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Abstract—We consider the nilpotent left-invariant sub-Riemannian structure on the Engel
group. This structure gives a fundamental local approximation of a generic rank 2 sub-
Riemannian structure on a 4-manifold near a generic point (in particular, of the kinematic
models of a car with a trailer). On the other hand, this is the simplest sub-Riemannian structure
of step three. We describe the global structure of the cut locus (the set of points where geodesics
lose their global optimality), the Maxwell set (the set of points that admit more than one
minimizer), and the intersection of the cut locus with the caustic (the set of conjugate points
along all geodesics). The group of symmetries of the cut locus is described: it is generated by
a one-parameter group of dilations R} and a discrete group of reflections Zs X Zy X Zso. The
cut locus admits a stratification with 6 three-dimensional strata, 12 two-dimensional strata,
and 2 one-dimensional strata. Three-dimensional strata of the cut locus are Maxwell strata
of multiplicity 2 (for each point there are 2 minimizers). Two-dimensional strata of the cut
locus comnsist of conjugate points. Finally, one-dimensional strata are Maxwell strata of infinite
multiplicity, they consist of conjugate points as well. Projections of sub-Riemannian geodesics
to the 2-dimensional plane of the distribution are Euler elasticae. For each point of the cut locus,
we describe the Euler elasticae corresponding to minimizers coming to this point. Finally, we
describe the structure of the optimal synthesis, i.e., the set of minimizers for each terminal
point in the Engel group.
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1. INTRODUCTION

The Engel group M is a nilpotent four-dimensional Lie group, connected and simply connected,
which has Lie algebra L = span(Xy, X2, X3, X4) with the multiplication table

[X1, Xo] = X3, [X1, X3] = X4, [Xo, X3] = [X1, X4] = [Xo, X4] = 0.

This article studies the sub-Riemannian structure [1] on the Lie group M generated by the
left-invariant orthonormal frame X7, X5. This structure gives a nilpotent approximation [2] to a
generic rank two sub-Riemannian structure in four-dimensional space near a generic point.

In certain coordinates (z,y,z,w) on the Engel group M = R*, the nilpotent sub-Riemannian
problem is stated as follows:

T =y, Yy = ug, Z:—u12+u22, W=z,
q= (xayazaw) € ]R47 (u17u2) S ]R27

q(O) =dqo = (0707070)7 Q(tl) = (ajbylyzlywl))

t1
l:/ \/u%+u§dt—>min.
0
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910 ARDENTOV, SACHKOV

This paper has the following structure. In Section 1.1 we recall results on the problem obtained
in previous works [3-5]. In Section 1.2 we prove some simple preliminary results on the cut locus. In
Sections 2-6 we describe, respectively, the intersection of the cut locus with the sets {x = z = 0},
{z=0, >0}, {z=0}, {x =0, z> 0}, and {z = 0}. In Section 7 we sum up these results by
describing a global stratification of the cut locus. In Appendices A—C we prove technical lemmas
from Sections 2, 3, and 5.

1.1. Previously Obtained Results

This paper continues a series of works [3-5], where a detailed study of the sub-Riemannian
problem on the Engel group was started (in these works, instead of the coordinate w, we used the
coordinate v = w + y2/6). First we recall the main results of these works.

For each point gq; € M there exists an optimal trajectory (sub-Riemannian minimizer). Sub-
Riemannian geodesics are described by the Pontryagin maximum principle. Abnormal trajectories
are simultaneously normal, and their endpoints fill two rays

A ={qgeM|z=2z=w=0,sgny = £1}.

Geodesics are parametrized by Jacobi elliptic functions [9]. Projections of geodesics onto the
plane (z,y) are Euler’s elasticae [6, 7]. Small arcs of geodesics are optimal; however, large arcs are,
in general, not optimal. A point at which a geodesic loses its optimality is called a cut point. The
union of cut points along all geodesics is called the cut locus. The cut locus is one of the most
important characteristics of sub-Riemannian structures [2], and the main goal of this paper is its
description for the left-invariant sub-Riemannian problem on the Engel group.

A generic geodesic loses its optimality at a Maxwell point, i.e., a point where several geodesics
of the same length meet one another. Maxwell points are fixed points of discrete symmetries €', €2,

£* acting on the Engel group as follows:

51(%97 Z7w) = (xaya —Z,'w—{L’Z), (11)
52(%97 Z7w) = (_‘T?yv Z, W — IL’Z), (12)
54(%97 Z7w) = (_:1:7 -Y,z, —'IU). (13)

The subspaces M, ={qe M |z =0}, M, ={qe M |z=0} consist of fixed points of symme-
tries (1.1), (1.2), the cut locus is contained in the union of these subspaces (see Theorem 3 below).
The problem has also continuous symmetries — the one-parameter group of dilations given by

the flow of the vector field Xg = z 0 + 3w
z

0 0 ow

The main result of [3-5] is the explicit description of the cut time (see Theorem 1 below) and the
proof that there is a unique minimizer for each point ¢ € M N {zz # 0} (see Theorem 2 below).

2
x+y8y+ z

We have shown in [3] that the family of all extremal trajectories of the problem is parametrized
by the cylinder

C={AxeT;M|HXN=1/2} ={A=(0,c,a) |0 €5, c,a eR},
where H(X\) = ((\, X1)2 + (), X2)?)/2, A € T*M, is the maximized Hamiltonian of the Pontryagin

maximum principle; (6, ¢, ) are certain natural coordinates on the cylinder C'. The parametrization
of extremal trajectories is defined by the exponential map

Exp: N — M, N =C xRy,
EXp(V) =gt = ($t7ytyzt7wt)7 V= (A,t)

The function £ = ¢?/2 — o cos 6 is constant along extremal trajectories, and the cylinder C stratifies
according to its values:

C=U_,C;, Ci={\eC|a#0,E=—|al},
Ci={AeC|a#0,E € (—|al,|al)}, Cs={\eC|a#0,E=|al,c=0},
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MAXWELL STRATA AND CUT LOCUS IN THE SUB-RIEMANNIAN PROBLEM 911

Co={NeC|a#0,E € (|a],+x)}, Co={AeC|la=0, c#0},
C3={AeC|a#0,E=|a|,c#0}, Cr={ eC|la=c=0}.

Here, and throughout the remainder of the text, LI is a disjoint union. Denote the corresponding
subsets in the preimage of the exponential map: N; = C; x Ry.

An arbitrary extremal trajectory of the sub-Riemannian problem on the Engel group projects to
the plane (z,y) into an Euler elastica. Each subset C;, i =1,...,7, corresponds to a certain type
of Euler elasticae.

For the parametrization of trajectories for the subsets C (inflectional elasticae), C (noninflec-
tional elasticae) and C3 (critical elasticae), we introduce a set of elliptic coordinates A = (@, k, «).
The parameter k is a reparametrization of the first integral £. On the set C5 we have k = 1, this
set separates C7 and Cq, where k € (0,1). The remaining subsets C;, i = 4,...,7, (lines and circles
in the plane (z,y)) are parametrized by the coordinates A = (6, ¢, «). Notice that trajectories for
the case A € C4 U (5 are defined by formulas for A € C7, when sinf = 0, thus the cases Cy4, C5 are
not considered in this paper.

On the subsets N1, No, N3, we introduce a set of coordinates (p,T,0):

o =sgnay/lal,
(A\t)ENIUN; = p=lolt/2,  T=|o|(p+1t/2),
(A1) € Ny = p=|olt/(2k), 7 =lo|(p +t/2)/k.

Definition 1. The cut time tey(\) is the time when the extremal trajectory corresponding to the
covector X\ loses its global optimality:

teut(A) = sup {t > 0| Exp(\, s) optimal for s € [0,t]}.
The cut locus is the set Cut = { Exp(\,t) | A € C,t = teur(N) }.

Remark 1. If .yt (\) = oo, then the trajectory Exp(\, s) is optimal on the whole ray s € [0, 00).
In this case the nonstrict inequality s < tcut(A) should be understood as a strict one.

Theorem 1 ([5], Corollary 4.2). The cut time has the following explicit expression:

in (2pl(k), 4K (k 4K (k)/|o|, k € (0, ko],
Ve Oy tens () = min pz|(0|) (k) _ (k)/lo], & & (0, ko]
2pL(k)/|ol, k€ [ko, 1),
2K (k)k
Ve Oy teut(A) = ‘((7‘) ’
VA eC fe(N) = 27
6 cut = ,
Vel

YAEC5UC te(\) = +00

Here K (k) = fog \/l_dt is the complete elliptic integral of the first kind; pl(k) € (K(k), 3K (k))

k2sin?t
is the first positive root of the function f,(p,k)=dnpsnp+ (p— 2E(p)) cnp. The functions
snp,cnp,dnp are Jacobian elliptic functions with modulus k£ by default (since the modulus k

D
is constant along extremal trajectories), e.g., snp = sn(p, k); also E(p) = / dn? ¢ dt.
0

On the subsets Ny, Na the coordinates (p,7) are transformed, respectively, into (u1,usz) via
the formulas u; = amp, uo = am 7, where am is the elliptic amplitude, inverse function to the
incomplete elliptic integral of the first kind: F(amp) = p. Summing up, we use the following
coordinates for parametrization of the exponential map on subsets:

veE N UNy, v=(kui,us,0), (1.4)
Ve N?n V= (p77_70-)7 (15)
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Ve N67 V= (9767t)7 (16)
v € Ny, v=(6,1t). (1.7)
Explicit formulas for the exponential map Exp(\, t) for each subset N;, i = 1,...,7, are given in [5].

In [3] we showed that the vanishing of one of the coordinates z, z on geodesics is related to discrete
symmetries !, €2 of the exponential map. The group of all discrete symmetries {Id,e!,... "} is
isomorphic to the group of symmetries of parallelepiped Zs X Zy X Zo. Explicit expression of the
symmetries !, €2, ¢* is presented above in (1.1)-(1.3). The action of the symmetries !, €2, ¢* in

the preimage NN is expressed as follows:

51(9,C,Oé,t) = (eta_ctaavt)v (18)
e2(0,c,a,t) = (=0, ¢y, t). (1.9)
40, c,a,t) = (0 + 7, ¢, —a,t). (1.10)

Conditions of invariance of points in the preimage of the exponential map w.r.t. the symmetries
e, €% are given, respectively, by the equalities ¢y2 =0 and sinf; 5 = 0. On the subsets N;,i =

1,...,7, in coordinates (1.4)—(1.7), these conditions are described in Table 1.

Table 1. Conditions of invariance of points w.r.t. the action of e',£2 in N.

Ve Nl Nl NQ N3 N6 N7
elw)y=v cosus =0 1% %) %) Ny
2(v)=v sinug=0 sinugcosug =0 T7=0 20+ct=2mn, sinf=0

newz

In the preimage of the exponential map, optimal trajectories correspond to the set
N={(\t)eN |t <ta(N)}.
After having excluded the initial point gy, we get the following set of terminal points ¢;:
M= {(:E,y,z,w) eRY |22+ 2+ 22+t # 0}.
Below we mean that ¢; = (z,y, z,w) € M.

According to the action of the main symmetries ¢!, 2, the subsets M , N decompose into the
following subsets:

M=MUM, N=NUN,

M ={qge M |xz=0,2>+y* + 2* + w® # 0}, M:{q€M|mz;&O},
N ={(\t) € N |t =teu(N) or ¢;josinby g = 0,t < teur(N)},

N = {(\t) € N |t < tew(N),crjasinb s # 0}

Theorem 2 ([5], Corollary 3.21). The map Exp: N — M is a diffeomorphism.

1.2. Preliminary Results on the Cut Locus

The set N’ consists of cut points and fixed points of the symmetries €', £2:

N’ = Ny UFIX, FIX = FIX! UFIX? U FIX'2,
Newt = {(\ 1) €N |t =tet(N)}, FIX'? = {v € N; | sinf = 0},
FIX' = {(\,t) € N\FIX" | t < teue(N), e'(N ) = (N, 1)},  i=1,2.
Obviously, Cut = Exp(N¢yt).
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The set M’ stratifies as follows:
M/:MooLlM0+L|M0_UM+0UM_Q, Mooz{qEM\x:z:O,yQ—ka;éO},
Moy ={qe M |x=0,sgnz=+1}, Myy={qe M |sgnz =+1,z =0}.

Certain simple geometric properties of the cut locus follow immediately from previously obtained
results.

Theorem 3. 1) Cut € M, UM,,
2) &(Cut) =Cut,i=1,...,7,
3) e!*o(Cut) = Cut, t € R.

Proof. Inclusion 1) follows from Theorem 1. Equalities 2) and 3) follow from invariance of the cut
time w.r.t. reflections €’ and its homogeneity w.r.t. dilations e!*?, see item (3) of Corollary 4.2 [5].

Denote N_ = {(A,t) € N |t < teu(A)}.
Lemma 1. We have CutNExp(N_) = @, thus Cut N Exp(FIX) = @.

Proof. By contradiction, let CutNExp(N_) 3 ¢1 = Exp(\1,t1) = Exp(Ag,t2), where (Ai,t1) €
Neut, (A2,t2) € N_. One can easily see that \; # Ay and ¢;(t) = Exp(\1,t) Z Exp(A2,t) = qa(t).
Both trajectories q1(t),t € [0,t1], and ga(t), t € [0, t2], are optimal, thus t; = o, and ¢1 = g2(t2) is a
Maxwell point. Thus the trajectory g2(t) is not optimal for ¢ > t5, which contradicts the inequality
to < tcut(>\)-

The second inequality in the statement of this lemma follows from the inclusion FIX C N_.

Lemma 2. Let v € N and Exp(v) = (x,y,z,w). If v € Ny U N3 U Ng, then z # 0. If v € Ny, then
z=0.

Proof. The statement follows immediately from the formulas of the exponential map (see [3],
Sections 5.5-5.6, 7.4) for the sets C;, i =2,...,7.

2. STRUCTURE OF Cutn{z =2z =0}

Now we study the set Nog = Exp (M) N N. Recall [3] that the components of geodesics z, z
vanish either at the cut time (see Theorem 1) or at a fixed point of a symmetry in the image of the
exponential map (see Table 1). Denote the function uy;(k) = am (pl(k)), recall also that ko =~ 0.909

is a unique solution to the equation 2E(k) — K (k) = 0, where E(k) is the complete elliptic integral
of the second kind.

We show below in Lemma 3 that points from Ny related to the cut locus belong to the subset Nq
parametrized by the coordinates (k,u;,u9,0). We use these coordinates to define the components

MAX2, MAX?JQ, MAX%JQ , 1,7 € {+,—} from Ny related to the cut locus, see Table 2. This table
should be read by columns. For example, the first column means that

MAX2, = {(k,ul,’uQ,a) e Ny | ke (0,ko),ur = m,up = g,a € (o,+oo)}.

Let
MAX? = MAXY, UMAXY UMAX?, UMAX® | MAX" = MAX} UMAX",
MAXY = MAX!0, UMAXI U MAXYO, UMAX .
Lemma 3. The following equality holds:
Ngg = MAX? UMAX 2 UMAX'Y U FIX!2. (2.1)
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914 ARDENTOV, SACHKOV

Table 2. Components of Nog N Neyy N Ny.

MAX* MAX!'2 MAX*'
MAX MAX?, MAXYT MAX?, MAX* MAX'? MAX}? MAX!?, MAXY MAX!, MAX'™
k (0, ko) ko (ko, 1)
Uy T urz (ko) =7 u1 (k)
U /2 3r/2 /2 3 /2 [0, 27) 0 ™ 0 ™
o (0,400) (—00,0) (0,400) (—00,0)

Proof. Let v = (\,t) € Nog and t < teut (). Then (), t) is a fixed point for both symmetries e!, 2.
One can see from Table 1 that the invariance condition holds for both symmetries only in the case
v € N7, when sin # = 0. Further, since we have z = 0 in the image, Lemma 2 implies the inclusion

Noo € {(\t) € Ny | t = tews (M)} UFIX!2,
Consider further the case t =ty (M) for (A, t) € Ni. The following cases are possible:

o k€ (0,ky). Then teys(A) = 4K (k), thus uy = 7, which implies z = 0. The equality z = 0 holds
only in the case cosus = 0. These points correspond to Maxwell points for the symmetry 2,
namely, to the set MAX?.

o k =ko. Then tey(\) = 4K (ko), i.e., ug = u1,(ko) = 7, whence x = z = 0. In this case (A, t) €

MAX!2 the points are Maxwell points for both symmetries !, 2.

o k€ (ko,1). Then teys(N) = 2pL(k)/|o|, i.e., u1 = ui.(k) € (7/2,), thus z = 0. Moreover, the
equality « = 0 holds only in the case sinus = 0. These points correspond to Maxwell points
for the symmetry ', namely, to the set MAX!.

Equality (2.1) follows.

The set FIX'2 decomposes into two connected components: FIX12 = {v € Ny | cos§ = +1}.
A stratification of the set Myg is shown in Table 3 and in Fig. 1.

Table 3. Stratification of My in coordinates (y, w).

Moo 10, & 19 Al A 0 & 10
y (0, 00) 0 (—00,0) (0, 00) (—00,0) (0, 00) 0 (—00,0)
w (0, +OO) 0 (—OO, 0)

Lemmas 4, 5 are obvious, and Lemmas 6, 7 are proved in Appendix A.

Lemma 4. The map Exp: FIX? — Ay is a diffeomorphism.

Lemma 5. For any u9 € [0,27) the map Exp: (MAXE N{ug = ug}) — & is a diffeomorphism.
Lemma 6. The map Exp: MAX%FOJr — ISJF is a diffeomorphism.

Lemma 7. The map Exp: MAX}SJr — IS+ is a diffeomorphism.

Corollary 1. The following restrictions of the exponential map are diffeomorphisms:
1. Exp: FIX!2 - A_,

REGULAR AND CHAOTIC DYNAMICS Vol. 22 No. 8 2017
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w
Ex
0, 0
A_ A
i Yy
I 70
E_
Fig. 1. Stratification of the plane {z = z = 0}.
2. Exp: (MAX2N{uy = u3}) — €_,uf € [0,27),
3. Exp: MAX%FO_ — 70 . Exp: MAXQ_OJr — 79 | Exp: MAX?" — 710

T+

— 70

4. Exp: MAXY® — 70,

Proof. After taking the symmetries €'

Lemmas 4-7.

2

yETLE

r—)

Exp: MAX1_0+ — 70 | Exp: MAX!® 70

We sum up the results of this section in the following statement.

Theorem 4. There is a stratification

CutNMyp ={ge M |xz=2=0,w#0} = |_| (Z% U uE).

ie{+,—}

915

4 into account, the proof follows immediately from

At each point of the quadrants Igi,ISi there are exactly two sub-Riemannian minimizers, while at
any point of the rays E1 there is a one-parametric family of minimizers.

The rays Ay U A_ = Myy\ Cut are filled by abnormal trajectories.

Now we describe minimizers for ¢; = (0,y1,0,w1) € Myo:

1. for 1 € A4 there is a unique minimizer v € FIXf .

2. for q; € Z2, there are two minimizers

v = (k,m,7/2,6) € MAX?, ,

Figure 2 shows two minimizers with k= 0.84,6 = 1.

vy = (k,m,3m/2,6) € MAX?_

~

ke (0,ky), =+6>0.

om0
2.5F
2.0F
1.5}
\ LOF

\

N.5F
\
\,

(N

-2

-1 1 2 =z

Fig. 2. Example of symmetric trajectories for x1 = z1 = 0,y1 > 0, w1 > 0. Left: projections to the plane (z,y),

right: projections to the plane (z,w).
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916 ARDENTOV, SACHKOV

3. for q1 € T2, there are two minimizers

v = (k,ur.(k),0,6) € MAXY,, vy = (k,ur.(k),m,6) € MAXY | k€ (ko,1), =+6>0.

Figure 3 shows two optimal trajectories with k= 0.95, 6 = 1.

Y
2 07 1 2 N 25
’ <
S /05 N T
Rad RN / \
"I \\ ',' 10 \ 1.5
[} ,V\ ‘\ 1 0
\ A \
‘\\ Rad AN 1.5¢ \ 0.5F
e \ \
N " AV
Q2.0 2 i
2 \,
‘\ V\Q'_

Fig. 3. Example of symmetric trajectories for x1 = z1 = 0,91 < 0, w1 > 0. Left: projections to the plane (z,y),
right: projections to the plane (z,w).

4. for ¢1 € 4 there exists a one-parameter family of minimizers

v(ud) = (ko,m,ud,6) € MAXE,  ud € [0,27).

Fig. 4. One-parameter family of “figure-eight” trajectories coming to the same point (projections to (z,y)).

In the plane (z,y) the minimizers project to “figure-eight” elasticae (see Fig. 4, the boldface
curve corresponds to uJ = 0).

Despite the fact that solutions in the plane (x,y) have the same form and are transformed
one to another by parallel translations, there is no continuous symmetry in the space M
that transforms these solutions one to another. There are only discrete symmetries that

decompose solutions into four-tuples for u3 # 7n/2,n = 0,...,3, and two pairs for uJ = 0,
and for uY = /2,37 /2. Figure 5 shows a four-tuple of symmetric solutions.

3. STRUCTURE OF Cutn{z=0, z > 0}

In this section we study the set Cut "M, . Consider the corresponding set in the preimage of

the exponential map N, = Exp (M) N N and study its intersection with the cut locus N¢yt.
Notice that the equality z = 0, by Lemma 2, implies that N o C Ny U N7. Since tcut|c7 = 00, we
get

NioN News = {(k,uy,uz,0) € Ny | k € (ko,1),u1 = u1,(k),sinug # 0}
= MAXML UMAXLE UMAXY UMAXY UOMAXLT LOMAXEF,

REGULAR AND CHAOTIC DYNAMICS Vol. 22 No. 8 2017
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Fig. 5. Example of symmetric trajectories for z1 = y1 = 21 = 0. Left: projections to (z,y), right: projections
to (z,w).

Table 4. Components of Nig N Neyy N Ny.

MAX!H  oMAX!t  MAXIE MAXYL CMAXDT MAXME

Ug (0,7/2) /2 (w/2,m)  (m,37/2) 3m/2 (37/2,27)
o (—00,0) (0, +00)

k (ko, 1)

ul ulz(k)

where the sets MAXYH MAX™ | and CMAXL" are defined via Table 4.

In order to describe a decomposition of the set M, we pass to new coordinates (Y, W') =

<y’ u;) invariant under dilations e**0 .
T’ T
Further in the text, we use the following notation:
s; = sinu;, ci = CoS U;, d; = \/1 — k2s2, (3.1)
Ey = E(u1,k), Fi=F(u,k), A=1-Fk>sis]. (3.2)
In the case Nyg N Nyt the exponential map is determined by the formulas:
1+ k?(st — 2)s3
2k C1 82d2

1
48k3sterd3sids

Y1 (K, ur,up) =

Wll(k,ul,’u,g) = < — E161A3

+disy (1 — k?s7s5(6 — 3k*(4 — s7)s5 + 4k*(2 — s%)sﬂ‘))).

The sets of conjugate points CZ,, = EXp(CMAXiJF) consist of limit points for Maxwell points,
these sets are parametrically defined as follows:

C_'Z}lj_ = {(Yl, Wl) = (Yll(k‘,ul,ug), Wll(k,ul,U2)) | ke (k‘o, 1),U1 = ulz(k‘),sin Uy = :|:1}.
Lemmas 8-10 are proved in Appendix B.
Lemma 8. The map Exp: CMAX}:r — CI;'Zr s a diffeomorphism.
Lemma 9. 1) The curve CL, in the plane (Y', W) is a graph of a smooth function VVCIOnj (Yh,
1 —2k3
2ko\/1 — K3

increasing from —oo to oo in the interval Y € (Yol, o0), where Yol =
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2) The curve Wy = I/VclOnj
Wclonj (Yl)

3) Jm O e R0},

(Y1) lies below the line W' =Y /6.

Define the following sets in the plane (Y, W1):
T = (VL W | Wi (V1) > WEYT € (Vg ,00)}, TL = {(V!, W) e R? | (Y, -W') € T },

z

and show their relation to the cut locus.

Lemma 10. The map Exp: MAXEF_ — I " 15 a diffeomorphism.
Corollary 2. The following restrictions of the exponential map are diffeomorphisms:
Exp: MAX!" —7f,,  Exp: CMAX't -7l |  Exp: MAX', - 71,

Proof. After taking the symmetries &', 2

, ¢ into account, the proof follows immediately from
Lemmas 8 and 10.

Figure 6 shows a decomposition of the plane (Y1, W1).

Wl

Yl

-1.0 ) = 0 1

Fig. 6. Decomposition of the set M.

Theorem 5. There is a stratification
CutNMyo =I5, UCTS, UT/ ucCz! .
Moreover,
TH =3qeM|2z=0, >0, y> Yz, w< Wl (y/w)a:g}%R?’, (3.3)

conj
conj

conj

qEM |2=0, >0, y> Yz, w=W, (y/x)g:g}%RQ,

CI =

z—

{

I5 = {q EM|2=0, >0, y< Yo, w>-W} (—y/x)x?’} =~ R3,
{
{

qgeEM|z=0, x>0, y<—Yb1x, w=-W! (—y/x)x?’}%RQ.

conj

For each point of the sets Iji there exist two minimizers, and for each point of the remaining part
Mo o\(ZF, UI)) there is a unique minimizer.

Proof. Follows from Lemmas 8-10 and from Corollary 2.
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4. STRUCTURE OF CutN{z = 0}

In this section we describe the intersection of the cut locus with the subspace
M,={qe M| z=0}.

Theorem 6. There is a stratification

CutNM, = |_| (Izi U (Ujeqs,y CT2,) LT U EZ-), (4.1)
ic{+,~}
where T = | |jery _ o Igl., I, =¢e*1}), CI_,=¢*CT)), i€ {+,—}. Moreover,
T..o={qeM|z=0, y> Y|z, w< Gi(z,y)} =R T, =Y(T.4) 2R3, (4.2)

where G1 18 a function continuous on the set {(ZL‘, y) eR? |y > Y01|a:|} and satisfying the properties
G1(0,y) =0, Gi(—z,y) = Gi(z,y), Gilpz,py) = p°Gi(z,y), p>0.

Proof. By virtue of the equalities €?(Cut) = Cut,e?(M o) = M_g, we get, taking Theorem 5
into account, a decomposition Cut NM_g = &%(Cut NM,) = Uiegs,—3(Z.; UCT;). Whence, taking
Theorem 4 into account, we get a stratification (4.1).

Representation (4.2) is obtained from (3.3), Table 3, and the equality

I ={aeM|z=0, 2 <0, y > Yyle|, w < Wepy(y/|z])|z*}

conj

for the function

wl . z)|z3], = #0,y > Y|z,
Gl(l’,y): COnJ(y/‘ |)| | 7& Y 0‘ |

0, =0,y > 0.

Continuity of the function Gy on the set {(z,y) | x # 0,y > Y |z|} follows from continuity of the

function W1

conj O1L the ray (Y, +00), see Lemma 9. In order to prove continuity of the function Gy

on the ray {(z,y) | x = 0,y > 0}, take any sequence (z,,yn), T, — +0, y, — y > 0. Then, taking
into account item 3) of Lemma 9, we obtain

W oo (Un/n
G]. («Tmyn) = Wclonj (yn/mn)zi = CO:ZJ (/yw/ )ynl’% - O

Thus, the function Gy is continuous on its whole domain {(z,y) | y > Y |z|}.

Representation (4.2) implies that the stratum Z., is homeomorphic to R3. The theorem is
proved.

5. STRUCTURE OF Cutn{z =0, z> 0}

In this section we study the set No. = Exp~1(Mps) N N and then describe the intersection
Moy N Cut. It follows from Theorem 1 that Noy N Neyy € N1 U No U Np.

Now we consider cut points for each of the subsets N;,i = 1,2,6.
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Table 5. Components of Ny N Neyy N N7

CMAXZT  MAXZT, MAXT. CMAX?T  MAX?T,  MAXZIE

Us 0 (0,7/2) (3w/2,2m) 0 (0,7/2) (37/2,27)
o (0, 00) (—00,0)
k (kao)

5.1. Subcase Ny
We have
Not N Newt N N1 = {(k,u1,u2,0) € Ny | k € (0,ko),us =7}
= CMAXTT UCMAXGT UMAXTT UMAX]T UMAXTT UMAXTE |

where the sets CMAX%;MAX%LE,MAX%LE are defined by values of the parameters us, o via
Table 5; notice that the inequality z > 0 implies cos ug > 0.

In order to define a decomposition in the set My, , we introduce new coordinates (Y2, W?) =

w
< y > invariant under dilations e**°. Then the exponential map takes the form:

V2T /23
Y2(k, up) = \/22(5@, W2(k,us) = 2B+ k2L1(k)(13j-23c§)
2 3(2ku1 (k)ea)
where the functions ¢1(k), t2(k) are defined in Appendix A, see (A.1).
The sets of conjugate points CZ,, = EXp(CMAX%i) are defined as follows:
CTr = {(Y*,W?) = (£Y{(k, uz), £ W7 (k, u2)) | k € (0, ko), ug = 0}. (5.1)

Lemmas 11-19 and 21 are proved in Appendix C. Lemma 20 is obvious.

Lemma 11. The map Exp : CMAX%I — Cl’;Jr s a diffeomorphism.

Lemma 12. The curve CZ'UI,:'Zr in the plane (Y2, W?) is a graph of a certain smooth function
W2l (Y2) >0, decreasing from oo to 0 at the interval Y? € (0, 00).

conj

Define the following sets in the plane (Y2, W?):
Ih ={(Y*,W?) | Way(Y?) < W2, Y2 € (0,00)}, (5.2)
TH = {(YLW?) e R | (-Y%,-W2) e 7, }
and show their relation to the cut locus.

Lemma 13. The map Exp: MAX%iJr — I;Jr s a diffeomorphism.
Corollary 3. The following restrictions of the exponential map are diffeomorphisms:
Exp: MAX%i_ — I;_—H Exp: CMAX%ir — CT, Exp: MAX%fi — T .

Proof. After taking the symmetries €', e2,% into account, the proof follows immediately from

Lemmas 11 and 13.
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5.2. Subcase No
The following representation holds:

Not N News N Ny ={(k,u1,u2,0) € No | k € (0,1),u1 = 7/2} = CMAX5T LCMAX3"
U CMAX3T UCMAXST UMAXZT, UMAXST UMAXZY, UMAXSGE |

where CMAX2 1, CMAX%JFi, MAX2+i and MAX%J_FjE are defined by values of the parameters us, o
via Table 6. Notice that the inequality z > 0 implies that sgnc = 1.

Table 6. Components of Ny N Neyy N No.

CMAX3T, MAX3T, CMAX3I  MAX3T  CMAX3', MAX3', CMAX3"  MAX3'_

Us 0 (0,7/2) /2 (w/2,m) 0 (0,7/2) /2 (w/2,m)
o (0, 00) (—00,0)

k (0,1)

Uy (0,7/2)

For v € Noy N Newt N Ny the exponential map is defined in the coordinates (YQ,WQ) by the
formulas:

L4(k‘)d2
V1—k?

where the function ¢4(k) is defined in Appendix C, see (C.8).
The sets of conjugate points CNY, |, CNY, _ are defined as follows:

CN,, = {(Y2 W2) = (£ Y2(k,0), £W2(k,0)) | k € (0, 1)}, (5.3)

KAK (K)d3 — ta(k)(8 — Th? — K2(2 — k2)s3)

}/'22(]{:’,&2) = - )
12,/ i(k) (1~ k2)3/2d,

< 07 W22(k7u2) =

NG = {(Y2 W) = (£ Y2(k7/2), £ W3k, 7/2)) | k€ (0,1)}. (5.4)
Lemmas 14-19 are proved in Appendix C.
Lemma 14. The map Exp : CMAX2Jr+ — CNt 2+t 18 a diffeomorphism.

Lemma 15. The curve CNf, | in the plane (Y2, W?2) is a graph of a smooth function Wit (Y?)

conj
decreasing from oo to 1//7 at the interval Y? € (—00,0).

Lemma 16. The map Exp : CMAX2+_ — C/\/';Jr_ is a diffeomorphism.

Lemma 17. The curve CN[, _ in the plane (Y2, W?) is a graph of a smooth function w22

conj

(¥?),
decreasing from 0 to —1/+/m at the interval (—o0,0).
Corollary 4. The following restrictions of the exponential map are diffeomorphisms:

Exp: CMAX3', — CN |, Exp: CMAXZ" —CNT

The curves CN}_ e C/\/';__ in the plane (Y2, W?2) are, respectively, graphs of the functions

—W2H(—Y?), —W22(-Y?), Y € (0,00).

conj conj

Further we study the relative position of the curves CILE, CN ;i 4+ CN iﬂ:—- By virtue of
Lemma 15 and the symmetry ¢* (1.3) it follows that the curves CN ;Jr 4+ and CN p 4 belong,
respectively, to the second and fourth quadrants of the plane (Y2, W?).

Lemma 12 and Corollary 4 imply that the curves CI +,C./\f * _ belong to the first quadrant.
We show in the following lemma that they do not intersect each other.
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(=Y?2) < W2L (Y?) holds for Y? > 0.

conj

Lemma 18. The inequality — W22~

conj

Define the following sets in the plane (Y2, W?):
Ny = {(Y2 W) e R? | W (Y?) < W2 < Wt (Y?), Y2 < 0},
N = {(Y2,W2) e R? | (<Y%,—W?2) € N, ).
Lemma 19. The map Exp: MAX%J_F_ — N.Fis a diffeomorphism.
Corollary 5. The following restrictions of the exponential map are diffeomorphisms:

Exp: MAX%"L_ — NI, Exp: MAX2++ L\ Exp: MAX%i_ o\

5.3. Subcase Cg
The following decomposition holds:

No4 N Newt N\ Ng = {(c,0,t) € Ng | t =21/|c|,0 € S',c >0} = |_| (CMAX§;F I_IMAX(%;F),
ie{+,—}
where the sets CMAX%I, MAX%I are defined by values of the parameter 6 via Table 7.

Table 7. Components of Noy NN eyt NNG.

MAXgT  CMAXZE  MAXZT  COMAXG!

6+

0 (—m,0) 0 (0, ) ™
c (0, 400)

t 27 /|c|

For v € Noy N Newt N Ng the exponential map is defined in the coordinates (YQ,WQ) by the
formulas: YZ(0) = 0, WZ(0) = —cos0//x.
In the image of the exponential map the sets of conjugate points CC;i are defined as follows:
cCly ={(Y2w?) = (Y¢(n), Wg (m)) = (0.1/v/m)},
cei = {(Y* . W?) = (Y&(0), W5 (0) = (0,-1/vm)}.
Define the following set in the plane (Y2, W?):
Cr={(Y?2,W?) eR*|Y?=0,|W? < 1/y/x}.
Lemma 20. The maps Exp(MAXZ1) — C are diffeomorphisms.

A decomposition of the plane (Y2, W?2) is shown in Fig. 7.
Denote the sets

NF = Ny UCEUN,
CNI, =CN} . uCCh UCN}__, CNI_ =CN} . _ucCi ucN;_,.
Lemma 21. The set CN .y (resp. CN_) forms a smooth curve in the upper (lower) half-plane,
which is a graph of a smooth function W22 (Y2) (resp. —W?22 (=Y?)), where

conj conj

W2t(y?), Y2 e (—o0,0),

conj

W(?oznj( )_ —W22 ( Yz), Y2 e (O0,0),

conj

1/+/, Y2 =0.
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Fig. 7. Decomposition of the set Mo

We sum up the results of this section as follows.
Theorem 7. There is a stratification
CutNMoy =77, UZ” UNFUCT) ucCT) uCN} UuCN]_.
Moreover,
ThH ={qeM|z=0,2>0, y>0, w>W2i(y/Vz)Vz3} 2R, (5.5)
I;_— = {q eM | T = 07 z > 07 y < 07 w < _Wgolnj(_y/\/z)\/zg} = Rga
+ _ _ 22 22 ~ 3
Nz - {q eM | T = 07 z > 07 _VV(Jonj(_y/\/z)\/z3 <w< Wconj(y/\/z)\/z3} =R )
CI/ . ={qeM|z=0,2>0, +ty>0, w= inolnj(j:y/\/z)\/z?’} >~ R?,

CNi ={qgeM|z=02>0, w= infnj(iy/\/z)\/z?’} ~ R2.

At each point of the strata I;i, N, there are two minimizers, and at each point of the remaining
part Moy /(T U LUN) there is a unique minimizer.

6. THE STRUCTURE OF CutN{z = 0}
Describe the intersection of the cut locus with the subspace M, = {¢ € M | x = 0}.
Theorem 8. There is a stratification
CutnM, = | | <Im- uNiu | (CI{CZ. uCme.) L zo u&), (6.1)
ie{+,—} Je{+.—}
where Toi = e, 0 T T =e'(Z)), CN, =¢'(CT)), CN,=c'(CNY), ie{+ -}
N =Y (N;). Moreover,
Tor ={qeM|2=0, y>0, w>Gaz,y)} =R, I, =" (T,4) =R (6.2)
NE={geM|z=0, sgnz=+1, —G3(z,—y) <w < G3(z,y)} = R3, (6.3)

where Go and G3 are functions that are continuous in the set {(z,y) € R? |y > 0} and satisfy the
properties

02(07 y) = 07 GQ(_Zv y) = GQ(Z) y)v GQ(pQZ’ ,Oy) = ngQ(Zv y))
Ga3(=zy) = Ga(z,y),  Ga(p*z,py) = p°Gs(z,y),  p>0.
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Proof. By virtue of the equalities ¢!(Cut) = Cut, e'(My;) = My_, we get, taking Theorem 7
into account, that CutNMy_ = ' (CutNMy;) = Uiegs -3 (II_Z. uCzZ, ;U C/\/’;Z->. Whence, taking

Theorem 4 into account, we obtain stratification (6.1). Representation (6.2) is obtained from (5.5),
Table 3, and the equality

Ty =<' @) = {ae M1z =02 <0,y > 0w > W2h(w/v/ID VIR )
for the function

21 3/2
Wconj(y/\/|z‘)‘z| / y # 7& 07
0, z=0.

Ga(z,y) =

Continuity of the function G on the set {(z,y) | z # 0,y > 0} follows from continuity of the function
Wfolnj on the ray (0, +00), see Lemma 12. In order to prove continuity of the function G5 on the ray

{(z,y) | z= 0,y > 0}, take any sequence (2y,¥yn), zn — +0, y, — y > 0. Then, taking Lemma 12
into account, we get Go(zn,yn) = W2l (yn/\/zn)zf{/2 — 0= G2(0,7). Thus, the function Gy is

conj
continuous for y > 0.
Representation (6.3) follows from Theorem 7 for the function Gs(z,y) = Wffnj(y/ NAEDIE RN

Representations (6.2) and (6.3) imply that the strata Z,., N are homeomorphic to R3. The
theorem is proved. 0

7. GLOBAL STRATIFICATION OF THE CUT LOCUS

In this section we combine the results of Sections 2, 4, and 6, and provide a global description
of the cut locus.

In Fig. 8 we show the contiguity topology of strata of the cut locus in the quotient by dilations Xj.
On the left Fig. 9, we show the set CutNM, after factorization by dilations Xg; the quotient

M, /e®X0 is represented by the topological sphere {q € M | 2% + y5 +w? = 1}. Similarly, on the
right Fig. 9, we show the quotient (CutNM,)/e®X0 on the topological sphere

{q€M|y6~|—|z|3+w2:1}.

Fig. 8. Stratification of the cut locus: global structure.
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Z.—

Fig. 9. Stratification of the cut locus: intersections with the subspaces M, and M,.

Theorem 9. The cut locus stratifies as follows:

Cut= || (IZZ- U Zy UNE U ( | | czl,ucr, uCNii) L &-). (7.1)

ie{+,—} je{+,—}

Three-dimensional strata T,;, Ty, N, i € {+,—}, are Mazwell strata, at each point of the strata
there are two minimizers. Two-dimensional strata CI.,, CI.., CN7., i,j € {+,—}, consist of
conjugate points that are limit points for Mazwell points; at each point of the strata there is a unique
minimizer. One-dimensional strata &;,i1 € {+,—}, consist of Maxwell points that are conjugate

points; at each point of the strata there is a one-parameter family of minimizers.

The cut locus is not closed since it contains points arbitrarily close to the initial point gy, but
does not contain the point itself (this is a general fact of sub-Riemannian geometry). The closure
of the cut locus in the sub-Riemannian problem on the Engel group admits the following simple
description.

Theorem 10. cl(Cut) = CutU A UA_ L{qo}-

Denote by Conj the caustic, i.e., the set of conjugate points along all geodesics starting from
the point go [4]; and by Max the Maxwell set [5]. From Theorem 9 we get the following description
of the sets Cut N Conj and Cut N Max.

Theorem 11. There are stratifications

Cut N Conj = ] (ez? e, uens, ) ues ue,
ie{+,—}, je{+,—}

CutnNMax = I_I <Izz Uz, u ./\/’;3 (] &) .

ie{+,—}

In other words, Cut N Conj consists of all two-dimensional and one-dimensional strata, while
Cut N Max consists of all three-dimensional and one-dimensional strata of the cut locus.
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8. CONCLUSION

This paper continues a series of publications [3-5] which were the first in the literature to study
in detail a sub-Riemannian structure of step more than two. A complete description of the cut
locus and the structure of optimal synthesis for the nilpotent sub-Riemannian problem on the
Engel group is obtained.

Via nilpotent approximation, the results obtained are important for the study and applications of
general sub-Riemannian structures of rank 2 in 4-dimensional space. Theoretically, our results open
the way to investigation of basic local properties of sub-Riemannian distance for such structures
near the initial point. From the applied point of view, these results lead to algorithms and software
for solving a path-planning problem in mobile robotics.

Our research is based upon a detailed study of notions and properties introduced and developed
by V. I. Arnold [11]: Maxwell strata and singularities of a Lagrange map generated by a variational
problem (exponential map of the sub-Riemannian problem). It provides an example of thorough
theoretical research related to important applications (Euler’s elasticae and mobile robots).

APPENDIX A

In this section we present proofs of the diffeomorphic property for the restriction of the
exponential map to Maxwell sets for the case x = z = 0 considered in Section 2.

Denote the functions
1 (k) =2E(k) — K(k), 1o(k) = K(k) — E(k), k€ (0,1). (A1)

Remark 2. The inequalities ¢1(k) > 0 and t2(k) > 0 hold, respectively, for k € (0,ky) and k €
(0,1).

Introduce an equivalence relation useful for our proofs.

Definition 2. Let X be a topological space. Let f1, fo: X — R, {v,} C X.

fl(Vn)
Fa(vm) € R\{0}.

We write f1 =~ fo if lim
n—oo

Below in the proofs of the diffeomorphic property of maps we apply the following Hadamard
global diffeomorphism theorem.

Theorem 12 ([10]). Let f: X — Y be a smooth map between manifolds of equal dimension. Let
the following conditions hold:

1
2
3
4

X is connected,
Y is connected and simply connected,

f is nondegenerate,

(
(
(
(

— — ~— ~—

f is proper (f_l(K) C X is compact for a compact K C Y).

Then f is a diffeomorphism.

Definition 3. A sequence {x,} in a topological space X tends to the boundary of X if there is no
compact in X that contains this sequence.

Notation: x, — 0X.

It is easy to see that a continuous map f: X — Y between topological spaces is proper iff for
any sequence {x,} C X the implication =, — 0X = f(z,,) — Y holds.
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Proof (of Lemma 6). We apply Theorem 12. It follows from definitions of the sets MAX?FOJF, 70,
that MAX?%, is connected, Z2, is connected and simply connected, i.e., conditions (1) and (2)

hold for the restriction of Exp under consideration. It was shown in [4] that in the case u; = 7 the
exponential map is nondegenerate for sinug # 0, thus condition (3) of Theorem 12 holds as well.

41 (k) 8 <k2b1(k) + L2("¢))>- It fol-

Let v = (k,uj,u2,0) € MAX%FOJF, then Exp(v) = <0, , 0, 259

lows from Remark 2 that Exp(v) € 70, , thus Exp(MAX%) C 79,.

In order to prove condition (4), consider any sequence {I/n = (kn,ﬂ,w/Q,an)}, n=123,...,
tending to the boundary of the set MAX?, as n — oc. Denote Exp(vy,) = (0, Y, 0,w,,). We show

that {Exp(un)} tends to the boundary of Z? . Let us study the possible cases as n — oo. After
passing to a subsequence, only the following cases are possible:

1. k, — 0. Then y, =~ 1/0,, whence w, =~ k2y>. Thus, w, — 0 or y, — oo, may be, on a
subsequence, in both cases Exp(v;,) — 019 . Below, for brevity, in similar arguments we
omit such a phrase about subsequence.

2. k, — kgo. Then y,, — 0 or w, — oo.
3. 0p — 00,k — k € (0,kg). Then y,, — 0,w, — 0.

4. 0, — 0,k — k € (0, ko). Then y,, — 00, w, — oo.

Thus, Exp: MAX?&_ — 70 4 is a proper map and hence a diffeomorphism by Theorem 12.

Proof (of Lemma 7). It follows from definition of the sets MAX'? | ZU, that the set MAX!’, is

connected, while Z0, is connected and simply connected, i. e., conditions (1) and (2) of Theorem 12
for the restriction of Exp under consideration hold.

212E, — F 4Eyc) — d3
Let v = (k,u1,u9,0) € MAX%FOJF, then Exp(v) = (0, (2E1 1), 0, 1?3 181), where
o o3¢y

d
we used the equality F} = 2FE; — 1% equivalent to f,(ui, k) = 0. Since u; = uy,(k) € (7/2,7),
C1
then s; > 0,¢; <0, Ey >0, 2E; — F} <0, whence Exp(v) € ISJr, thus Exp(MAXfrOJr) C IS+. It
was shown in [4] that in the case u; = u1,(k) the exponential map is nondegenerate for cosug # 0,
thus, condition (3) of Theorem 12 holds.

For the proof of condition (4) consider any sequence {vy, = (kn,u12(kn),0,00)}, n=1,2,3,...,
tending to the boundary of the set MAX}irOJr as n — 00. Denote Exp(v,) = (0,yn,0,w,). We show
that {EXp(Vn)} tends to the boundary of ZU, . Consider the possible cases as n — oco:

1. kp — ko. Then uy,(k,) — 7. Whence y,, — 0 or o,, — 0 and w,, — oo.

[\

. kn — 1. Then uy,(k,) — /2. Whence y,, — —o0 or 0,, — 0o and w,, — 0.
3. 0n — 00k, — k € (ko,1). Then y,, — 0,w,, — 0.

4. 0y — 0,k, — k € (kg,1). Then y,, — —00,w — +00.

Thus, Exp: MAX}SJr A  is a proper map (condition (4) holds) and hence a diffeomorphism by
Theorem 12.

REGULAR AND CHAOTIC DYNAMICS Vol. 22 No. 8 2017



928 ARDENTOV, SACHKOV
APPENDIX B

In this section we prove some lemmas from Section 3.

Proof (of Lemma 8). We differentiate the equality f. (F (u1z(k‘)) ) k‘) = 0 by the variable k and get

the following expression for the derivative:
(7 )
ulz(k) - ]{7(1 _ ]{72)81 .

Further, we use this expression to compute the derivative of each coordinate of the restricted
exponential map:

(B.1)

dY§ (k, us(k), /2
T (kyuz(k), m/2) _ Eqdy -0, (B.2)
dk 2k2(1 — k2)3/25
dWll (k,ulz(k:),w/Q) _ _(Elcl — Sld%)(Elc% ; Sld:l)’) > O, (B3)
dk 16k4(1 — k2)5/258¢,

since u1 = uq,(k) € (7/2,7) and By > 0,81 > 0,¢1 < 0,d; > 0. So the map Exp: CMAXfrJr — CI;ZF
is nondegenerate, thus condition (3) of Theorem 12 holds. Conditions (1) and (2) are also obviously
satisfied.

For the proof of condition (4) consider a sequence ky,, n =1,2,3,..., tending to the boundary
of the set CMAX};r and show that one of the functions Y;! (kn, w1z (kn), 71/2) Wi (k:n, ui (kn), 77/2)
tends to infinity:

1. kp — ko, then uy.(k,) — 7. We have

Y (b, urs (kn), m/2) — L2k (B.4)
1 ny, Wlz n) 2]{}0\/1—]{;8’ .
E(k3)
1 ~ 0
Wl (knyulz(kn)77r/2) ~ 24k8(1 . k8)3/28£1)’ — —0O0. (B'5)
2. k, — 1, then uy,(k,) — /2.
kici — 14k k? 1— k2
Yf (k‘imulz(k‘n)vﬂ-/2) = w1 G ~ e \/ " (B'G)
2kn\/1 —k2c1 /1 — K2 c1
It follows from f.(Fy,k,) = 0 that ¢? = 511~ Kust) compute further
z\4'1y~vn) — 1_(F1_2E)27 b
B I )
1—k2 1—k2 (1—Kk2)(Fy —2E,)?
Since F; — 2F; — oo, we get in the limit
1 —k2s? 1
k2 = . K22 — 1, (B.7)
(F1—2E1)?
consequently,
‘i = si(l — kusi) ~ L — 0. (B.8)
L—ki  (A—k})(F—2E1)?  (F1 —2E)?
From (B.6) we get
1— k2
}/11 (knyulz(kn)77r/2) ~ \/ c "= (B.Q)
1
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Consider the second coordinate:

BE V1= k2(—1+ 4k2)
1 _ 1+1 n n
Wl (knyulz(k‘n)yﬂ'/2) = _48]{:3( B k2)3/2 3 48]€361 +

a (e + (1 —k2)(1 + k2 + 4kp)s?)

B.10
AR (1 — 23253 (B10)
Further consider (B.10) term by term, using (B.7) and (B.8):
d3E; 1 V1= Ek2(—1 4 4k2)
- - 9 - — 00,
48k3 (1 — k2)3/2s3 377748 48k3 ¢q
3 1+ k2 + 4k,
3 0123/22*0’ all + ke ")—>0,
48Kk3 (1 — k2)3/2s7 48k3 /1 — k2
whence it follows that
Wi (kp,uaz(ky), m/2) & — 0. (B.11)

C1

Thus, Exp: CMAXi_‘|r — CIj+ is a proper map and hence a diffeomorphism by Theorem 12.
Proof (of Lemma 9). 1) follows from equalities (B.2)-(B.5), (B.9), (B.11).

dl (61E1 — dlsl)

> 0 und
8k3(1 — k2)3/2s3 ¢ et

2) follows from the inequality Yi'(k, u1,7/2) — 6W{ (k,u1,7/2) =
the condition k € (ko,1), uy € (7/2,7).
3) follows from (B.9), (B.11).

Now we prove a lemma we will use in the sequel for localization of two-dimensional parametrically
defined sets.

Lemma 22. Consider a parametrically defined set in the plane (X1, Xo) € R?
Q= {(X1, %) = (fi(1,22), folw1,22)) | 01 € (a8, 2]), 23 € (a8, 2}) },
where f1, fo € CH((2Y,z1) x [29,23)). Consider also a curve
10 = { (X1, X2) = (fi(ar,29), fo(a1,29)) | 21 € (af,ah) }.

Let the curve vy divide the plane (X1, X2) into two connected components, and let the following
conditions hold for z; € (29, z1):

gﬁ (1,22) > 0, 79 € [29,73), (B.12)
gif; (@1, 22) > 0, 9 € (29, 73), (B.13)
gif; (21,23) > 0, (B.14)
Vien @) = (gffgﬁi - gﬁf?ﬁi) (21,22) >0, 7y € [a9,2}). (B.15)

then condition (B.12) allows us to invert the function X1 = fi(x1,29) in the interval (z9,1):
x1 = ho(X1), which allows us to define the function vy as a graph: Xo = go(X1), where go(X71) =

fa(ho(X1), 23).
Then the following condition holds:

fa(zy,29) < go(fl(xl,xg)), T € (xl,x%) T € (m2,x2) (B.16)
e., the set Q lies below the curve 7 in the plane (X7, X2).
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Proof. The set 2 is a union of the curves v, = {(Xl, Xg) = (fl(ml, z4), fa(x1, mg)) | x1 € (a;(l), m%) },

where 2§ = 29 + (23 — 29)a for a € (0,1). Condition (B.12) allows us to define as a graph not only
the curve 59, but each curve from the family {7, | a € (0,1)} as well:

Xo = ga(X1)7 X1 € (fl(l‘(l]’xg)vfl(l%vwg))’

where g,(X1) = fa(hy(X1),29), and 21 = h,(X1) is the inverse function to X1 = fi1(z1,29).

On the other hand, by fixing z1 the set 2 U~y becomes a union of curves defined on a half-
interval:

B = {(X1,X2) = (f1($1f7$2),f2($]f,332)) | 29 € [968,965)},

where 2§ = 29 + (21 — 29)k for k € (0,1). Moreover, conditions (B.13) and (B.14) allow us to define
as a graph each curve of the family {8 | k € (0,1)}:

Xy = vi(X1), X1 € [fi(ah,29), fi(a},23)),
where v (X1) = fo(zh, r(X1)), and x5 = ri(X1) is the inverse function to X; = f1(z¥, x).
Notice that since fi, fo € C! ((33(1), ri) x [29, a:%)), by the inverse function theorem condi-
tions (B.12)—(B.15) guarantee that g, C* ((fl(m?, x2), fi(xl, mg))), vi€ C1 <[f1 (zh, 29), fi(zh, m%))),

moreover, condition (B.12) implies existence of a limit limofl(ajl,x%) =: f1(29,2%) € [~o0, +00),
z1—zf

we define similarly f;(x1,23), fi (2%, 21).
Let X1 = fi(2¥,2%), then we get V(2¥,28) = g/, (X1) — v, (X1) > 0, whence it follows that
Vel e (29, 2h) 22 € [29,2d) Fe>0 VX, e (X1, X1 +¢€) gu(X1) > vi(X)).
If a = 0, then definitions of the functions g, v; imply that
Vol € (af,2]) 30>0 Vas € (23,29 +0)  go(fi(af,22)) > falal, 22).
Suppose that condition (B.16) is violated, i.e.,
321 € (af,2]) It € (29, 23)  go(fi(d1,82)) = fo(@1,22). (B.17)
Introduce the notation X; = fi(Z1,22),i=1,2, and 77 = ho(Xl). Notice that by definition of g
we have f;(Z1,29) = X;,i = 1,2. It follows from (B.13), (B.14) that fi(21,29) < f1(21,42) = X1 =
fi(d1,29), thus condition (B.12) implies that &1 < Z.
Below we define a function x9 = w(x1) on the segment x1 € [#1, #1], which satisfies the condition
fl(:L‘l,w(l‘l)) = Xl. (B.18)
In view of condition (B.13), if a function w is defined, then it is unique. At the endpoints of the
segment [#1,%1] the function is defined: w(#1) = &9, w(d1) = 2, moreover, we have
f2 (i‘l,w(ii‘l)) = f2 (:El,w(rbl)) = XQ. (B.lg)
Notice that inequality (B.12) implies that for x1 € (21, %1) we have

fi(zr,23) < fi(dr,29) = X1 = fi(d1,22) < fi(x1,d9),

which, together with continuity of the function f;, implies that the function w is defined at the
segment x; € [#1, %] If 2% € [#1, 1], then w(z¥) = rp(X1). In other words, 2o = w(z¥) is a uniquely
defined function inverse to X = fl(:r]f,acg) at the segment zq € [Z1,%1]. By the inverse function
theorem, w € C*([#1,21]).

Denote the functions fz(ml) = f; (a:l,w(xl)), 1= 1,2, and compute their derivatives:

dfi, . 0f; of; dw

dut (x1) = - (z1,w(z1)) + Oy (z1,w(z1)) dz, (1), i=1,2.
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It follows from (B.18) that jil = 0, whence
1
dfa, _ (0f2  0f2( _0f1/0n _(oh
0= (pF + )2 (= o) ) wten) = (379 (@rwten) >0,

where 1 € [%1,#1), thus the function f (1) increases at the segment [#1, #1), whence by continuity
of the function we come to a contradiction with condition (B.19).Thus assumption (B.17) is violated,
q.e.d.

Lemma 23. The inclusion Exp(MAX,") C T, holds.

Proof. Notice that for k € (ko,1),us € (7/2,7) we have
a}/11 (kaulz(k)7u2) - ACQ

) = B B.2
Jll( ,'LL2) 8'11,2 2k018%d§ > O, ( 0)
oV (k,uiz(k),u2)  A(Bic1d3 — k%s1dyc3)
1 k — 1 s Wlz 5 _ 1¢1d5 1di¢5 ol
Jo1 (ks u2) ok 2h2(1 — k2)s1c1dy sod] > 0, ( )
Vl(k,uz) . 6W11 (k,mz(k)auz)/@k‘) B 8W11 (kaulz(k),uz)/(OUQ)

N 8)/11 (k‘, ulz(k‘), UQ) /(6/@) 6Y11 (k‘, ulz(k‘), UQ) /(GUQ)

A2( — 2By syerdl + s2d8 + E22((1 — ks?)? + 2k(1 — k)s%)) . -
= > 0. .
8k2s3d]s3(k?s1dic — Ficid3) ( )

Moreover, for all k € (kg, 1) there exists lim 2V1(/<:, ug) € (0, +00), and the inequality J3, (k, 7/2) >0

u2—>7r/

holds. Hence, given Lemma 9, it follows that the map Exply, AXLF satisfies the conditions of
Lemma 22, consequently, EXp(MAXf'_) C I/ -

Proof (of Lemma 10). Conditions (1) and (2) of Theorem 12 are obviously satisfied, and the results
of [4] imply that condition (3) holds as well. It remains to check the validity of condition (4).

Consider arbitrary sequences (ky,u1,(ky),us), n=1,2,3,..., in the image of Exp tending to
the boundary of the set MAXf_ and show that either Exp (kn, w1z (kn), ug) — CI;'Zr or one of the
coordinates in the image tends to infinity:

1. u§ — m/2, by definition of CI;ZF we have Exp(ky,, ui.(ky), uf) — CI;ZF.

1

2. uf — m, then Y}! (kpyurz(kn), uy) ~ — e 59
n

3. kp — ko,uy — uy € (7/2,m), then uy,(k,) — m, thus s — 0,c7 — —1,d; — 1,A — 1. We

E(k
get Wf(kn,ulz(kzn),ug) ~ (ko)

— — —00.
3.3.3.73
24k s7s5dy

4. ky — 1,uy — U9 € (7/2,7), then uy.(k,) — 7/2. By virtue of ¢; — 0,c2 # 0,52 # 0, we get
Yll(k:n,ulz(kn),ug) ~o— — 00.

Consequently, given Lemma 23 Exp: MAXE'_ —>I;|r . is proper. Hence by Theorem 12 the
restriction of the exponential map is a diffeomorphism.
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APPENDIX C

In this Appendix we prove some technical lemmas from Section 5.

Proof (of Lemma 11). We apply Theorem 12. Notice first that conditions (1) and (2) hold. Further
compute the derivative of each coordinate by k:

Y2 E
dk (1 — k2)/2k311 (k)
dW2(k,0 k
é(ka ) _ L3( ) 5/27 (02)
(2k‘L1 (k‘))
3E2(k) — (5 — 4k?)E(k)K (k) + 2(1 — k*)K?(k
where 13(k) = (k) = ) 1(—)k:2( )+ JEE () > 0 for k € (0,kg), since ¢13(0) =0,
2(k) + k2 (k) (2E(k) + K (k
and i5(k) = (k) + K (k) (2B (k) + K (k) > 0. Thus, for k € (0, kp) we have
k(1 — k2)2
dW2(k,0)
0. C.3
e (C.3)
Thus, the map Exp : CMAX%i — CZ/}, is nondegenerate, and condition (3) of Theorem 12 holds.
In order to prove condition (4), consider an arbitrary sequence k,,,n = 1,2,3,..., tending to the

boundary of CMAX%Tr and show that one of the coordinates tends to infinity:

1. k, — 0, then
Y32(kn,0) — 0o,  Wi(kn,0) — 0. (C.4)

2. k, — kg, then
YZ(kp,0) = 0,  Wi(kn,0) — oo. (C.5)
Thus, Exp : CMAXfi — CIL_ is a proper map and hence a diffeomorphism by Theorem 12.
Proof (of Lemma 12). Follows from Lemma 11 and expressions (C.1)-(C.5).
Lemma 24. The inclusion EXp(MAX%Lr) C I,7, holds.

Proof. Notice the inequalities

oY (k,uz) t1(k)
g2 9\ = s9 >0, C.6
1 8U2 chg’ 2 ( )
OW?2(k,u 12(k) + k25211 (k)) so
J2 = 159( 2) _ 2 3/)2 0. (C.7)
w2 202(2kL1(k)02)

Thus, if ug grows, then both coordinates Y? and W? grow as well. Thus, for a fixed k = k the
curve (Y2(k,uz), W2(k,u2)),us € (0,7/2), lies above the curve W? = Wfolnj(Yz), Ys > Y2(k,0),

see Lemma 12. This proves this lemma by definition (5.2).

Proof (of Lemma 13). Apply Theorem 12. Conditions (1) and (2) follow from definitions of the
sets MAX(T,, 7,7, . Condition (3) follows from results of [4]. Given Lemma 24, in order to prove
condition (4), it suffices to consider arbitrary sequences (ky,u5) in the image of Exp tending to
the boundary of the set MAXﬁ +, and to show that the sequence (Yf(kn, ul), We(ky, ug)) tends
to the boundary of the set Z :
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1. uy — 0, by definition of CZ,, we have (Y(kn,uy), Wi(kn,u})) — CZ1,.

I 1
2. ’LLS - 7T/2, kn — ke [07 k‘O), or k‘n — 0, then )/12(13717'&3) ~ \/k — 0.
nC2

Eko) |
(Ll (k)cz)3/2

4. ky — ko,ul — dz € (0,7/2), then t1(ky,) — 0, thus Y(kn, ub) ~ v/u1(kn

3. uy — m/2,k, — ko, then ¢1(k,) — 0, thus W2(kp,ul) ~

Thus, Exp: MAX1 I o+ . is a proper map and hence a diffeomorphism by Theorem 12.

Introduce the functions
(k) = (2 = KK (k) — 2B(k), (C.8)
i5(k) = (2 = ) E(k)K (k) + (1 — k*)K*(k) — 3E°(k),
(k) = E(k) + (=14 k*)K (k) > 0.
Lemma 25. Let k € (0,1). Then inequalities ¢;(k) > 0, i =4,5,6 hold.

/
Proof. Notice that ¢;(0) = 0,7 = 4,5, 6. Further, <\/Lf(—k)k:2> = a1 1?2155))3/2 > 0 for k € (0,1); since

(2= k)E(k) —2(1 — E2)K (k)" = 3kia(k) > 0, we have
( 15 (k) >’ Cu(k)(2-K)E(k) — 21 — k) K (k)
Vi—k2) k(1 — k2)3/2
finally, 5(k) = kK (k) > 0. Hence, ¢;(k) > 0,7 =4,5,6, for k € (0,1).

> 0;

Proof (of Lemma 14). Apply Theorem 12. Notice that conditions (1) and (2) hold. Compute further
the derivative of each coordinate in k:

OVR(k0)  kuak)

k= a1 R u(h) <0, (C.9)
OWZ(k,0) k3us(k)
Y 41— k2)7/4Li/2(k‘) >0 (C.10)

By virtue of sign-definiteness of the derivatives, the map is nondegenerate, thus condition (3) of
Theorem 12 holds.

In order to prove condition (4), consider arbitrary sequences k,,n = 1,2,3,..., tending to the
boundary of the set CMAX2 g

1. k, — 0, then
Y (kn,0) =0,  Wi(kn,0) — 1/y/7. (C.11)
2. k, — 1, then
Y (kn,0) — —o0, W3 (ky,0) — co. (C.12)
Thus, Exp : CMAX%I L CNT | is a proper map and hence a diffeomorphism by Theorem 12.

Proof (of Lemma 15). Follows from Lemma 14 and expressions (C.9)-(C.12).
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Proof (of Lemma 16). Apply Theorem 12. Conditions (1) and (2) hold. Compute the derivative of
each coordinate in k:

VP2 kuelh)
ok 201 — k) u(k) <0 (G13)
oW3(k,m/2) k35 (k)
2 o _ - k2)LZ/2(k) > 0, (C.14)

thus, the map Exp|qy, AXZE is nondegenerate.
Consider arbitrary sequences k,,n =1,2,3,..., tending to the boundary of the set CMAXgi_:

1. K — 0, then
Y (kn,m/2) — 0, W3 (kp,7/2) — —1/y/7. (C.15)

2. k— 1, then

Y3 (kp,m/2) — —o0, W2(ky,m/2) — 0. (C.16)
Thus, Exp : CMAXgi_ — CN | _ is proper and hence a diffecomorphism by Theorem 12.
Proof (of Lemma 17). Follows from Lemma 16 and expressions (C.13)-(C.16).
Proof (of Lemma 18). To prove the lemma, consider the following fixed points of the symmetry
g2 for A € Cs: FIX%i = {(O‘,p, T)ECT xRy |7 = 0} C FIX2. The exponential map transforms
the set FIX%Jr into the set

Figt = { (Y2 W?) = (), W) | p € (0.00) },
2sinhp — pcoshp 9sinhp — 12p cosh p + sinh(3p
(70 w30) = ( o).

Vpcoshp — sinhp’ 24(p cosh p — sinh p) >
Since (2 sinhp —p coshp), = cosh p — psinh p, we have
dY3(p)
<0, C.17
. (C17)
mMoreover,

lim Y{(p) = +oo, lim Y{(p) = —oo, (C.18)

p—0 p—00

thus, the curve Fix%i is a graph of a smooth function W3 (Y?), Y2 € (—o0, +00).
Let p = p3 > 0 be the positive root of the equation p = 2 tanh p, then

B sinh? p3 — 3
~ 6y/sinhps

Let sinhpg = 3, then py = In(3 ++/10). It is known that the inequalities In2 < 0.7, In3 < 1.1
hold. Now we estimate pq:

Y{(ps) =0, W3(ps)

10 -3 10 1 1310 10
v v v + \/6 = 2tanh po,

1 10 — 1 . 1.1 —
n(6 +v10 — 3) < In6 + 6 SOTHLI+ T - <
whence py < 2tanh pg, then ps > pg, thus the inequality sinh ps > 3 holds. It follows that W32 (p3) >

1 1 1
Wi(po) = /3 > s i.e., W (0) > S Whence it follows that
Je>0 VO<Yi<e  —WE(-YH <WE(Y?) < W2 (Y?), (C.19)

conj conj

i.e., the statement of the lemma holds in a neighborhood of zero.

REGULAR AND CHAOTIC DYNAMICS Vol. 22 No. 8 2017



MAXWELL STRATA AND CUT LOCUS IN THE SUB-RIEMANNIAN PROBLEM 935

Now assume that there exists a point where this condition is false, i. e., there exists Y2 > 0 such
that —W22~(=Y2) = W2 (Y2). Then by continuity there is a point (Y2, W?2) e Fixgi NCZH U

conj conj
CN}_ ), which contradicts to Lemma 1. Consequently, our assumption is false. U

Lemma 26. The inclusion EXp(MAX%i__) C N, holds.

Proof. Exp(MAng_) lies in the right half-plane of the plane (Y2, W?).
Notice that for k& € (0,1),us € (7/2,7) the following conditions hold:

_8Y22(k, ZLQ) _ \/L4(k)k20282

2201 40) — _ .
Jll (kv 2) 811,2 2\/d§\/1 2 > 07 (C 20)
E((1—E) (k) + 2 (1q(k k2u6(k
Jéf(k,uz):—aYQQ(k’“2) _ (( Jeo (k) + 5 (ea(k) + k?u6( ))) o c.21)
Ok 2/ d3ua(k) /(1 — K2)°

8W22 (k:,ug)/8k: 6W22(/c,U2)/8u2
OY2 (kyuz)/0k — OYE(k,ug)/dus
BV = k(1= B)i6(k) + B (a(k) + K16 (k)) )

V2(k,up) =

moreover, JZ(k,m/2) =0, J32(k,7/2) > 0, and V??(k,7/2) > 0. Hence, it follows from Lemma 22
and the definition of N." that the set Exp(MAX'™) lies below the curve —Wfozng(—Y2),Y2 €
(0, 00), which defines the upper boundary of the set N,' .

Now we should show that the set Exp(MAX3" ) lies above the curve —W22t(—Y?2),Y?2 € (0, 00).

conj

To this end we consider in the preimage of the exponential map a symmetric set MAX%i "
with a symmetric curve VVEOQHJE(YQ),Y2 € (—00,0), with the inverted parameter k=1—k, and
up € (0,7/2). In this case the hypotheses of Lemma 22 hold as well, thus the set MAX%i n
lies below the curve W22t (V?2), Y2 € (—00,0). So the set Exp(MAXZT ) lies above the curve

conj

~W22(—y?) Y2 € (0,00). Consequently, Exp(MAX2" ) C N.".

conj

Proof (of Lemma 19). Apply Theorem 12. Conditions (1) and (2) follow from definitions of the sets
in the image and the preimage of the exponential map. Condition (3) follows from results of [4]. By
virtue of Lemma 26, to prove condition (4) we consider arbitrary sequences (ky,,u4) in the image of

Exp tending to the boundary of the set MAX%J_F_, and show that such sequences, under the action
of the exponential map, tend to the boundary of A" :

1. k— 0, then Y2(k,,u%) — 0.

2. k— 1, then Y2(k,,u}) — oo.

3. uf — 7/2, then by definition we have (Y2(ky,u}), W2 (k,,ub)) — CMAX2' .

4. uf — m, then by definition we have (Y2(kn, ul), W2(ky, ug)) — CMAX%J_F_.
Hence, by Theorem 12 the map Exp(MAng_) — NI is a diffeomorphism.
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Proof (of Lemma 21). Given the symmetry ¢?, it suffices to consider the case CN iy

Lemma 15 and Corollary 4 imply that CN ;Jr form a decreasing continuous curve. Since the
curves CNF L. and CN * _ are continuous, in order to prove smoothness of the union of these

curves at the point CC;JF, it suffices to show that the limits of the corresponding derivatives at this

point coincide one with another. To this end we evaluate the corresponding Taylor polynomials at
the point k£ = 0:

T 2 2
(Y2(k,0), W2(k,0)) = <— “4’“ o), ;ﬂ + 1?6’]% + o(/-c3)>,
T 2 2
(=¥ (em2),-whhm/) = (V7 o), = % o).

Now it follows that the curves CN 4 and CN +__ join one another smoothly at the point CC. iy

r——
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