as the matrix P , but only in cases (a) and (b) do the
multipliers

(−1)m+1a2m+1 and b2m+1,

respectively, appear in front of the blocks on the diagonal. As for case (c), the restriction of Φ−m
to the plane with coordinates p1, q1, p2, q2 takes the form


(−1)m+1(a − ib)2m+1(p1q1 + p2q2) + �(−1)m+1(a − ib)2m+1(p1q2 − p2q1).

Note that the number a − ib is one of the four eigenvalues.
As a result, the question of functional independence of the quadratic forms Φ0, Φ−1, . . . , Φ−n+1

reduces to that of a nonzero value of the determinant of the matrix of the nth order, where in cases
(a) and (b) the numbers

−a, a3, −a5, . . . , (−1)na2n−1 and b, b3, b5, . . . , b2n−1

are the columns of this matrix, and in case (c) we have two columns
(
− a, a3 − 3ab2, . . . , (−1)n
(a − ib)2n−1

)∗
,

(
b, −3a2b + b3, . . . , (−1)n�(a − ib)2n−1

)∗
.

Since

(−1)m+1a2m+1 = i(ia)2m+1,

(−1)m+1(a − ib)2m+1 = i(ia + b)2m+1,

this determinant is equal (up to a nonzero multiplier) to that of the (n × n) matrix with columns

(λ, λ3, . . . , λ2n−1)∗,

with λ = ia in case (a), λ = b in case (b) and λ = ia + b, λ = −ia + b in case (c). According to
Vandermonde, this determinant is equal to the product of (nonzero) values of λ and to the product
of differences of the squares of these numbers. Since the spectrum of the Hamiltonian system is
simple, all sums and differences of values of λ are nonzero. This proves Theorem 2.

It is well known that a linear Hamiltonian system with n degrees of freedom always admits n
independent quadratic first integrals in involution. This assertion was first advanced as a hypothesis
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by A. Wintner [10] and proved by J.Williamson in [7]. Another proof, different in form from that
in [7], is given in [8]. These proofs are based on using the real normal forms of linear Hamiltonian
systems. The meaning of Theorems 1 and 2 is that a complete set of quadratic involutive integrals
is presented without preliminarily finding the eigenvalues and eigenvectors of the linear system.

Consideration was also given to the problem of polynomial and rational integrals of the linear
system of differential equations of general form (see, e. g., [11, 12] and references therein).

Remark. Take the integral Φ−m as a Hamiltonian. The Hamiltonian system

Γẋ = −∂Φ−m

∂x

has the following explicit form:

ẋ = (−1)m+1(Γ−1P )2m+1x. (2.5)

If λ1, . . . , λ2n (λn+j = −λj) are the eigenvalues of the Hamiltonian system (1.1), then

(−1)mλ2m+1
1 , . . . , (−1)mλ2m+1

2n

are the eigenvalues of the linear system (2.5) with the same eigenvectors.

3. INTEGRAL CONES AND SINGULAR SUBSPACES

The set

K = {x | Φm(x) = 0, m ∈ Z} (3.1)

will be a cone in 2n-dimensional phase space. Let us call it an integral cone. It is invariant under
the phase flow of the linear Hamiltonian system (1.1).

We recall that the linear subspace Π is called the singular subspace of the cone K if Π lies
entirely in the cone K. There is the well-known inequality

dim Π � min(i−, i+), (3.2)

where i− and i+ are the indices of inertia of the quadratic form (1.3). Indeed, the right-hand side
of (3.2) is the dimension of the maximal completely singular subspace of the cone

{x ∈ R
2n | H(x) = Φ0(x) = 0} ⊃ K

(see, e. g., [13]).
The linear subspace Π ⊂ R

2n is called isotropic if

(Γξ, η) = 0

for all ξ, η ∈ Π. The isotropic subspace of the maximum possible dimension (equal to n) is called
Lagrangian subspace.

Theorem 3. Through each point a ∈ K there passes a singular subspace Π(a) of the cone (3.1)
such that

1. Π(a) contains a sequence of points

Λma, m ∈ Z; Λ = P−1Γ, (3.3)

2.

dim Π(a) = r = rank[. . . , Λma, . . .],

3.

dim Π(a) � min(i−, i+), (3.4)

4. Π(a) is invariant under the phase flow of the Hamiltonian system (1.1),
5. Π(a) is an isotropic subspace.
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32 KOZLOV

Remarks. 1◦. If a = 0, then the rank of the matrix (3.4) is zero and the singular subspace is a
zero subspace.

2◦. Since m runs over a sequence of all integer numbers, the operator Λ in (3.3) can be replaced
with the operator

M = Λ−1 = Γ−1P.

This operator corresponds to the Hamiltonian system (1.1) solved for ẋ: ẋ = −Mx. In the
formula (3.4) for the dimension of the singular subspace the operator Λ can also be replaced
with M .

3◦. The rank of the matrix

[. . . , Mma, . . .]

plays a key role in the theory of controllability of linear systems.
4◦. Since the matrix Λ satisfies its characteristic equation (of degree 2n), the infinite matrix

in (3.4) can be replaced with the quadratic matrix

[a, Λa, . . . , Λ2n−1a] (3.5)

of order 2n. By the way, since the system (1.1) is Hamiltonian, the characteristic polynomials of
the matrices Λ and M do not contain odd degrees. In particular, the rank of the matrix (3.5) does
not exceed n. This fact also follows from conclusion 3 because min(i−, i+) � n. We also note that
in (3.5) the dimension of phase space 2n can be replaced with the degree of the minimal polynomial
of the matrix Λ. Thus, the dimension of the singular subspace from Theorem 3 does not exceed the
minimal polynomial of the matrix Λ (or M).

Proof (of Theorem 3). 1) If a ∈ K, then obviously Λma ∈ K for all integer m. We show that the
linear span Π(a) of the set of vectors (3.3) is a singular subspace of the integral cones (3.1). Set

as = Λsa, s ∈ Z (3.6)

and let

〈ξ, η〉 = (PΛmξ, Λmη).

According to the assumption, ap ∈ K and aq ∈ K for all integer p, q. We have to show that their
linear linear combination

λap + μaq

also belongs to the integral cone K. This means that

〈λap + μaq, λap + μaq〉 = 2λμ〈ap, aq〉

must be equal to zero.
We have

〈ap, aq〉 = (PΛm+pa, Λm+qa).

This is equal, up to sign, to
(
(ΓP−1)sP (P−1Γ)s+ra, a

)
, (3.7)

where s = m + q and r = p − q.
The product of the operators in (3.7) is

Γ(P−1Γ)l,

where l = 2s + r − 2. If l is even (and equal to 2k), then
(
Γ(P−1Γ)2ka, a

)
= (−1)k

(
Γ(P−1Γ)ka, (P−1Γ)ka

)
= 0,

since Γ is a skew-symmetric operator.
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Now let l = 2k + 1. Then
(
Γ(P−1Γ)2k+1a, a

)
= (−1)k+1

(
P (P−1Γ)k+1a, (P−1Γ)k+1a

)
= 0,

because (P−1Γ)k+1a ∈ K.

2) Since Π(a) is the linear span of the set of vectors (3.3), its dimension is equal to the number
of linearly independent vectors from the sequence (3.3). But this number obviously coincides with
the rank of the infinite matrix (3.4).

3) Conclusion 3 of the theorem follows from inequality (3.2) for the dimension of maximal
singular subspaces.

4) To prove the invariance of Π(a), it suffices to show that at points Λma, m ∈ Z, the Hamiltonian
vector field also lies in Π(a). But this field coincides with the vector

M(Λma) = Λm−1a

from the sequence (3.3). This vector belongs to the cone K and hence to the subspace Π(a)
(according to conclusion 1).

5) The isotropy of the subspace Π(a) means that

(Γap, aq) = 0

for all ap, aq ∈ Π(a) (defined by (3.6)). Since

(Γap, aq) =
(
Γ(P−1Γ)pa, (P−1Γ)qa

)
= (−1)q

(
Γ(P−1Γ)la, a

)
,

l = p + q, this expression is equal to zero (according to the arguments in the proof of conclusion 1).
�

Example. Let a be the eigenvector of the Hamilton operator M = Γ−1P with the real eigenvalue
λ �= 0. We show that a ∈ K. Indeed, Eqs. (1.1) admit the solution

x(t) = ae−λt,

which tends to zero as t → +∞ or t → −∞. Since Φm are first integrals, Φm

(
x(t)

)
= c = const.

Passing to the limit as t → +∞ or t → −∞, we find that c = 0.

In this example, the matrix (3.4) has the form

[. . . , λ−ma, . . .].

Its rank is 1. Hence the invariant isotropic subspace Π(a) coincides with the straight line {x = μa,
μ ∈ R}.

These observations can be generalized. Here is a simple statement which extends the classical
Kelvin theorem.

Theorem 4. If the dimension of Π(a) is odd for some a ∈ K, the equilibrium of the Hamiltonian
system is unstable.

Indeed, let

ż = Az, z ∈ Π

be the restriction of the linear system to the invariant subspace Π. Since the initial Hamiltonian
system has no nontrivial equilibria, |A| �= 0. Consequently, the characteristic polynomial |A − λE|
of odd degree has a nonzero real root λ. Due to the property of being Hamiltonian, the system (1.1)
also has the characteristic root −λ. Since one of the numbers λ, −λ is positive, the Hamiltonian
system is unstable.
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4. ESTIMATE OF THE DEGREE OF INSTABILITY

Let L denote an isotropic singular subspace of the integral cone K which is invariant under the
phase flow of the Hamiltonian system (1.1). As we have seen in Section 3, these subspaces form
whole families. Let L denote the set of all such subspaces.

The following estimate holds:

u � max
L∈L

dim L. (4.1)

Inequality (1.5) is a particular case of this well-known result, when the cone {H(x) = 0} is taken
as an integral cone. Inequality (4.1) will become rougher if one assumes that L contains all isotropic
singular subspaces of the cone K (without assuming their invariance). In this case, inequality (4.1)
will be purely geometrical.

To prove inequality (4.1), we consider the linear subspace L of solutions of Hamilton equations
which tend to an equilibrium point as t → −∞. This subspace is obviously invariant under the
phase flow of the linear system (1.1). We show that it is isotropic. For this purpose, we use the
Poincaré theorem:

Ω
(
ξ(t), η(t)

)
=

(
Γξ(t), η(t)

)
= const (4.2)

for any two solutions of ξ(·) and η(·) of the Hamilton equations (1.1). Now letting time t tend
to −∞, we obtain a zero constant in (4.2). Its singularity is proved in a similar way.

Thus, on the isotropic invariant singular subspace L of the integral cone K the equality u = dim L
is satisfied. Since L ∈ L, inequality (4.1) follows immediately. This proves the theorem.

Theorem 5. If the spectrum of the Hamiltonian system (1.1) is simple, then

1. the cone K is a union of 2k subspaces of the same dimension, where k is a general number
of real pairs and complex quadruples of eigenvalues,

2. among these subspaces there is a u-dimensional unstable subspace filled with trajectories of
the Hamiltonian system (1.1), which tend to the origin of coordinates as t → −∞.

If k = 0, then the cone K reduces to the only invariant subspace of zero dimension (i. e.,
K = {0}).
Corollary 1. u = max

a∈K
dim Π(a).

Corollary 2. For all a ∈ K

u � dim Π(a). (4.3)

Although inequalities (4.2) and (4.3) are opposite in character, there is no contradiction here,
since (by Theorem 3) the subspaces Π(a) belong to a set of all possible singular, isotropic and
invariant subspaces.

The proof of Theorem 5 uses the normal form method, due to Williamson, which has already
been employed in the proof of Theorem 2. According to Section 2, the independent quadratic
integrals

Φ0, Φ−1, . . . , Φ−n+1 (4.4)

are represented in the form of linear combinations of partial Hamiltonians. Moreover, the system
of algebraic equations

Φ0 = Φ−1 = . . . = Φ−n+1 = 0 (4.5)

is equivalent to a system that is obtained by equating to zero (in the notation of Section 2) pq
in case (a) (which corresponds to a pair of real eigenvalues), p2 + q2 in case (b) (a pair of purely
imaginary roots) and p1q1 + p2q2, p1q2 − p2q1 in case (c) (complex quadruple of eigenvalues).
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LINEAR HAMILTONIAN SYSTEMS 35

Since the integrals (4.4) are pairwise in involution, all the other quadratic integrals Φm are linear
combinations of the integrals (4.4). Thus, the integral cone K is defined by the system of Eqs. (4.5).

Further, equating to zero the partial Hamiltonian in case (a), we obtain the solutions

{p = 0} or {q = 0}, (4.6)

which yield two invariant straight lines for this partial Hamiltonian. In case (b) we obtain the origin
of coordinates p = q = 0. In case (c) we have the system of equations

p1q1 + p2q2 = 0, p1q2 − p2q1 = 0,

which (as in case (a)) has two solutions

{p1 = p2 = 0} or {q1 = q2 = 0}. (4.7)

Each of them is a plane in four-dimensional space which is invariant under the phase flow given
by the corresponding partial Hamiltonian. They are both filled with trajectories approaching the
origin; one as t → +∞ and the other as t → −∞.

The singular isotropic invariant subspaces from Theorem 5 are obtained as direct sums of the
straight lines (4.6) or the planes (4.7). The number of different possible combinations is 2k, where
k is the number of real pairs and complex quadruples in the spectrum of the linear Hamiltonian
system. All these subspaces have obviously the same dimension, and among them there is exactly
one unstable invariant subspace of dimension u. This proves the theorem.

5. STABILITY CONDITIONS

Theorem 6. If K = {0}, then the equilibrium x = 0 of the Hamiltonian system (1.1) is stable. If
the equilibrium x = 0 is stable and there are no equal numbers among the characteristic numbers
of the system (1.1), then K = {0}.

As is well known, the absence of multiple roots of a characteristic polynomial can be determined
without finding them.

Proof (of Theorem 6). Suppose the integral cone K reduces to one point x = 0. Then
∑

αmΦ2
m, m ∈ Z, (5.1)

can be taken as a Lyapunov function, where αm is a sequence of positive numbers which rapidly
tends to zero as |m| → ∞ (in order to ensure convergence of the series (5.1)).

Conversely, let the equilibrium x = 0 be stable and the spectrum of the Hamiltonian system be
simple. In this case, u = 0 and hence (by Theorem 5) the dimension of the subspaces forming the
integral cone K is zero. But then K = {0}, which proves Theorem 6. �

As an illustrative example, we consider a Hamiltonian system of the form (1.1) with n = 4. Let

Γ =

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

(5.2)

and let the Hamiltonian be represented by the diagonal matrix

P = diag(λ1, 1, −λ2, −1). (5.3)

Here, λ1 and λ2 are positive numbers. Hence the signature of the Hamiltonian as a quadratic form
is + +−−. It can be seen from (5.2) that x1, x3 and x2, x4 serve as canonically conjugate variables.
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The characteristic polynomial of the Hamiltonian system λ4 − (1 + λ1λ2)λ
2 + λ1λ2 has no

multiple roots if

λ1λ2 �= 1. (5.4)

It is easy to calculate that (by Theorem 1) the second quadratic integral is

Φ =
1
2

(
1
λ2

x2
1 + x2

2 −
1
λ1

x2
3 − x2

4

)
.

They are independent if condition (5.4) is satisfied (as predicted by Theorem 2).
The integral cone K = {H = Φ = 0} contains the point

x1 =
1

√
λ1

, x2 = 1, x3 =
1

√
λ2

, x4 = 1, (5.5)

which we denote (as above) by a. The vector Λa has the components

1
λ1

√
λ2

, 1,
1

λ2

√
λ1

, 1. (5.6)

Comparing (5.5) and (5.6), we see that the rank of the matrix (3.4) is 2 (if condition (5.4) is
satisfied). Thus, in a typical situation there is a two-dimensional isotropic invariant plane Π(a)
passing through the point (5.5). Conversely, if λ1λ2 = 1, then the invariant subspace passing
through (5.5) is one-dimensional.

Thus, if condition (5.4) is satisfied, the instability of equilibrium x = 0 follows from the general
theorem (Theorem 6).

By the way, the plane Π(a) can be given by the equations

x2 − x4 = 0,
√

λ1x1 −
√

λ2x3 = 0.

As coordinates on this invariant plane one can choose the linear combinations

u = x2 + x4, v =
√

λ1x1 +
√

λ2x3.

In terms of these variables the Hamilton equations on Π(a) become

u̇ = −u, v̇ = −
√

λ1λ2v. (5.7)

All phase trajectories tend to the origin of coordinates as t → +∞. From (5.7) we immediately
obtain two characteristic roots of the initial Hamiltonian system: −1 and −

√
λ1λ2.

In order to obtain the second invariant Lagrangian singular plane of the Hamiltonian system
with trajectories emanating from the origin of coordinates, one should take as the point x = a, for
example, a point with coordinates

x1 =
1

√
λ1

, x2 = −1, x3 = − 1
√

λ2

, x4 = 1.

Now as the matrix Γ we take, instead of (5.2), the skew-symmetric matrix
⎛

⎜
⎜
⎜⎜
⎜⎜
⎝

0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

⎞

⎟
⎟
⎟⎟
⎟⎟
⎠

and leave the matrix of the Hamiltonian unchanged as in (5.3). Here, the coordinates x1, x2 and
x3, x4 serve as pairs of canonically conjugate variables.
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In this case, the integral 2Φ1 from the chain (2.1) takes the form

− 1
λ1

(
λ1x

2
1 + x2

2

)
+

1
λ2

(
λ2x

2
3 + x2

4

)
.

If condition (5.4) is satisfied, then the integrals H and Φ1 are functionally independent (as they
should be according to Theorem 2). Now the cone K degenerates to the origin and, according to
Theorem 6, the equilibrium point x = 0 is stable.

6. APPLICATION TO LINEAR SYSTEMS WITH GYROSCOPIC FORCES

As already noted in Section 1, the equations of motion (1.7) can be represented in the
Hamiltonian form (1.1), and the operators Γ and P have the form (1.9). This observation allows
us to apply the general results from Sections 2–4.

We briefly discuss the question of quadratic first integrals of the linear equations (1.7). To do
so, we should use the formula (2.1) and the following formulae for the inverse operators (1.9):

Γ−1 =

⎛

⎝0 −E

E G

⎞

⎠, P−1 =

⎛

⎝W−1 0

0 E

⎞

⎠.

For m = 0, we obtain, of course, an energy integral, and for m = 1 the quadratic integral

1
2
(
Gx + ẋ, W−1(Gx + ẋ)

)
+

1
2
(x, x), (6.1)

was found previously in [14]. Here, the parentheses (, ) denote the Euclidean scalar product in
configuration space R

n = {x}, which has been induced by the standard form of the kinetic energy
of the system.

For m = −1 we obtain the following quadratic integral of Eqs. (1.7) from the formula (2.1):

1
2
(Wx + Gẋ, Wx + Gẋ) +

1
2
(Wẋ, ẋ). (6.2)

This integral was found in [15]. The integrals (6.1) and (6.2) were used in [14–16] to find conditions
for stability of the equilibria of systems with gyroscopic forces.

We present formulae for two new quadratic integrals corresponding to the values m = 2 and
m = −2 from the sequence (2.1). For m = 2 we obtain the first integral

1
2

(
W−1

(
(GW−1G − E)x + GW−1ẋ

)
, (GW−1G − E)x + GW−1ẋ

)
+

1
2
(
W−2(Gx + ẋ), Gx + ẋ

)
.

The value m = −2 corresponds to the quadratic integral

1
2
(
W (Wx + Gẋ), Wx + Gẋ

)
+

1
2
(
GWx + (−W + G2)ẋ, GWx + (−W + G2)ẋ

)
.

Note that all first integrals obtained in this way have the same signature and, moreover, all their
standard pairwise Poisson brackets are equal to zero.

The question of their functional independence is more complicated. For example, if G = 0, then

Φm =
1
2
[
(W mẋ, ẋ) + (W m+1x, x)

]
, m ∈ Z. (6.3)

If all eigenvalues of the operator of the potential energy W are different from each other, then the
sequence (6.3) has n functionally independent quadratic forms, for example, Φ0 = H, Φ1, . . . , Φn−1.
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7. LINEAR SYSTEMS WITH A QUADRATIC INTEGRAL

As mentioned previously in Section 1, nondegenerate linear systems of the general form

ẋ = Ax, x ∈ R
n (7.1)

which admit a nondegenerate quadratic first integral

f =
1
2
(Px, x), det P �= 0 (7.2)

are reduced to Hamiltonian form. The nondegeneracy of the linear systems means that det A �= 0.
In other words, the linear systems admit no nontrivial equilibrium states.

Let us introduce a closed nondegenerate 2-form

Ω(ξ, η) = (Γξ, η), Γ = PA−1. (7.3)

As shown in [1], the pair (Ω, R
n) is a symplectic space. In particular, n is even. The main problem

was to prove the skew-symmetry of the operator Γ.
The fact that the linear system (7.1) is Hamiltonian relative to the symplectic structure (7.3)

follows from the following obvious formulae:

Ω(ẋ, ·) = (Γẋ, ·) = (ΓAx, ·) = (Px, ·) = df(·).
The quadratic integral (7.2) (taken with reversed sign) plays the role of the Hamiltonian.

Infinite-dimensional versions of this result are discussed in [17].
An immediate corollary of Theorem 1 is

Theorem 7. Equation (7.1) admits a family of quadratic first integrals

Φm =
1
2
(PA−mx, A−mx), m ∈ Z, (7.4)

where

1) all Φm are nondegenerate quadratic forms and their signatures coincide with that of the
integral (7.2),

2) the functions (7.4) are pairwise in involution (relative to the symplectic structure (7.3)).

Since m is any integer, we may omit the sign − in (7.4). For m = 0 we obtain the quadratic
integral (7.2). The operator Λ from Section 1 coincides with the operator A−1.

By the way, the form of the first integral (7.4) suggests another way of proving the invariance
of these quadratic forms. Indeed,

Φ−1 =
1
2
(PAx, Ax) =

1
2
(Pẋ, ẋ), (7.5)

where the derivative ẋ also satisfies the linear differential equation (7.1):

(ẋ)· = Aẋ. (7.6)

Since Φ0 is a first integral of the initial system (7.1), it follows that (7.5) is a first integral of the linear
system (7.6). Applying this technique sequentially, we obtain a chain of quadratic integrals Φ−m,
m � 0. To prove the invariance of the functions Φm with negative m, we can use the following
interesting fact.

Lemma. If the nondegenerate quadratic form (7.2) is a first integral of the nondegenerate linear
system (7.1), then it is a first integral of the linear system

ẋ = A−1x, x ∈ R
n. (7.7)
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Indeed, by virtue of the system of differential equations (7.7) the derivative of (7.2) is equal to

1
2
(PA−1x, x) +

1
2
(Px, A−1x).

But this sum vanishes, since the operator P is symmetric and PA−1 is skew-symmetric.
These simple observations can be generalized. The following simple theorem holds.

Theorem 8. If x 	→ f(x) is a first integral of the linear linear system (7.1), then for all integer
m � 0 the functions

x 	→ f(Amx) (7.8)

are first integrals of the same system.

In particular, if f is a homogeneous polynomial, then for all m each of the integrals (7.8) is
a homogeneous polynomial of the same degree. The issue of their functional independence is a
separate problem. The property of involutiveness of the integrals (7.8) of degree � 3 is worth
considering only for linear Hamiltonian systems.

8. FINITE-DIMENSIONAL QUANTUM SYSTEMS

The evolution of a quantum system is described by the Schrödinger equation

i�
∂ψ

∂t
= Ĥψ (8.1)

in a complex Hilbert space H = {ψ}. The vectors ψ are usually called wave functions. They describe
the states of the quantum system and obey the normalization condition

〈ψ, ψ〉 = 1, (8.2)

where 〈, 〉 is the Hermitian scalar product in H. The linear Hamilton operator Ĥ is a self-adjoint
(Hermitian) operator which maps the Hilbert space H into itself. The parameter � is the Planck
constant; in the atomic system of units, which will be used throughout the rest of this paper, � = 1.

The Hermitian property of the operator Ĥ implies invariance of the sphere (8.2) under the flow
of the Schrödinger equation. The vectors ψ and −ψ specify the same state of the system. Therefore,
the projective space that is obtained from the sphere (8.2) by identifying antipodal points is in fact
the phase space of the quantum system.

The physical quantities (observables) correspond to the Hermitian operators Λ̂ : H → H. The
measurement of the observable quantity reduces to determining the eigenvalues (the spectrum) of
the operator Λ̂. A characteristic feature of quantum mechanics is the indeterminacy of measurement
results.

Let the spectrum of the operator Λ̂ be discrete (this is the main case for us) and {ej}∞1 be the
orthonormal basis in H, consisting of eigenvectors. Also, let λj be the corresponding real eigenvalues.
Set

ψ =
∑

ψjej .

The probability that the quantity Λ̂ in the state ψ takes the value λk is equal to |ψk|2. It follows
from condition (8.2) that

∑
pk =

∑
|ψk|2 = 1.

In particular, in the state ψ = ek the quantity Λ̂ takes almost surely the value λk.

The average value (mathematical expectation) of the quantity Λ̂ in the state ψ is equal to

〈Λ̂〉ψ =
∑

λkpk =
∑

λk|ψk|2 = 〈Λ̂ψ, ψ〉. (8.3)
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This value is time invariant if and only if the operators Λ̂ and Ĥ commute. In this case, the
quadratic form (8.3) is a first integral (conservation law) for the Schrödinger equation.

Consider the case where H is a finite-dimensional complex space with the Hermitian scalar
product 〈, 〉. It can be identified with the space C

n endowed with the standard scalar product

〈ϕ, ψ〉 =
n∑

k=1

ϕkψk.

The Schrödinger equation (8.1) is a linear system of ordinary differential equations in C
n. Separating

into real and imaginary parts, we arrive at the real space of doubled dimension, and Eq. (8.1)
becomes a usual linear Hamiltonian system. For a more detailed discussion of this and related
issues, see, e. g., [18, 19].

Set ψ = x + iy (x, y ∈ R
n) and Ĥ = A + iB, where A and B are linear operators in R

n. The
self-conjugacy condition of the operator Ĥ gives two conditions:

A∗ = A and B∗ = −B.

Here, ∗ is the operation of conjugation relative to the “standard” scalar product in R
n:

(x, y) =
∑

xkyk.

Thus, the Schrödinger equation is equivalent to the following linear system in R
2n:

ẋ = Bx + Ay, ẏ = −Ax + By. (8.4)

It can be represented in the Hamiltonian form (1.1):
⎛

⎝ 0 E

−E 0

⎞

⎠

⎛

⎝x

y

⎞

⎠

.

= −

⎛

⎝A −B

B A

⎞

⎠

⎛

⎝x

y

⎞

⎠ .

Here,

Γ =

⎛

⎝ 0 E

−E 0

⎞

⎠

is the symplectic identity matrix and the matrix

P =

⎛

⎝A −B

B A

⎞

⎠ (8.5)

is symmetric. The Hamiltonian

H(x, y) =
1
2
(Ax, x) + (Bx, y) +

1
2
(Ay, y) (8.6)

is half the average value of the Hamilton operator 〈Ĥψ, ψ〉 represented in real variables.
In addition to the integral (8.6), the Hamiltonian system (8.4) admits the quadratic integral

2f = 〈ψ, ψ〉 = (x, x) + (y, y).

This integral can be taken as a Hamiltonian and the linear equations (8.4) can be represented in
Hamiltonian form. But in this case the symplectic structure will be nonstandard (in other words,
the variables x and y will not be canonically conjugate variables).

We also assume a nondegeneracy condition of the Hamilton operator:

det Ĥ �= 0. (8.7)

This complex inequality |A + iB| �= 0 is equivalent to the nondegeneracy condition of the real
operator (8.5). Condition (8.7) implies that, when ψ(t) = const �= 0, the initial Schrödinger equation
has no nontrivial stationary states.

We can apply the general reasoning from Section 2 to the real linear system (8.4) in R
2n.
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Theorem 9. The Schrödinger equation admits a family of integrals

Θm = 〈Ĥmψ, ψ〉, m ∈ Z, (8.8)

and the functions Θm with odd m are pairwise in involution (relative to the standard symplectic
structure in R

2n).

It is clear that the operator Ĥm is Hermitian and obviously commutes with the Hamilton
operator Ĥ. Therefore, the quadratic forms (8.8) are first integrals of the Schrödinger equation.

The simple fact that the functions (8.8) are invariant can be shown using the reasoning from
Section 7. Indeed, the linear Schrödinger equation ψ̇ = −iĤψ admits the quadratic integrals

〈Ĥψ, ψ〉 and 〈ψ, ψ〉.
Consequently, it admits the integrals

〈Ĥ(−iĤ)kψ, (−iĤ)kψ〉 and 〈(−iĤ)lψ, (−iĤ)lψ〉
with integer k and l. The first of them gives the integral (8.8) with odd m; and the second, with
even m.

The point of interest in Theorem 9 is the involutiveness of the integrals (8.8) with odd m. For
this, one should pass to the “realified” phase space R

2n and use Theorem 1. In the notation of
Section 2 the integrals (2.1) have the form

1
2
(
P (ΓP )mz, (ΓP )mz

)
, z =

⎛

⎝x

y

⎞

⎠ . (8.9)

Here, we have used the obvious equality Γ−1 = −Γ. The quadratic form (8.9) is equal to
1
2
(Mz, z), M = (−1)mP (ΓP )2m.

Further,

(ΓP )2 =

⎛

⎝ B2 − A2 AB + BA

−AB − BA B2 − A2

⎞

⎠ = −P 2.

Hence,

M = P 2m+1. (8.10)

Let again Ĥ = A + iB. Set

(A + iB)k = Ak + iBk, k ∈ Z.

By induction on k one can easily prove the equation
⎛

⎝A −B

B A

⎞

⎠

k

=

⎛

⎝Ak −Bk

Bk Ak

⎞

⎠ . (8.11)

If ψ = x + iy, then

(A + iB)2m+1(x + iy) = (A2m+1x − B2m+1y) + i(A2m+1y + B2m+1x).

Consequently, according to (8.10) and (8.11),

〈Ĥ2m+1ψ, ψ〉 =
1
2
(P 2m+1z, z).

After these observations, the involutiveness of the quadratic forms Θm with odd numbers follows
from conclusion 2 of Theorem 1. This proves the theorem.

We briefly discuss the issue of functional independence of the involutive set of integrals from
Theorem 9. Let λ1, . . . , λn be the real eigenvalues of the Hermitian operator Ĥ.
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Theorem 10. If there are no equal numbers among λ1, . . . , λn, then the first integrals Θ1, . . . , Θ2n−1
are functionally independent.

This assertion is an analog of the general theorem (Theorem 2). Under the same assumptions
the integrals Θ0, . . . , Θ2n−2 are also independent. Moreover, they are expressed in terms of
Θ1, . . . , Θ2n−1 and hence are also in involution.

We make a few remarks.
1◦. Among quadratic integrals generated by Hermitian operators commuting with a Hamilton

operator, there are always n functionally independent integrals whose pairwise Poisson brackets
are equal to zero. This simple assertion is proved by reducing the matrix of the Hamilton operator
using an appropriate unitary transformation to the diagonal form diag(λ1, . . . , λn).

2◦. The linear Schrödinger equation can admit homogeneous polynomials of degree > 2 as first
integrals. These integrals are irreducible, that is, they are not expressed in terms of integrals of
lower degree. For example, let n = 2, ψ = ψ1e1 + ψ2e2 and let the Hamilton operator have the form

Ĥ = diag(λ, −2λ), λ �= 0.

In this case, we have an irreducible integral of degree 3

ψ2
1ψ2.

The existence of integrals of higher degrees is due to resonances between the eigenvalues of the
Hamilton operator.

Conversely, if

k1λ1 + . . . + knλn �= 0

for all integer kj such that
∑

k2
j �= 0, then any integral of the Schrödinger equation is a function

of a complete set of quadratic involutive integrals which are generated by commuting Hermitian
operators.

3◦. In the infinite-dimensional case, the situation is much more complicated. For example, for
systems with configuration space in the form of a multidimensional torus (with periodic boundary
conditions) the existence of nontrivial polynomial (in derivatives) Hermitian differential operators
commuting with the Hamilton operator is a very rare phenomenon [20]. Topological obstructions
to the existence of such operators are discussed in [21].

The simple reasoning above may be useful in analyzing the complete integrability of infinite-
dimensional quantum systems with a discrete spectrum. However, the notion of a completely
integrable quantum system requires a more precise definition (for a discussion of this and related
issues, see [22]). Despite the fact that there is no generally accepted reasonable definition of
an integrable (“regular”) quantum system, there is an extensive literature on various aspects of
quantum chaos (devoted to the study of “irregular” quantum systems). See, for example, [23] and
references therein.

APPENDIX. ON THE ROOTS OF A CHARACTERISTIC EQUATION

Let

f(λ) = det(P + λΓ)

be a characteristic polynomial of the linear system (1.1). The coefficients of the polynomial depend
polynomially on the elements of the matrices of the operators P and Γ. As mentioned previously
in Section 1, f is a polynomial of degree 2n that contains no odd degrees of λ. In particular, the
solution of the characteristic equation f(λ) = 0 reduces to that of an algebraic equation of degree n

g(μ) = 0, μ = λ2

with the same coefficients: g(λ2) = f(λ).
We consider a typical case where the characteristic equation has no multiple roots. In other

words, the discriminant of the polynomial f is different from zero.
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Let the Hamiltonian system (1.1) be stable: all its solutions are bounded. In terms of the
characteristic equation this property means that all roots of the polynomial g are real and negative.
In terms of the family of quadratic integrals of the system (1.1) (from Theorems 1 and 2) this
means that the integral cone K reduces to one point x = 0. To put it differently: for almost all
values f0, . . . , fn−1 the nonempty invariant subset of the phase space

{x ∈ R
2n : Φ0(x) = f0, . . . ,Φ−n+1(x) = fn−1} (1)

is a union of n-dimensional tori carrying quasi-periodic motions with constant frequencies

ω1 =
√

−μ1, . . . , ωn =
√
−μn.

The numbers ±iω1, . . . , ±iωn obviously coincide with the roots of the characteristic equation f = 0.
The assertion about tori is a geometric version of the classical Liouville theorem of completely
integrable Hamiltonian systems (see, e. g., [9]).

To calculate the roots, one uses various iteration methods. For an interesting discussion of
nuances of this approach, see the book [24].

On the other hand, as is well known, for n � 4 the roots of the characteristic equation are
expressed in terms of radicals. And for n = 5 the roots of the “reduced” equation g(μ) = 0 are
expressed in terms of its coefficients by elliptic functions. A detailed discussion of this and related
issues can be found in the book [25] (especially in the Russian edition, which contains valuable
additions by J.-P. Serre, V. I.Arnold and A. N.Tyurin). For n > 6 the analytical properties of the
roots of algebraic equations are still poorly understood (for n = 6 there is an advanced theory; see
the appendix in [25, pp. 320–324]).

It turns out that the frequencies ω1, . . . , ωn (and hence the roots of the characteristic equation)
can be found using topological considerations, as well as the operation of integrating (1-forms
over closed algebraic cycles on an n-dimensional invariant torus). To do this, it is convenient to
pass to action-angle variables in a neighborhood of the invariant torus (1) (more precisely, its
connected component). As is well known, this requires introducing n homologically independent
one-dimensional cycles Γ1, . . . , Γn on the n-dimensional invariant torus and integrating over these
cycles the 1-form

ω =
∑

i>j

Γijxj dxi.

Here, ‖Γij‖ is the skew-symmetric matrix of the operator Γ. It is clear that dω = Ω is a symplectic
structure in phase space.

More precisely, we define n action variables

Is =
1
2π

∮

Γs

ω, 1 � s � n. (2)

These variables are linearly expressed in terms of
f0, f1, . . . , fn−1,

which are constant of quadratic involutive integrals Φ0, Φ−1, . . . ,Φ−n+1. As is well known, the map

(f0, . . . , fn−1) 	→ (I1, . . . , In)

is invertible. Consequently, by merely performing simple algebraic operations one can be find f0 as
a function of the action variables:

f0 =
n∑

s=1

csIs.

Then, as is well known,
ω1 = c1, . . . , ωn = cn. (3)

As a result, we obtain the roots of the characteristic equation:
λ1,2 = ±ic1, . . . , λ2n−1,n = ±icn.
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Remark. A system of independent cycles on the torus can be chosen in different ways. Because
of this the uniformly changing angle variables on the invariant torus are defined up to a linear
unimodular transformation with integer coefficients. In particular, according to (3), the roots of the
characteristic equation are linear combinations of numbers ±iω1, . . . , ±iωn with integer coefficients.

This uncertainty can be eliminated by using continuity considerations. We illustrate this by
considering linear systems that are perturbations of a canonical system of Hamiltonian equations
with the Hamiltonian function

H =
ω1

2
(
p2
1 + q2

1

)
+ . . . +

ωn

2
(
p2

n + q2
n

)
. (4)

Here, the skew-symmetric operator Γ coincides with the symplectic unit (1.4). In particular,

ω =
n∑

s=1

ps dqs.

The discriminant of the characteristic polynomial is different from zero if there are no equal numbers
among ω1, . . . , ωn. We assume this condition to be satisfied.

It is easy to verify that the system of quadratic equations

Φ0 = f0, . . . ,Φ−n+1 = fn−1

is equivalent to the system

p2
1 + q2

1 = h1, . . . , p
2
n + q2

n = hn. (5)

Hence (according to (4)),

f0 =
ω1h1

2
+ . . . +

ωnhn

2
.

We choose the independent cycles Γs as follows:

ps =
√

hs cos ϕ, qs =
√

hs sinϕ, ϕ ∈ R, (6)

and treat the other variables p and q as fixed constants. By the formula (2),

Is =
1
2π

∮

Γs

ps dqs =
hs

2π

2π∫

0

cos2 ϕdϕ =
hs

2
.

Consequently, hs = 2Is and

f0 =
∑

ωsIs.

This implies that the roots of the characteristic equation are equal to ±iω1, . . . , ±iωn (in fact, this
has been obvious from the very beginning).

Now we shall continuously perturb the Hamiltonian (4). The invariant tori of the perturbed
system will be a continuous deformation of the torus (5). We can take the continuous perturbations
of the cycles (6) as independent cycles on these tori. The above general formulae will give us correct
values of the roots of the characteristic equation (at least until multiple roots of the characteristic
equation appear as the Hamiltonian system is perturbed).

We can look at all these problems from a different point of view. The integral torus (1) is
an n-dimensional real algebraic manifold, an intersection of n quadrics in 2n-dimensional phase
space R

2n. On these tori we can choose n homologically independent cycles in the form of closed
real algebraic curves.

Bearing in mind the above example of perturbation of the Hamiltonian system with the
Hamiltonian function (4), we can take the following algebraic curves as algebraic cycles:

Γs = {x ∈ R
2n : Φ0(x) = f0, . . . ,Φ−n+1(x) = fn−1;

q1 = . . . = q̂s = . . . = qn = 0}, s = 1, . . . , n,
(7)
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where the hat denotes omission of the corresponding variable. Here x = (p1, . . . , pn, q1, . . . , qn) are
the canonical coordinates. Then the integrals (2) become complete Abelian integrals: functions that
are rational in the entire phase space are integrated over the closed algebraic curves (7). It is well
known that to each real algebraic curve one can assign its Riemannian surface so that this curve is
a real cycle on this Riemannian surface.

For quadratic forms Φ0, . . . , Φ−n+1 of the most general form the genus of the Riemannian surface
is estimated from above by the number

2n−1(n − 2) + 1. (8)

In particular, when n = 1, the Riemannian surface is a two-dimensional sphere (and therefore the
Abelian integrals are expressed in terms of elementary functions), and when n = 2, we obtain either
a sphere or a two-dimensional torus. In the case of a torus the Abelian integrals are elliptic integrals.
In general, (8) seems to be an overestimate, since it does not take into account the specificity of
equations that define an n-dimensional algebraic torus.

Remark. By a suitable linear transformation the system can be reduced to canonical form with
the Hamiltonian function (4). After that, it is easy to find algebraic cycles of genus zero on the
invariant tori. However, we first need to know the roots of the characteristic equation to be solved!

The problem is to obtain in “explicit” form n homologically independent algebraic cycles, such
as (7), with the smallest possible genus (of course, without previously finding the roots of the
characteristic equation).

This leads us to the following conclusion: the roots of the algebraic characteristic equation are
expressed in terms of complete Abelian integrals of rational functions on Riemannian surfaces of
algebraic curves. Moreover, the parameters of these Abelian integrals depend rationally (and even
polynomially) on the elements of the matrices of the operators Γ and P .

This assertion can be viewed as an extension of the classical results, due to Hermite, Kronecker
and Brioschi, on solutions to equations of degrees 5 and 6. It can be made more precise in different
directions. In particular, one should obtain a more accurate estimate of the genus of the Riemannian
surface associated with the algebraic cycle (7). In addition, one should bear in mind that concrete
Abelian integrals on Riemannian surfaces of greater genus can be reduced to Abelian integrals on
Riemannian surfaces of smaller genus.
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23. Stöckmann, H.-J., Quantum Chaos: An Introduction, Cambridge: Cambridge Univ. Press, 1999.
24. Godunov, S. K., Modern Aspects of Linear Algebra, Providence,R.I.: AMS, 1998.
25. Klein, F., Lectures on the Icosahedron and the Solution of Equations of the Fifth Degree, Moscow: Nauka,

1989 (Russian).

REGULAR AND CHAOTIC DYNAMICS Vol. 23 No. 1 2018


