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Abstract—We consider the nilpotent left-invariant sub-Riemannian structure on the Engel
group. This structure gives a fundamental local approximation of a generic rank 2 sub-
Riemannian structure on a 4-manifold near a generic point (in particular, of the kinematic
models of a car with a trailer). On the other hand, this is the simplest sub-Riemannian structure
of step three. We describe the global structure of the cut locus (the set of points where geodesics
lose their global optimality), the Maxwell set (the set of points that admit more than one
minimizer), and the intersection of the cut locus with the caustic (the set of conjugate points
along all geodesics). The group of symmetries of the cut locus is described: it is generated by
a one-parameter group of dilations R+ and a discrete group of reflections Z2 × Z2 × Z2. The
cut locus admits a stratification with 6 three-dimensional strata, 12 two-dimensional strata,
and 2 one-dimensional strata. Three-dimensional strata of the cut locus are Maxwell strata
of multiplicity 2 (for each point there are 2 minimizers). Two-dimensional strata of the cut
locus consist of conjugate points. Finally, one-dimensional strata are Maxwell strata of infinite
multiplicity, they consist of conjugate points as well. Projections of sub-Riemannian geodesics
to the 2-dimensional plane of the distribution are Euler elasticae. For each point of the cut locus,
we describe the Euler elasticae corresponding to minimizers coming to this point. Finally, we
describe the structure of the optimal synthesis, i. e., the set of minimizers for each terminal
point in the Engel group.
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1. INTRODUCTION
The Engel group M is a nilpotent four-dimensional Lie group, connected and simply connected,

which has Lie algebra L = span(X1,X2,X3,X4) with the multiplication table

[X1,X2] = X3, [X1,X3] = X4, [X2,X3] = [X1,X4] = [X2,X4] = 0.

This article studies the sub-Riemannian structure [1] on the Lie group M generated by the
left-invariant orthonormal frame X1, X2. This structure gives a nilpotent approximation [2] to a
generic rank two sub-Riemannian structure in four-dimensional space near a generic point.

In certain coordinates (x, y, z, w) on the Engel group M ∼= R
4, the nilpotent sub-Riemannian

problem is stated as follows:⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ = u1, ẏ = u2, ż = −u1
y

2
+ u2

x

2
, ẇ = u2

x2

2
,

q = (x, y, z, w) ∈ R
4, (u1, u2) ∈ R

2,

q(0) = q0 = (0, 0, 0, 0), q(t1) = (x1, y1, z1, w1),

l =
∫ t1

0

√

u2
1 + u2

2 dt → min .
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This paper has the following structure. In Section 1.1 we recall results on the problem obtained
in previous works [3–5]. In Section 1.2 we prove some simple preliminary results on the cut locus. In
Sections 2–6 we describe, respectively, the intersection of the cut locus with the sets {x = z = 0},
{z = 0, x > 0}, {z = 0}, {x = 0, z > 0}, and {x = 0}. In Section 7 we sum up these results by
describing a global stratification of the cut locus. In Appendices A–C we prove technical lemmas
from Sections 2, 3, and 5.

1.1. Previously Obtained Results

This paper continues a series of works [3–5], where a detailed study of the sub-Riemannian
problem on the Engel group was started (in these works, instead of the coordinate w, we used the
coordinate v = w + y3/6). First we recall the main results of these works.

For each point q1 ∈ M there exists an optimal trajectory (sub-Riemannian minimizer). Sub-
Riemannian geodesics are described by the Pontryagin maximum principle. Abnormal trajectories
are simultaneously normal, and their endpoints fill two rays

A± = {q ∈ M | x = z = w = 0, sgn y = ±1}.

Geodesics are parametrized by Jacobi elliptic functions [9]. Projections of geodesics onto the
plane (x, y) are Euler’s elasticae [6, 7]. Small arcs of geodesics are optimal; however, large arcs are,
in general, not optimal. A point at which a geodesic loses its optimality is called a cut point. The
union of cut points along all geodesics is called the cut locus. The cut locus is one of the most
important characteristics of sub-Riemannian structures [2], and the main goal of this paper is its
description for the left-invariant sub-Riemannian problem on the Engel group.

A generic geodesic loses its optimality at a Maxwell point, i. e., a point where several geodesics
of the same length meet one another. Maxwell points are fixed points of discrete symmetries ε1, ε2,
ε4 acting on the Engel group as follows:

ε1(x, y, z, w) = (x, y,−z,w − xz), (1.1)

ε2(x, y, z, w) = (−x, y, z, w − xz), (1.2)

ε4(x, y, z, w) = (−x,−y, z,−w). (1.3)

The subspaces Mx = {q ∈ M | x = 0}, Mz = {q ∈ M | z = 0} consist of fixed points of symme-
tries (1.1), (1.2), the cut locus is contained in the union of these subspaces (see Theorem 3 below).

The problem has also continuous symmetries — the one-parameter group of dilations given by

the flow of the vector field X0 = x
∂

∂x
+ y

∂

∂y
+ 2z

∂

∂z
+ 3w

∂

∂w
.

The main result of [3–5] is the explicit description of the cut time (see Theorem 1 below) and the
proof that there is a unique minimizer for each point q1 ∈ M ∩ {xz �= 0} (see Theorem 2 below).

We have shown in [3] that the family of all extremal trajectories of the problem is parametrized
by the cylinder

C =
{
λ ∈ T ∗

q0
M | H(λ) = 1/2

}
=

{
λ = (θ, c, α) | θ ∈ S1, c, α ∈ R

}
,

where H(λ) = (〈λ,X1〉2 + 〈λ,X2〉2)/2, λ ∈ T ∗M , is the maximized Hamiltonian of the Pontryagin
maximum principle; (θ, c, α) are certain natural coordinates on the cylinder C. The parametrization
of extremal trajectories is defined by the exponential map

Exp: N → M, N = C × R+,

Exp(ν) = qt = (xt, yt, zt, wt), ν = (λ, t).

The function E = c2/2−α cos θ is constant along extremal trajectories, and the cylinder C stratifies
according to its values:

C = 	7
i=1Ci, C4 =

{
λ ∈ C | α �= 0, E = −|α|

}
,

C1 =
{
λ ∈ C | α �= 0, E ∈ (−|α|, |α|)

}
, C5 =

{
λ ∈ C | α �= 0, E = |α|, c = 0

}
,
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C2 =
{
λ ∈ C | α �= 0, E ∈ (|α|,+∞)

}
, C6 =

{
λ ∈ C | α = 0, c �= 0

}
,

C3 =
{
λ ∈ C | α �= 0, E = |α|, c �= 0

}
, C7 =

{
λ ∈ C | α = c = 0

}
.

Here, and throughout the remainder of the text, 	 is a disjoint union. Denote the corresponding
subsets in the preimage of the exponential map: Ni = Ci × R+.

An arbitrary extremal trajectory of the sub-Riemannian problem on the Engel group projects to
the plane (x, y) into an Euler elastica. Each subset Ci, i = 1, . . . , 7, corresponds to a certain type
of Euler elasticae.

For the parametrization of trajectories for the subsets C1 (inflectional elasticae), C2 (noninflec-
tional elasticae) and C3 (critical elasticae), we introduce a set of elliptic coordinates λ = (ϕ, k, α).
The parameter k is a reparametrization of the first integral E. On the set C3 we have k = 1, this
set separates C1 and C2, where k ∈ (0, 1). The remaining subsets Ci, i = 4, . . . , 7, (lines and circles
in the plane (x, y)) are parametrized by the coordinates λ = (θ, c, α). Notice that trajectories for
the case λ ∈ C4 ∪ C5 are defined by formulas for λ ∈ C7, when sin θ = 0, thus the cases C4, C5 are
not considered in this paper.

On the subsets N1, N2, N3, we introduce a set of coordinates (p, τ, σ):

σ = sgn α
√

|α|,
(λ, t) ∈ N1 ∪ N3 ⇒ p = |σ|t/2, τ = |σ|(ϕ + t/2),
(λ, t) ∈ N2 ⇒ p = |σ|t/(2k), τ = |σ|(ϕ + t/2)/k.

Definition 1. The cut time tcut(λ) is the time when the extremal trajectory corresponding to the
covector λ loses its global optimality:

tcut(λ) = sup
{
t > 0 | Exp(λ, s) optimal for s ∈ [0, t]

}
.

The cut locus is the set Cut =
{

Exp(λ, t) | λ ∈ C, t = tcut(λ)
}
.

Remark 1. If tcut(λ) = ∞, then the trajectory Exp(λ, s) is optimal on the whole ray s ∈ [0,∞).
In this case the nonstrict inequality s � tcut(λ) should be understood as a strict one.

Theorem 1 ([5], Corollary 4.2). The cut time has the following explicit expression:

∀λ ∈ C1 tcut(λ) =
min

(
2p1

z(k), 4K(k)
)

|σ| =

⎧
⎨

⎩

4K(k)/|σ|, k ∈ (0, k0],

2p1
z(k)/|σ|, k ∈ [k0, 1),

∀λ ∈ C2 tcut(λ) =
2K(k)k

|σ| ,

∀λ ∈ C6 tcut(λ) =
2π

√
|c|

,

∀λ ∈ C3 ∪ C7 tcut(λ) = +∞.

Here K(k) =
∫ π

2
0

dt√
1−k2 sin2 t

is the complete elliptic integral of the first kind; p1
z(k) ∈

(
K(k), 3K(k)

)

is the first positive root of the function fz(p, k) = dn p sn p +
(
p − 2E(p)

)
cn p. The functions

sn p, cn p,dn p are Jacobian elliptic functions with modulus k by default (since the modulus k

is constant along extremal trajectories), e.g., sn p = sn(p, k); also E(p) =
∫ p

0
dn2 t dt.

On the subsets N1, N2 the coordinates (p, τ) are transformed, respectively, into (u1, u2) via
the formulas u1 = am p, u2 = am τ , where am is the elliptic amplitude, inverse function to the
incomplete elliptic integral of the first kind: F (am p) = p. Summing up, we use the following
coordinates for parametrization of the exponential map on subsets:

ν ∈ N1 ∪ N2, ν = (k, u1, u2, σ), (1.4)
ν ∈ N3, ν = (p, τ, σ), (1.5)
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ν ∈ N6, ν = (θ, c, t), (1.6)
ν ∈ N7, ν = (θ, t). (1.7)

Explicit formulas for the exponential map Exp(λ, t) for each subset Ni, i = 1, . . . , 7, are given in [5].
In [3] we showed that the vanishing of one of the coordinates x, z on geodesics is related to discrete

symmetries ε1, ε2 of the exponential map. The group of all discrete symmetries {Id, ε1, . . . , ε7} is
isomorphic to the group of symmetries of parallelepiped Z2 × Z2 × Z2. Explicit expression of the
symmetries ε1, ε2, ε4 is presented above in (1.1)–(1.3). The action of the symmetries ε1, ε2, ε4 in
the preimage N is expressed as follows:

ε1(θ, c, α, t) = (θt,−ct, α, t), (1.8)

ε2(θ, c, α, t) = (−θt, ct, α, t). (1.9)

ε4(θ, c, α, t) = (θ + π, c,−α, t). (1.10)

Conditions of invariance of points in the preimage of the exponential map w.r.t. the symmetries
ε1, ε2 are given, respectively, by the equalities ct/2 = 0 and sin θt/2 = 0. On the subsets Ni, i =
1, . . . , 7, in coordinates (1.4)–(1.7), these conditions are described in Table 1.

Table 1. Conditions of invariance of points w.r.t. the action of ε1, ε2 in N .

ν ∈ Ni N1 N2 N3 N6 N7

ε1(ν) = ν cosu2 = 0 ∅ ∅ ∅ N7

ε2(ν) = ν sinu2 = 0 sin u2 cosu2 = 0 τ = 0 2θ + ct = 2πn,
n∈Z

sin θ = 0

In the preimage of the exponential map, optimal trajectories correspond to the set

N̂ =
{
(λ, t) ∈ N | t � tcut(λ)

}
.

After having excluded the initial point q0, we get the following set of terminal points q1:

M̂ =
{
(x, y, z, w) ∈ R

4 | x2 + y2 + z2 + w2 �= 0
}
.

Below we mean that q1 = (x, y, z, w) ∈ M̂ .

According to the action of the main symmetries ε1, ε2, the subsets M̂ , N̂ decompose into the
following subsets:

M̂ = M ′ 	 M̃, N̂ = N ′ 	 Ñ ,

M ′ =
{
q ∈ M | xz = 0, x2 + y2 + z2 + w2 �= 0

}
, M̃ =

{
q ∈ M | xz �= 0

}
,

N ′ =
{
(λ, t) ∈ N | t = tcut(λ) or ct/2 sin θt/2 = 0, t < tcut(λ)

}
,

Ñ =
{
(λ, t) ∈ N | t < tcut(λ), ct/2 sin θt/2 �= 0

}
.

Theorem 2 ([5], Corollary 3.21). The map Exp: Ñ → M̃ is a diffeomorphism.

1.2. Preliminary Results on the Cut Locus

The set N ′ consists of cut points and fixed points of the symmetries ε1, ε2:

N ′ = Ncut 	 FIX, FIX = FIX1 	FIX2 	FIX12,

Ncut =
{
(λ, t) ∈ N | t = tcut(λ)

}
, FIX12 =

{
ν ∈ N7 | sin θ = 0

}
,

FIXi =
{
(λ, t) ∈ N\FIX12 | t < tcut(λ), εi(λ, t) = (λ, t)

}
, i = 1, 2.

Obviously, Cut = Exp(Ncut).
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The set M ′ stratifies as follows:
M ′ = M00 	 M0+ 	 M0− 	 M+0 	 M−0, M00 = {q ∈ M | x = z = 0, y2 + w2 �= 0},

M0± = {q ∈ M | x = 0, sgn z = ±1}, M±0 = {q ∈ M | sgn x = ±1, z = 0}.

Certain simple geometric properties of the cut locus follow immediately from previously obtained
results.

Theorem 3. 1) Cut ⊂ Mx ∪ Mz,

2) εi(Cut) = Cut, i = 1, . . . , 7,

3) etX0(Cut) = Cut, t ∈ R.

Proof. Inclusion 1) follows from Theorem 1. Equalities 2) and 3) follow from invariance of the cut
time w.r.t. reflections εi and its homogeneity w.r.t. dilations etX0 , see item (3) of Corollary 4.2 [5].

Denote N− =
{
(λ, t) ∈ N | t < tcut(λ)

}
.

Lemma 1. We have Cut∩Exp(N−) = ∅, thus Cut∩Exp(FIX) = ∅.

Proof. By contradiction, let Cut∩Exp(N−) � q1 = Exp(λ1, t1) = Exp(λ2, t2), where (λ1, t1) ∈
Ncut, (λ2, t2) ∈ N−. One can easily see that λ1 �= λ2 and q1(t) = Exp(λ1, t) �≡ Exp(λ2, t) = q2(t).
Both trajectories q1(t), t ∈ [0, t1], and q2(t), t ∈ [0, t2], are optimal, thus t1 = t2, and q1 = q2(t2) is a
Maxwell point. Thus the trajectory q2(t) is not optimal for t > t2, which contradicts the inequality
t2 < tcut(λ).

The second inequality in the statement of this lemma follows from the inclusion FIX ⊂ N−.

Lemma 2. Let ν ∈ N and Exp(ν) = (x, y, z, w). If ν ∈ N2 ∪ N3 ∪ N6, then z �= 0. If ν ∈ N7, then
z = 0.

Proof. The statement follows immediately from the formulas of the exponential map (see [3],
Sections 5.5–5.6, 7.4) for the sets Ci, i = 2, . . . , 7.

2. STRUCTURE OF Cut∩{x = z = 0}

Now we study the set N00 = Exp−1(M00) ∩ N̂ . Recall [3] that the components of geodesics x, z
vanish either at the cut time (see Theorem 1) or at a fixed point of a symmetry in the image of the
exponential map (see Table 1). Denote the function u1z(k) = am

(
p1

z(k)
)
, recall also that k0 ≈ 0.909

is a unique solution to the equation 2E(k) −K(k) = 0, where E(k) is the complete elliptic integral
of the second kind.

We show below in Lemma 3 that points from N00 related to the cut locus belong to the subset N1

parametrized by the coordinates (k, u1, u2, σ). We use these coordinates to define the components
MAX12

± ,MAX20
ij ,MAX10

ij , i, j ∈ {+,−} from N00 related to the cut locus, see Table 2. This table
should be read by columns. For example, the first column means that

MAX20
++ =

{
(k, u1, u2, σ) ∈ N1 | k ∈ (0, k0), u1 = π, u2 =

π

2
, σ ∈ (0,+∞)

}
.

Let
MAX20 = MAX20

++ 	MAX20
+− 	MAX20

−+ 	MAX20
−−, MAX12 = MAX12

+ 	MAX12
− ,

MAX10 = MAX10
++ 	MAX10

+− 	MAX10
−+ 	MAX10

−− .

Lemma 3. The following equality holds:

N00 = MAX20 	MAX12 	MAX10 	FIX12 . (2.1)
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914 ARDENTOV, SACHKOV

Table 2. Components of N00 ∩ Ncut ∩ N1.

MAX20 MAX12 MAX10

MAX MAX20
++ MAX20

+− MAX20
−+ MAX20

−− MAX12
− MAX12

+ MAX10
++ MAX10

+− MAX10
−+ MAX10

−−

k (0, k0) k0 (k0, 1)

u1 π u1z(k0) = π u1z(k)

u2 π/2 3π/2 π/2 3π/2 [0, 2π) 0 π 0 π

σ (0, +∞) (−∞, 0) (0, +∞) (−∞, 0)

Proof. Let ν = (λ, t) ∈ N00 and t < tcut(λ). Then (λ, t) is a fixed point for both symmetries ε1, ε2.
One can see from Table 1 that the invariance condition holds for both symmetries only in the case
ν ∈ N7, when sin θ = 0. Further, since we have z = 0 in the image, Lemma 2 implies the inclusion
N00 ⊆ {(λ, t) ∈ N1 | t = tcut(λ)} ∪ FIX12.

Consider further the case t = tcut(λ) for (λ, t) ∈ N1. The following cases are possible:

• k ∈ (0, k0). Then tcut(λ) = 4K(k), thus u1 = π, which implies x = 0. The equality z = 0 holds
only in the case cos u2 = 0. These points correspond to Maxwell points for the symmetry ε2,
namely, to the set MAX20.

• k = k0. Then tcut(λ) = 4K(k0), i. e., u1 = u1z(k0) = π, whence x = z = 0. In this case (λ, t) ∈
MAX12, the points are Maxwell points for both symmetries ε1, ε2.

• k ∈ (k0, 1). Then tcut(λ) = 2p1
z(k)/|σ|, i. e., u1 = u1z(k) ∈ (π/2, π), thus z = 0. Moreover, the

equality x = 0 holds only in the case sin u2 = 0. These points correspond to Maxwell points
for the symmetry ε1, namely, to the set MAX10.

Equality (2.1) follows.

The set FIX12 decomposes into two connected components: FIX12
± = {ν ∈ N7 | cos θ = ±1}.

A stratification of the set M00 is shown in Table 3 and in Fig. 1.

Table 3. Stratification of M00 in coordinates (y, w).

M0,0 I0
x+ E+ I0

z+ A+ A− I0
z− E− I0

x−

y (0,∞) 0 (−∞, 0) (0,∞) (−∞, 0) (0,∞) 0 (−∞, 0)

w (0, +∞) 0 (−∞, 0)

Lemmas 4, 5 are obvious, and Lemmas 6, 7 are proved in Appendix A.

Lemma 4. The map Exp: FIX12
± → A± is a diffeomorphism.

Lemma 5. For any u0
2 ∈ [0, 2π) the map Exp:

(
MAX12

+ ∩{u2 = u0
2}

)
→ E+ is a diffeomorphism.

Lemma 6. The map Exp: MAX20
++ → I0

x+ is a diffeomorphism.

Lemma 7. The map Exp: MAX10
++ → I0

z+ is a diffeomorphism.

Corollary 1. The following restrictions of the exponential map are diffeomorphisms:

1. Exp: FIX12
− → A−,
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Fig. 1. Stratification of the plane {x = z = 0}.

2. Exp:
(
MAX12

− ∩{u2 = u0
2}

)
→ E−, u0

2 ∈ [0, 2π),

3. Exp: MAX20
+− → I0

x+, Exp: MAX20
−+ → I0

x−, Exp: MAX20
−− → I0

x−,

4. Exp: MAX10
+− → I0

z+, Exp: MAX10
−+ → I0

z−, Exp: MAX10
−− → I0

z−.

Proof. After taking the symmetries ε1, ε2, ε4 into account, the proof follows immediately from
Lemmas 4–7.

We sum up the results of this section in the following statement.

Theorem 4. There is a stratification

Cut∩M00 = {q ∈ M | x = z = 0, w �= 0} =
⊔

i∈{+,−}

(
I0

xi 	 I0
zi 	 Ei

)
.

At each point of the quadrants I0
x±,I0

z± there are exactly two sub-Riemannian minimizers, while at
any point of the rays E± there is a one-parametric family of minimizers.

The rays A+ 	 A− = M00\Cut are filled by abnormal trajectories.

Now we describe minimizers for q1 = (0, y1, 0, w1) ∈ M00:

1. for q1 ∈ A± there is a unique minimizer ν ∈ FIX12
± .

2. for q1 ∈ I0
x± there are two minimizers

ν1 = (k̂, π, π/2, σ̂) ∈ MAX20
±+, ν2 = (k̂, π, 3π/2, σ̂) ∈ MAX20

±−, k̂ ∈ (0, k0), ±σ̂ > 0.

Figure 2 shows two minimizers with k̂ = 0.84, σ̂ = 1.

Fig. 2. Example of symmetric trajectories for x1 = z1 = 0, y1 > 0, w1 > 0. Left: projections to the plane (x, y),
right: projections to the plane (z, w).
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3. for q1 ∈ I0
z± there are two minimizers

ν1 =
(
k̂, u1z(k̂), 0, σ̂

)
∈ MAX10

±+, ν2 =
(
k̂, u1z(k̂), π, σ̂

)
∈ MAX10

±−, k̂ ∈ (k0, 1), ±σ̂ > 0.

Figure 3 shows two optimal trajectories with k̂ = 0.95, σ̂ = 1.

Fig. 3. Example of symmetric trajectories for x1 = z1 = 0, y1 < 0, w1 > 0. Left: projections to the plane (x, y),
right: projections to the plane (z, w).

4. for q1 ∈ E± there exists a one-parameter family of minimizers

ν(u0
2) = (k0, π, u0

2, σ̂) ∈ MAX12
± , u0

2 ∈ [0, 2π).

Fig. 4. One-parameter family of “figure-eight” trajectories coming to the same point (projections to (x, y)).

In the plane (x, y) the minimizers project to “figure-eight” elasticae (see Fig. 4, the boldface
curve corresponds to u0

2 = 0).

Despite the fact that solutions in the plane (x, y) have the same form and are transformed
one to another by parallel translations, there is no continuous symmetry in the space M
that transforms these solutions one to another. There are only discrete symmetries that
decompose solutions into four-tuples for u0

2 �= πn/2, n = 0, . . . , 3, and two pairs for u0
2 = 0, π

and for u0
2 = π/2, 3π/2. Figure 5 shows a four-tuple of symmetric solutions.

3. STRUCTURE OF Cut∩{z = 0, x > 0}
In this section we study the set Cut∩M+0. Consider the corresponding set in the preimage of

the exponential map N+0 = Exp−1(M+0) ∩ N̂ and study its intersection with the cut locus Ncut.
Notice that the equality z = 0, by Lemma 2, implies that N+0 ⊂ N1 ∪ N7. Since tcut|C7

= ∞, we
get

N+0 ∩ Ncut = {(k, u1, u2, σ) ∈ N1 | k ∈ (k0, 1), u1 = u1z(k), sin u2 �= 0}
= MAX1+

++ 	MAX1+
+− 	MAX1+

−+ 	MAX1+
−− 	CMAX1+

+ 	CMAX1+
− ,

REGULAR AND CHAOTIC DYNAMICS Vol. 22 No. 8 2017



MAXWELL STRATA AND CUT LOCUS IN THE SUB-RIEMANNIAN PROBLEM 917

Fig. 5. Example of symmetric trajectories for x1 = y1 = z1 = 0. Left: projections to (x, y), right: projections
to (z, w).

Table 4. Components of N+0 ∩ Ncut ∩ N1.

MAX1+
++ CMAX1+

+ MAX1+
+− MAX1+

−+ CMAX1+
− MAX1+

−−

u2 (0, π/2) π/2 (π/2, π) (π, 3π/2) 3π/2 (3π/2, 2π)

σ (−∞, 0) (0, +∞)

k (k0, 1)

u1 u1z(k)

where the sets MAX1+
+±,MAX1+

−±, and CMAX1+
± are defined via Table 4.

In order to describe a decomposition of the set M+0, we pass to new coordinates (Y 1,W 1) =(
y

x
,

w

x3

)

invariant under dilations etX0 .

Further in the text, we use the following notation:

si = sin ui, ci = cos ui, di =
√

1 − k2s2
i , (3.1)

E1 = E
(
u1, k

)
, F1 = F

(
u1, k

)
, Δ = 1 − k2s2

1s
2
2. (3.2)

In the case N+0 ∩ Ncut the exponential map is determined by the formulas:

Y 1
1 (k, u1, u2) = −1 + k2(s2

1 − 2)s2
2

2k c1s2d2
,

W 1
1 (k, u1, u2) =

1
48k3s3

1c1d3
1s

3
2d

3
2

(

− E1c1Δ3

+ d3
1s1

(
1 − k2s2

1s
2
2

(
6 − 3k2(4 − s2

1)s
2
2 + 4k4(2 − s2

1)s
4
2

))
)

.

The sets of conjugate points CI+
z± = Exp(CMAX1+

± ) consist of limit points for Maxwell points,
these sets are parametrically defined as follows:

CI1+
± = {(Y 1,W 1) =

(
Y 1

1 (k, u1, u2),W 1
1 (k, u1, u2)

)
| k ∈ (k0, 1), u1 = u1z(k), sin u2 = ±1}.

Lemmas 8–10 are proved in Appendix B.

Lemma 8. The map Exp: CMAX1+
+ → CI+

z+ is a diffeomorphism.

Lemma 9. 1) The curve CI+
z+ in the plane (Y 1,W 1) is a graph of a smooth function W 1

conj(Y
1),

increasing from −∞ to ∞ in the interval Y 1 ∈ (Y 1
0 ,∞), where Y 1

0 =
1 − 2k2

0

2k0

√
1 − k2

0

< 0.
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2) The curve W1 = W 1
conj(Y

1) lies below the line W 1 = Y1/6.

3) lim
Y 1→+∞

W 1
conj(Y

1)
Y 1

∈ R\{0}.

Define the following sets in the plane (Y 1,W 1):

I+
z+ =

{
(Y 1,W 1) | W 1

conj(Y
1) > W 1, Y 1 ∈ (Y 1

0 ,∞)
}
, I+

z− =
{
(Y 1,W 1) ∈ R

2 | (−Y 1,−W 1) ∈ I+
z+

}
,

and show their relation to the cut locus.

Lemma 10. The map Exp: MAX1+
+− → I+

z+ is a diffeomorphism.

Corollary 2. The following restrictions of the exponential map are diffeomorphisms:

Exp: MAX1+
++ → I+

z+, Exp: CMAX1+
− → CI+

z−, Exp: MAX1+
−± → I+

z−.

Proof. After taking the symmetries ε1, ε2, ε4 into account, the proof follows immediately from
Lemmas 8 and 10.

Figure 6 shows a decomposition of the plane (Y 1,W 1).

Fig. 6. Decomposition of the set M+0.

Theorem 5. There is a stratification

Cut∩M+0 = I+
z+ 	 CI+

z+ 	 I+
z− 	 CI+

z−.

Moreover,
I+

z+ =
{

q ∈ M | z = 0, x > 0, y > Y 1
0 x, w < W 1

conj(y/x)x3
}
∼= R

3, (3.3)

I+
z− =

{
q ∈ M | z = 0, x > 0, y < −Y 1

0 x, w > −W 1
conj(−y/x)x3

}
∼= R

3,

CI+
z+ =

{
q ∈ M | z = 0, x > 0, y > Y 1

0 x, w = W 1
conj(y/x)x3

}
∼= R

2,

CI+
z− =

{
q ∈ M | z = 0, x > 0, y < −Y 1

0 x, w = −W 1
conj(−y/x)x3

}
∼= R

2.

For each point of the sets I+
z± there exist two minimizers, and for each point of the remaining part

M+0\(I+
z+ 	 I+

z−) there is a unique minimizer.

Proof. Follows from Lemmas 8–10 and from Corollary 2.
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4. STRUCTURE OF Cut∩{z = 0}

In this section we describe the intersection of the cut locus with the subspace

Mz = {q ∈ M | z = 0}.

Theorem 6. There is a stratification

Cut∩Mz =
⊔

i∈{+,−}

(
Izi 	

(
	j∈{+,−} CIj

zi

)
	 I0

xi 	 Ei

)
, (4.1)

where Izi =
⊔

j∈{+,−,0} I
j
zi, I−

zi = ε2(I+
zi), CI−

zi = ε2(CI+
zi), i ∈ {+,−}. Moreover,

Iz+ = {q ∈ M | z = 0, y > Y 1
0 |x|, w < G1(x, y)} ∼= R

3, Iz− = ε4(Iz+) ∼= R
3, (4.2)

where G1 is a function continuous on the set
{
(x, y) ∈ R

2 | y > Y 1
0 |x|

}
and satisfying the properties

G1(0, y) = 0, G1(−x, y) = G1(x, y), G1(ρx, ρy) = ρ3G1(x, y), ρ > 0.

Proof. By virtue of the equalities ε2(Cut) = Cut, ε2(M+0) = M−0, we get, taking Theorem 5
into account, a decomposition Cut∩M−0 = ε2(Cut∩M+0) =

⊔
i∈{+,−}(I−

zi 	 CI−
zi). Whence, taking

Theorem 4 into account, we get a stratification (4.1).

Representation (4.2) is obtained from (3.3), Table 3, and the equality

I−
z+ = {q ∈ M | z = 0, x < 0, y > Y 1

0 |x|, w < W 1
conj(y/|x|)|x|3}

for the function

G1(x, y) =

⎧
⎨

⎩

W 1
conj(y/|x|)|x3|, x �= 0, y > Y 1

0 |x|,

0, x = 0, y > 0.

Continuity of the function G1 on the set {(x, y) | x �= 0, y > Y 1
0 |x|} follows from continuity of the

function W 1
conj on the ray (Y 1

0 ,+∞), see Lemma 9. In order to prove continuity of the function G1

on the ray {(x, y) | x = 0, y > 0}, take any sequence (xn, yn), xn → +0, yn → ȳ > 0. Then, taking
into account item 3) of Lemma 9, we obtain

G1(xn, yn) = W 1
conj(yn/xn)x3

n =
W 1

conj(yn/xn)
yn/xn

ynx2
n → 0.

Thus, the function G1 is continuous on its whole domain {(x, y) | y > Y 1
0 |x|}.

Representation (4.2) implies that the stratum Iz+ is homeomorphic to R
3. The theorem is

proved.

5. STRUCTURE OF Cut∩{x = 0, z > 0}

In this section we study the set N0+ = Exp−1(M0+) ∩ N̂ and then describe the intersection
M0+ ∩ Cut. It follows from Theorem 1 that N0+ ∩ Ncut ⊂ N1 ∪ N2 ∪ N6.

Now we consider cut points for each of the subsets Ni, i = 1, 2, 6.
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Table 5. Components of N0+ ∩ Ncut ∩ N1.

CMAX2+
1+ MAX2+

1++ MAX2+
1+− CMAX2+

1− MAX2+
1−+ MAX2+

1−−

u2 0 (0, π/2) (3π/2, 2π) 0 (0, π/2) (3π/2, 2π)

σ (0,∞) (−∞, 0)

k (0, k0)

u1 π

5.1. Subcase N1

We have

N0+ ∩ Ncut ∩ N1 = {(k, u1, u2, σ) ∈ N1 | k ∈ (0, k0), u1 = π}
= CMAX2+

1+ 	CMAX2+
1− 	MAX2+

1++ 	MAX2+
1+− 	MAX2+

1−+ 	MAX2+
1−−,

where the sets CMAX2+
1±,MAX2+

1+±,MAX2+
1−± are defined by values of the parameters u2, σ via

Table 5; notice that the inequality z > 0 implies cos u2 > 0.

In order to define a decomposition in the set M0+, we introduce new coordinates (Y 2,W 2) =(
y√
z
,

w√
z3

)

invariant under dilations etX0 . Then the exponential map takes the form:

Y 2
1 (k, u2) =

√

2ι1(k)
kc2

, W 2
1 (k, u2) =

ι2(k) + k2ι1(k)(1 + 3c2
2)

3
(
2kι1(k)c2

)3/2
,

where the functions ι1(k), ι2(k) are defined in Appendix A, see (A.1).

The sets of conjugate points CI+
x± = Exp(CMAX2+

1±) are defined as follows:

CI+
x± =

{
(Y 2,W 2) = (±Y 2

1 (k, u2),±W 2
1 (k, u2)) | k ∈ (0, k0), u2 = 0

}
. (5.1)

Lemmas 11–19 and 21 are proved in Appendix C. Lemma 20 is obvious.

Lemma 11. The map Exp : CMAX2+
1+ → CI+

x+ is a diffeomorphism.

Lemma 12. The curve CI+
x+ in the plane (Y 2,W 2) is a graph of a certain smooth function

W 21
conj(Y

2) > 0, decreasing from ∞ to 0 at the interval Y 2 ∈ (0,∞).

Define the following sets in the plane (Y 2,W 2):

I+
x+ = {(Y 2,W 2) | W 21

conj(Y
2) < W 2, Y 2 ∈ (0,∞)}, (5.2)

I+
x− = {(Y 2,W 2) ∈ R

2 | (−Y 2,−W 2) ∈ I+
x+}

and show their relation to the cut locus.

Lemma 13. The map Exp: MAX2+
1++ → I+

x+ is a diffeomorphism.

Corollary 3. The following restrictions of the exponential map are diffeomorphisms:

Exp: MAX2+
1+− → I+

x+, Exp: CMAX2+
1− → CI+

x−, Exp: MAX2+
1−± → I+

x−.

Proof. After taking the symmetries ε1, ε2, ε4 into account, the proof follows immediately from
Lemmas 11 and 13.
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5.2. Subcase N2

The following representation holds:
N0+ ∩ Ncut ∩ N2 ={(k, u1, u2, σ) ∈ N2 | k ∈ (0, 1), u1 = π/2} = CMAX2+

2++ 	CMAX2+
2+−

	 CMAX2+
2−+ 	CMAX2+

2−− 	MAX2+
2++ 	MAX2+

2+− 	MAX2+
2−+ 	MAX2+

2−−,

where CMAX2+
2+±,CMAX2+

2−±,MAX2+
2+± and MAX2+

2−± are defined by values of the parameters u2, σ
via Table 6. Notice that the inequality z > 0 implies that sgn c = 1.

Table 6. Components of N0+ ∩ Ncut ∩ N2.

CMAX2+
2++ MAX2+

2++ CMAX2+
2+− MAX2+

2+− CMAX2+
2−+ MAX2+

2−+ CMAX2+
2−− MAX2+

2−−

u2 0 (0, π/2) π/2 (π/2, π) 0 (0, π/2) π/2 (π/2, π)

σ (0,∞) (−∞, 0)

k (0, 1)

u1 (0, π/2)

For ν ∈ N0+ ∩ Ncut ∩ N2 the exponential map is defined in the coordinates (Y 2,W 2) by the
formulas:

Y 2
2 (k, u2) = −

√
ι4(k)d2√
1 − k2

< 0, W 2
2 (k, u2) =

k4K(k)d2
2 − ι4(k)

(
8 − 7k2 − k2(2 − k2)s2

2

)

12
√

ι34(k)(1 − k2)3/2d2

,

where the function ι4(k) is defined in Appendix C, see (C.8).
The sets of conjugate points CN+

x±+, CN+
x±− are defined as follows:

CN+
x±+ =

{
(Y 2,W 2) =

(
± Y 2

2 (k, 0),±W 2
2 (k, 0)

)
| k ∈ (0, 1)

}
, (5.3)

CN+
x±− =

{
(Y 2,W 2) =

(
± Y 2

2 (k, π/2),±W 2
2 (k, π/2)

)
| k ∈ (0, 1)

}
. (5.4)

Lemmas 14–19 are proved in Appendix C.

Lemma 14. The map Exp : CMAX2+
2++ → CN+

x++ is a diffeomorphism.

Lemma 15. The curve CN+
x++ in the plane (Y 2,W 2) is a graph of a smooth function W 22+

conj (Y
2)

decreasing from ∞ to 1/
√

π at the interval Y 2 ∈ (−∞, 0).

Lemma 16. The map Exp : CMAX2+
2+− → CN+

x+− is a diffeomorphism.

Lemma 17. The curve CN+
x+− in the plane (Y 2,W 2) is a graph of a smooth function W 22−

conj (Y
2),

decreasing from 0 to −1/
√

π at the interval (−∞, 0).

Corollary 4. The following restrictions of the exponential map are diffeomorphisms:

Exp: CMAX2+
2−+ → CN+

x−+, Exp: CMAX2+
2−− → CN+

x−−.

The curves CN+
x−+, CN+

x−− in the plane (Y 2,W 2) are, respectively, graphs of the functions
−W 22+

conj (−Y 2), −W 22−
conj (−Y 2), Y ∈ (0,∞).

Further we study the relative position of the curves CI+
x±, CN+

x±+, CN+
x±−. By virtue of

Lemma 15 and the symmetry ε4 (1.3) it follows that the curves CN+
x++ and CN+

x−+ belong,
respectively, to the second and fourth quadrants of the plane (Y 2,W 2).

Lemma 12 and Corollary 4 imply that the curves CI+
x+, CN+

x−− belong to the first quadrant.
We show in the following lemma that they do not intersect each other.
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Lemma 18. The inequality −W 22−
conj (−Y 2) < W 21

conj(Y
2) holds for Y 2 > 0.

Define the following sets in the plane (Y 2,W 2):

N+
x+ = {(Y 2,W 2) ∈ R

2 | W 22−
conj (Y

2) < W 2 < W 22+
conj (Y

2), Y 2 < 0},
N+

x− = {(Y 2,W 2) ∈ R
2 | (−Y 2,−W 2) ∈ N+

x+}.

Lemma 19. The map Exp: MAX2+
2−− → N+

x− is a diffeomorphism.

Corollary 5. The following restrictions of the exponential map are diffeomorphisms:

Exp: MAX2+
2−+ → N+

x−, Exp: MAX2+
2++ → N+

x+, Exp: MAX2+
2+− → N+

x+.

5.3. Subcase C6

The following decomposition holds:

N0+ ∩ Ncut ∩ N6 =
{
(c, θ, t) ∈ N6 | t = 2π/|c|, θ ∈ S1, c > 0

}
=

⊔

i∈{+,−}

(
CMAX2+

6i 	MAX2+
6i

)
,

where the sets CMAX2+
6±,MAX2+

6± are defined by values of the parameter θ via Table 7.

Table 7. Components of N0+ ∩ N cut ∩N6.

MAX2+
6+ CMAX2+

6− MAX2+
6− CMAX2+

6+

θ (−π, 0) 0 (0, π) π

c (0, +∞)

t 2π/|c|

For ν ∈ N0+ ∩ Ncut ∩ N6 the exponential map is defined in the coordinates (Y 2,W 2) by the
formulas: Y 2

6 (θ) = 0, W 2
6 (θ) = −cos θ/

√
π.

In the image of the exponential map the sets of conjugate points CC+
x± are defined as follows:

CC+
x+ =

{
(Y 2,W 2) =

(
Y 2

6 (π),W 2
6 (π)

)
= (0, 1/

√
π)

}
,

CC+
x− =

{
(Y 2,W 2) =

(
Y 2

6 (0),W 2
6 (0)

)
= (0,−1/

√
π)

}
.

Define the following set in the plane (Y 2,W 2):

C+
x = {(Y 2,W 2) ∈ R

2 | Y 2 = 0, |W 2| < 1/
√

π}.

Lemma 20. The maps Exp(MAX2+
6±) → C+

x are diffeomorphisms.

A decomposition of the plane (Y 2,W 2) is shown in Fig. 7.
Denote the sets

N+
x = N+

x+ 	 C+
x 	 N+

x−,

CN+
x+ = CN+

x++ 	 CC+
x+ 	 CN+

x−−, CN+
x− = CN+

x+− 	 CC+
x− 	 CN+

x−+.

Lemma 21. The set CN x+ (resp. CN+
x−) forms a smooth curve in the upper (lower) half-plane,

which is a graph of a smooth function W 22
conj(Y

2) (resp. −W 22
conj(−Y 2)), where

W 22
conj(Y

2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

W 22+
conj (Y

2), Y 2 ∈ (−∞, 0),

−W 22−
conj (−Y 2), Y 2 ∈ (∞, 0),

1/
√

π, Y 2 = 0.
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Fig. 7. Decomposition of the set M0+.

We sum up the results of this section as follows.
Theorem 7. There is a stratification

Cut∩M0+ =I+
x+ 	 I+

x− 	 N+
x 	 CI+

x+ 	 CI+
x− 	 CN+

x+ 	 CN+
x−.

Moreover,

I+
x+ = {q ∈ M | x = 0, z > 0, y > 0, w > W 21

conj(y/
√

z)
√

z3} ∼= R
3, (5.5)

I+
x− = {q ∈ M | x = 0, z > 0, y < 0, w < −W 21

conj(−y/
√

z)
√

z3} ∼= R
3,

N+
x = {q ∈ M | x = 0, z > 0, −W 22

conj(−y/
√

z)
√

z3 < w < W 22
conj(y/

√
z)
√

z3} ∼= R
3,

CI+
x± = {q ∈ M | x = 0, z > 0, ±y > 0, w = ±W 21

conj(±y/
√

z)
√

z3} ∼= R
2,

CN+
x± = {q ∈ M | x = 0, z > 0, w = ±W 22

conj(±y/
√

z)
√

z3} ∼= R
2.

At each point of the strata I+
x±, N+

x there are two minimizers, and at each point of the remaining
part M0+/(I+

x+ 	 I+
x− 	N+

x ) there is a unique minimizer.

6. THE STRUCTURE OF Cut∩{x = 0}
Describe the intersection of the cut locus with the subspace Mx = {q ∈ M | x = 0}.

Theorem 8. There is a stratification

Cut∩Mx =
⊔

i∈{+,−}

(

Ixi 	 N i
x 	

⊔

j∈{+,−}

(
CIj

xi 	 CN j
xi

)
	 I0

zi 	 Ei

)

, (6.1)

where Ixi =
⊔

j∈{+,−,0} I
j
xi, I−

xi = ε1(I+
xi), CN−

xi = ε1(CI+
xi), CN−

xi = ε1(CN+
xi), i ∈ {+,−};

N−
x = ε1(N+

x ). Moreover,

Ix+ = {q ∈ M | x = 0, y > 0, w > G2(z, y)} ∼= R
3, Ix− = ε4(Ix+) ∼= R

3 (6.2)

N±
x = {q ∈ M | x = 0, sgn z = ±1, −G3(z,−y) < w < G3(z, y)} ∼= R

3, (6.3)

where G2 and G3 are functions that are continuous in the set {(z, y) ∈ R
2 | y > 0} and satisfy the

properties

G2(0, y) = 0, G2(−z, y) = G2(z, y), G2(ρ2z, ρy) = ρ3G2(z, y),

G3(−z, y) = G3(z, y), G3(ρ2z, ρy) = ρ3G3(z, y), ρ > 0.
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Proof. By virtue of the equalities ε1(Cut) = Cut, ε1(M0+) = M0−, we get, taking Theorem 7

into account, that Cut∩M0− = ε1(Cut∩M0+) =
⊔

i∈{+,−}

(
I−

xi 	 CI−
xi 	 CN−

xi

)
. Whence, taking

Theorem 4 into account, we obtain stratification (6.1). Representation (6.2) is obtained from (5.5),
Table 3, and the equality

I−
x+ = ε1(I+

x+) =
{
q ∈ M | x = 0, z < 0, y > 0, w > W 21

conj(y/
√

|z|)
√

|z|3
}

for the function

G2(z, y) =

⎧
⎨

⎩

W 21
conj(y/

√
|z|)|z|3/2, z �= 0,

0, z = 0.

Continuity of the function G2 on the set {(z, y) | z �= 0, y > 0} follows from continuity of the function
W 21

conj on the ray (0,+∞), see Lemma 12. In order to prove continuity of the function G2 on the ray
{(z, y) | z = 0, y > 0}, take any sequence (zn, yn), zn → +0, yn → ȳ > 0. Then, taking Lemma 12
into account, we get G2(zn, yn) = W 21

conj(yn/
√

zn)z3/2
n → 0 = G2(0, ȳ). Thus, the function G2 is

continuous for y > 0.

Representation (6.3) follows from Theorem 7 for the function G3(z, y) = W 22
conj(y/

√
|z|)|z|3/2.

Representations (6.2) and (6.3) imply that the strata Ix±,N±
x are homeomorphic to R

3. The
theorem is proved. �

7. GLOBAL STRATIFICATION OF THE CUT LOCUS

In this section we combine the results of Sections 2, 4, and 6, and provide a global description
of the cut locus.

In Fig. 8 we show the contiguity topology of strata of the cut locus in the quotient by dilations X0.
On the left Fig. 9, we show the set Cut∩Mz after factorization by dilations X0; the quotient
Mz/e

RX0 is represented by the topological sphere {q ∈ M | x6 + y6 + w2 = 1}. Similarly, on the
right Fig. 9, we show the quotient (Cut∩Mx)/eRX0 on the topological sphere

{q ∈ M | y6 + |z|3 + w2 = 1}.

Fig. 8. Stratification of the cut locus: global structure.
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Fig. 9. Stratification of the cut locus: intersections with the subspaces Mz and Mx.

Theorem 9. The cut locus stratifies as follows:

Cut =
⊔

i∈{+,−}

(

Izi 	 Ixi 	 N i
x 	

( ⊔

j∈{+,−}
CIj

zi 	 CIj
xi 	 CN j

xi

)
	 Ei

)

. (7.1)

Three-dimensional strata Izi, Ixi, N i
x, i ∈ {+,−}, are Maxwell strata, at each point of the strata

there are two minimizers. Two-dimensional strata CIj
zi, CIj

xi, CN j
xi, i, j ∈ {+,−}, consist of

conjugate points that are limit points for Maxwell points; at each point of the strata there is a unique
minimizer. One-dimensional strata Ei, i ∈ {+,−}, consist of Maxwell points that are conjugate
points; at each point of the strata there is a one-parameter family of minimizers.

The cut locus is not closed since it contains points arbitrarily close to the initial point q0, but
does not contain the point itself (this is a general fact of sub-Riemannian geometry). The closure
of the cut locus in the sub-Riemannian problem on the Engel group admits the following simple
description.

Theorem 10. cl(Cut) = Cut	A+ 	A− 	{q0}.

Denote by Conj the caustic, i. e., the set of conjugate points along all geodesics starting from
the point q0 [4]; and by Max the Maxwell set [5]. From Theorem 9 we get the following description
of the sets Cut∩Conj and Cut∩Max.

Theorem 11. There are stratifications

Cut∩Conj =
⊔

i∈{+,−}, j∈{+,−}

(
CIj

zi 	 CIj
xi 	 CN j

xi

)
	 E+ 	 E−,

Cut∩Max =
⊔

i∈{+,−}

(

Izi 	 Ixi 	 N i
x 	 Ei

)

.

In other words, Cut∩Conj consists of all two-dimensional and one-dimensional strata, while
Cut∩Max consists of all three-dimensional and one-dimensional strata of the cut locus.
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8. CONCLUSION

This paper continues a series of publications [3–5] which were the first in the literature to study
in detail a sub-Riemannian structure of step more than two. A complete description of the cut
locus and the structure of optimal synthesis for the nilpotent sub-Riemannian problem on the
Engel group is obtained.

Via nilpotent approximation, the results obtained are important for the study and applications of
general sub-Riemannian structures of rank 2 in 4-dimensional space. Theoretically, our results open
the way to investigation of basic local properties of sub-Riemannian distance for such structures
near the initial point. From the applied point of view, these results lead to algorithms and software
for solving a path-planning problem in mobile robotics.

Our research is based upon a detailed study of notions and properties introduced and developed
by V. I. Arnold [11]: Maxwell strata and singularities of a Lagrange map generated by a variational
problem (exponential map of the sub-Riemannian problem). It provides an example of thorough
theoretical research related to important applications (Euler’s elasticae and mobile robots).

APPENDIX A

In this section we present proofs of the diffeomorphic property for the restriction of the
exponential map to Maxwell sets for the case x = z = 0 considered in Section 2.

Denote the functions

ι1(k) = 2E(k) − K(k), ι2(k) = K(k) − E(k), k ∈ (0, 1). (A.1)

Remark 2. The inequalities ι1(k) > 0 and ι2(k) > 0 hold, respectively, for k ∈ (0, k0) and k ∈
(0, 1).

Introduce an equivalence relation useful for our proofs.

Definition 2. Let X be a topological space. Let f1, f2 : X → R, {νn} ⊂ X.

We write f1 ≈ f2 if lim
n→∞

f1(νn)
f2(νn)

∈ R\{0}.

Below in the proofs of the diffeomorphic property of maps we apply the following Hadamard
global diffeomorphism theorem.

Theorem 12 ([10]). Let f : X → Y be a smooth map between manifolds of equal dimension. Let
the following conditions hold:

(1) X is connected,

(2) Y is connected and simply connected,

(3) f is nondegenerate,

(4) f is proper
(
f−1(K) ⊂ X is compact for a compact K ⊂ Y

)
.

Then f is a diffeomorphism.

Definition 3. A sequence {xn} in a topological space X tends to the boundary of X if there is no
compact in X that contains this sequence.

Notation: xn → ∂X.

It is easy to see that a continuous map f : X → Y between topological spaces is proper iff for
any sequence {xn} ⊂ X the implication xn → ∂X ⇒ f(xn) → ∂Y holds.
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Proof (of Lemma 6). We apply Theorem 12. It follows from definitions of the sets MAX20
++, I0

x+

that MAX20
++ is connected, I0

x+ is connected and simply connected, i. e., conditions (1) and (2)
hold for the restriction of Exp under consideration. It was shown in [4] that in the case u1 = π the
exponential map is nondegenerate for sin u2 �= 0, thus condition (3) of Theorem 12 holds as well.

Let ν = (k, u1, u2, σ) ∈ MAX20
++, then Exp(ν) =

(

0,
4ι1(k)

σ
, 0,

8
3σ3

(
k2ι1(k) + ι2(k)

))

. It fol-

lows from Remark 2 that Exp(ν) ∈ I0
x+, thus Exp(MAX20

++) ⊆ I0
x+.

In order to prove condition (4), consider any sequence
{
νn = (kn, π, π/2, σn)

}
, n = 1, 2, 3, . . .,

tending to the boundary of the set MAX20
++ as n → ∞. Denote Exp(νn) = (0, yn, 0, wn). We show

that
{

Exp(νn)
}

tends to the boundary of I0
x+. Let us study the possible cases as n → ∞. After

passing to a subsequence, only the following cases are possible:

1. kn → 0. Then yn ≈ 1/σn, whence wn ≈ k2
ny3

n. Thus, wn → 0 or yn → ∞, may be, on a
subsequence, in both cases Exp(νn) → ∂I0

x+. Below, for brevity, in similar arguments we
omit such a phrase about subsequence.

2. kn → k0. Then yn → 0 or wn → ∞.

3. σn → ∞, kn → k̄ ∈ (0, k0). Then yn → 0, wn → 0.

4. σn → 0, k → k̄ ∈ (0, k0). Then yn → ∞, wn → ∞.

Thus, Exp: MAX20
++ → I0

x+ is a proper map and hence a diffeomorphism by Theorem 12.

Proof (of Lemma 7). It follows from definition of the sets MAX10
++, I0

z+ that the set MAX10
++ is

connected, while I0
z+ is connected and simply connected, i. e., conditions (1) and (2) of Theorem 12

for the restriction of Exp under consideration hold.

Let ν = (k, u1, u2, σ) ∈ MAX10
++, then Exp(ν) =

(

0,
2(2E1 − F1)

σ
, 0,

4E1c1 − d3
1s1

3σ3c1

)

, where

we used the equality F1 = 2E1 −
s1d1

c1
equivalent to fz(u1, k) = 0. Since u1 = u1z(k) ∈ (π/2, π),

then s1 > 0, c1 < 0, E1 > 0, 2E1 − F1 < 0, whence Exp(ν) ∈ I0
z+, thus Exp(MAX10

++) ⊆ I0
z+. It

was shown in [4] that in the case u1 = u1z(k) the exponential map is nondegenerate for cosu2 �= 0,
thus, condition (3) of Theorem 12 holds.

For the proof of condition (4) consider any sequence
{
νn = (kn, u1z(kn), 0, σn)

}
, n = 1, 2, 3, . . .,

tending to the boundary of the set MAX10
++ as n → ∞. Denote Exp(νn) = (0, yn, 0, wn). We show

that
{

Exp(νn)
}

tends to the boundary of I0
z+. Consider the possible cases as n → ∞:

1. kn → k0. Then u1z(kn) → π. Whence yn → 0 or σn → 0 and wn → ∞.

2. kn → 1. Then u1z(kn) → π/2. Whence yn → −∞ or σn → ∞ and wn → 0.

3. σn → ∞, kn → k̄ ∈ (k0, 1). Then yn → 0, wn → 0.

4. σn → 0, kn → k̄ ∈ (k0, 1). Then yn → −∞, w → +∞.

Thus, Exp: MAX10
++ → I0

z+ is a proper map (condition (4) holds) and hence a diffeomorphism by
Theorem 12.
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APPENDIX B
In this section we prove some lemmas from Section 3.

Proof (of Lemma 8). We differentiate the equality fz

(
F

(
u1z(k)

)
, k

)
= 0 by the variable k and get

the following expression for the derivative:

u′
1z(k) =

c1

(
1 − E1c1

s1d1

)

k(1 − k2)s1
. (B.1)

Further, we use this expression to compute the derivative of each coordinate of the restricted
exponential map:

dY 1
1

(
k, u1z(k), π/2

)

d k
=

E1d1

2k2(1 − k2)3/2s1
> 0, (B.2)

d W 1
1

(
k, u1z(k), π/2

)

d k
= −(E1c1 − s1d

3
1)(E1c

3
1 − s1d

3
1)

16k4(1 − k2)5/2s6
1c1

> 0, (B.3)

since u1 = u1z(k) ∈ (π/2, π) and E1 > 0, s1 > 0, c1 < 0, d1 > 0. So the map Exp: CMAX1+
+ → CI+

z+

is nondegenerate, thus condition (3) of Theorem 12 holds. Conditions (1) and (2) are also obviously
satisfied.

For the proof of condition (4) consider a sequence kn, n = 1, 2, 3, . . . , tending to the boundary
of the set CMAX1+

+ and show that one of the functions Y 1
1

(
kn, u1z(kn), π/2

)
,W 1

1

(
kn, u1z(kn), π/2

)

tends to infinity:

1. kn → k0, then u1z(kn) → π. We have

Y 1
1

(
kn, u1z(kn), π/2

)
→ 1 − 2k2

0

2k0

√
1 − k2

0

, (B.4)

W 1
1

(
kn, u1z(kn), π/2

)
≈ − E(k2

0)
24k3

0(1 − k2
0)3/2s3

1

→ −∞. (B.5)

2. kn → 1, then u1z(kn) → π/2.

Y 1
1

(
kn, u1z(kn), π/2

)
=

k2
nc2

1 − 1 + k2
n

2kn

√
1 − k2

nc1

≈ k2
nc1

√
1 − k2

n

−
√

1 − k2
n

c1
. (B.6)

It follows from fz(F1, kn) = 0 that c2
1 =

s2
1(1 − k2

ns2
1)

(F1 − 2E1)2
, compute further

1 − k2
ns2

1

1 − k2
n

= 1 +
k2

nc2
1

1 − k2
n

= 1 +
k2

ns2
1(1 − k2

ns2
1)

(1 − k2
n)(F1 − 2E1)2

.

Since F1 − 2E1 → ∞, we get in the limit

1 − k2
ns2

1

1 − k2
n

=
1

1 − k2
ns2

1
(F1−2E1)2

→ 1, (B.7)

consequently,

c2
1

1 − k2
n

=
s2
1(1 − k2

ns2
1)

(1 − k2
n)(F1 − 2E1)2

≈ 1
(F1 − 2E1)2

→ 0. (B.8)

From (B.6) we get

Y 1
1

(
kn, u1z(kn), π/2

)
≈

√
1 − k2

n

c1
→ ∞. (B.9)
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Consider the second coordinate:

W 1
1

(
kn, u1z(kn), π/2

)
= − d3

1E1

48k3
n(1 − k2

n)3/2s3
1

−
√

1 − k2
n(−1 + 4k2

n)
48k3

nc1
+

+
c1

(
c2
1 + (1 − k2

n)(1 + k2
n + 4k4

n)s2
1

)

48k3
n(1 − k2

n)3/2s2
1

. (B.10)

Further consider (B.10) term by term, using (B.7) and (B.8):

− d3
1E1

48k3
n(1 − k2

n)3/2s3
1

→ − 1
48

, −
√

1 − k2
n(−1 + 4k2

n)
48k3

nc1
→ ∞,

c3
1

48k3
n(1 − k2

n)3/2s2
1

→ 0,
c1(1 + k2

n + 4k4
n)

48k3
n

√
1 − k2

n

→ 0,

whence it follows that

W 1
1

(
kn, u1z(kn), π/2

)
≈

√
1 − k2

n

c1
→ ∞. (B.11)

Thus, Exp: CMAX1+
+ → CI+

z+ is a proper map and hence a diffeomorphism by Theorem 12.

Proof (of Lemma 9). 1) follows from equalities (B.2)–(B.5), (B.9), (B.11).

2) follows from the inequality Y 1
1 (k, u1, π/2) − 6W 1

1 (k, u1, π/2) =
d3
1(c1E1 − d1s1)

8k3(1 − k2)3/2s3
1c1

> 0 under

the condition k ∈ (k0, 1), u1 ∈ (π/2, π).

3) follows from (B.9), (B.11).

Now we prove a lemma we will use in the sequel for localization of two-dimensional parametrically
defined sets.
Lemma 22. Consider a parametrically defined set in the plane (X1,X2) ∈ R

2

Ω =
{(

X1,X2

)
=

(
f1(x1, x2), f2(x1, x2)

)
| x1 ∈ (x0

1, x
1
1), x2 ∈ (x0

2, x
1
2)

}
,

where f1, f2 ∈ C1
(
(x0

1, x
1
1) × [x0

2, x
1
2)

)
. Consider also a curve

γ0 =
{(

X1,X2

)
=

(
f1(x1, x

0
2), f2(x1, x

0
2)

)
| x1 ∈ (x0

1, x
1
1)

}
.

Let the curve γ0 divide the plane (X1,X2) into two connected components, and let the following
conditions hold for x1 ∈ (x0

1, x
1
1):

∂f1

∂x1
(x1, x2) > 0, x2 ∈

[
x0

2, x
1
2

)
, (B.12)

∂f1

∂x2
(x1, x2) > 0, x2 ∈

(
x0

2, x
1
2

)
, (B.13)

∂f1

∂x2
(x1, x

0
2) � 0, (B.14)

∇(x1, x2) =
(

∂f2/∂x1

∂f1/∂x1
− ∂f2/∂x2

∂f1/∂x2

)
(
x1, x2

)
> 0, x2 ∈

[
x0

2, x
1
2

)
, (B.15)

then condition (B.12) allows us to invert the function X1 = f1(x1, x
0
2) in the interval (x0

1, x
1
1):

x1 = h0(X1), which allows us to define the function γ0 as a graph: X2 = g0(X1), where g0(X1) =
f2(h0(X1), x0

2).
Then the following condition holds:

f2(x1, x2) < g0

(
f1(x1, x2)

)
, x1 ∈

(
x0

1, x
1
1

)
, x2 ∈

(
x0

2, x
1
2

)
, (B.16)

i. e., the set Ω lies below the curve γ in the plane (X1,X2).
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Proof. The set Ω is a union of the curves γa =
{(

X1,X2

)
=

(
f1(x1, x

a
2), f2(x1, x

a
2)

)
| x1 ∈

(
x0

1, x
1
1

)}
,

where xa
2 = x0

2 + (x1
2 − x0

2)a for a ∈ (0, 1). Condition (B.12) allows us to define as a graph not only
the curve γ0, but each curve from the family {γa | a ∈ (0, 1)} as well:

X2 = ga(X1), X1 ∈
(
f1(x0

1, x
a
2), f1(x1

1, x
a
2)

)
,

where ga(X1) = f2(ha(X1), xa
2), and x1 = ha(X1) is the inverse function to X1 = f1(x1, x

a
2).

On the other hand, by fixing x1 the set Ω ∪ γ0 becomes a union of curves defined on a half-
interval:

βk =
{(

X1,X2

)
=

(
f1(xk

1 , x2), f2(xk
1 , x2)

)
| x2 ∈ [x0

2, x
1
2)

}
,

where xk
1 = x0

1 + (x1
1 − x0

1)k for k ∈ (0, 1). Moreover, conditions (B.13) and (B.14) allow us to define
as a graph each curve of the family {βk | k ∈ (0, 1)}:

X2 = vk(X1), X1 ∈
[
f1(xk

1 , x
0
2), f1(xk

1 , x
1
2)

)
,

where vk(X1) = f2(xk
1 , rk(X1)), and x2 = rk(X1) is the inverse function to X1 = f1(xk

1 , x2).
Notice that since f1, f2 ∈ C1

(
(x0

1, x
1
1) × [x0

2, x
1
2)

)
, by the inverse function theorem condi-

tions (B.12)–(B.15) guarantee that ga∈ C1
((

f̄1(x0
1, x

a
2), f̄1(x1

1, x
a
2)

))
, vk∈ C1

([
f1(xk

1 , x
0
2), f̄1(xk

1 , x
1
2)

))
,

moreover, condition (B.12) implies existence of a limit lim
x1→x0

1

f1(x1, x
a
2) =: f̄1(x0

1, x
a
2) ∈ [−∞,+∞],

we define similarly f̄1(x1
1, x

a
2), f̄1(xk

1 , x
1
2).

Let X̌1 = f1(xk
1 , x

a
2), then we get ∇(xk

1 , x
a
2) = g′

a(X̌1) − v′
k(X̌1) > 0, whence it follows that

∀xk
1 ∈ (x0

1, x
1
1) xa

2 ∈ [x0
2, x

1
2) ∃ε > 0 ∀X1 ∈ (X̌1, X̌1 + ε) ga(X1) > vk(X1).

If a = 0, then definitions of the functions ga,vk imply that

∀xk
1 ∈ (x0

1, x
1
1) ∃δ > 0 ∀x2 ∈ (x0

2, x
0
2 + δ) g0

(
f1(xk

1 , x2)
)

> f2(xk
1 , x2).

Suppose that condition (B.16) is violated, i. e.,

∃x̂1 ∈ (x0
1, x

1
1) ∃x̂2 ∈ (x0

2, x
1
2) g0

(
f1(x̂1, x̂2)

)
= f2(x̂1, x̂2). (B.17)

Introduce the notation X̂i = fi(x̂1, x̂2), i = 1, 2, and x̌1 = h0(X̂1). Notice that by definition of g0

we have fi(x̌1, x
0
2) = X̂i, i = 1, 2. It follows from (B.13), (B.14) that f1(x̂1, x

0
2) < f1(x̂1, x̂2) = X̂1 =

f1(x̌1, x
0
2), thus condition (B.12) implies that x̂1 < x̌1.

Below we define a function x2 = ω(x1) on the segment x1 ∈ [x̂1, x̌1], which satisfies the condition

f1

(
x1, ω(x1)

)
= X̂1. (B.18)

In view of condition (B.13), if a function w is defined, then it is unique. At the endpoints of the
segment [x̂1, x̌1] the function is defined: ω(x̂1) = x̂2, ω(x̌1) = x0

1, moreover, we have

f2

(
x̂1, ω(x̂1)

)
= f2

(
x̌1, ω(x̌1)

)
= X̂2. (B.19)

Notice that inequality (B.12) implies that for x1 ∈ (x̂1, x̌1) we have

f1(x1, x
0
2) < f1(x̌1, x

0
2) = X̂1 = f1(x̂1, x̂2) < f1(x1, x̂2),

which, together with continuity of the function f1, implies that the function ω is defined at the
segment x1 ∈ [x̂1, x̌1]. If xk

1 ∈ [x̂1, x̌1], then ω(xk
1) = rk(X̂1). In other words, x2 = ω(xk

1) is a uniquely
defined function inverse to X̂1 = f1(xk

1 , x2) at the segment x1 ∈ [x̂1, x̌1]. By the inverse function
theorem, ω ∈ C1([x̂1, x̌1]).

Denote the functions f̂i(x1) = fi

(
x1, ω(x1)

)
, i = 1, 2, and compute their derivatives:

d f̂i

d x1
(x1) =

∂fi

∂x1

(
x1, ω(x1)

)
+

∂fi

∂x2

(
x1, ω(x1)

) d w

d x1
(x1), i = 1, 2.
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It follows from (B.18) that
d f̂1

dx1
= 0, whence

d f̂2

d x1
(x1) =

(
∂f2

∂x1
+

∂f2

∂x2

(
− ∂f1/∂x1

∂f1/∂x2

))
(
x1, ω(x1)

)
=

(
∂f1

∂x1
∇

)
(
x1, ω(x1)

)
> 0,

where x1 ∈ [x̂1, x̌1), thus the function f̂2(x1) increases at the segment [x̂1, x̌1), whence by continuity
of the function we come to a contradiction with condition (B.19).Thus assumption (B.17) is violated,
q.e.d. �

Lemma 23. The inclusion Exp(MAX1+
+−) ⊆ I+

z+ holds.

Proof. Notice that for k ∈ (k0, 1), u2 ∈ (π/2, π) we have

J1
11(k, u2) =

∂Y 1
1

(
k, u1z(k), u2

)

∂u2
=

Δc2

2kc1s2
2d

3
2

> 0, (B.20)

J1
21(k, u2) =

∂Y 1
1

(
k, u1z(k), u2

)

∂k
=

Δ(E1c1d
2
2 − k2s1d1c

2
2)

2k2(1 − k2)s1c1d1s2d3
2

> 0, (B.21)

∇1(k, u2) =
∂W 1

1

(
k, u1z(k), u2

)
/(∂k)

∂Y 1
1

(
k, u1z(k), u2

)
/(∂k)

−
∂W 1

1

(
k, u1z(k), u2

)
/(∂u2)

∂Y 1
1

(
k, u1z(k), u2

)
/(∂u2)

=
Δ2

(
− 2E1s1c1d

5
1 + s2

1d
6
1 + E2

1c2
1

(
(1 − ks2

1)
2 + 2k(1 − k)s2

1

))

8k2s5
1d

5
1s

2
2(k2s1d1c

2
2 − E1c1d

2
2)

> 0. (B.22)

Moreover, for all k ∈ (k0, 1) there exists lim
u2→π/2

∇1(k, u2)∈(0,+∞), and the inequality J1
21(k, π/2)>0

holds. Hence, given Lemma 9, it follows that the map Exp|MAX1+
+−

satisfies the conditions of

Lemma 22, consequently, Exp(MAX1+
+−) ⊆ I+

z+.

Proof (of Lemma 10). Conditions (1) and (2) of Theorem 12 are obviously satisfied, and the results
of [4] imply that condition (3) holds as well. It remains to check the validity of condition (4).

Consider arbitrary sequences (kn, u1z(kn), un
2 ), n = 1, 2, 3, . . . , in the image of Exp tending to

the boundary of the set MAX1+
+− and show that either Exp

(
kn, u1z(kn), un

2

)
→ CI+

z+ or one of the
coordinates in the image tends to infinity:

1. un
2 → π/2, by definition of CI+

z+ we have Exp(kn, u1z(kn), un
2 ) → CI+

z+.

2. un
2 → π, then Y 1

1

(
kn, u1z(kn), un

2

)
≈ − 1

2knc1s2
→ ∞.

3. kn → k0, u
n
2 → û2 ∈ (π/2, π), then u1z(kn) → π, thus s1 → 0, c1 → −1, d1 → 1,Δ → 1. We

get W 1
1

(
kn, u1z(kn), un

2

)
≈ − E(k0)

24k3
0s

3
1s

3
2d

3
2

→ −∞.

4. kn → 1, un
2 → û2 ∈ (π/2, π), then u1z(kn) → π/2. By virtue of c1 → 0, c2 �= 0, s2 �= 0, we get

Y 1
1

(
kn, u1z(kn), un

2

)
≈ − c2

2c1s2
→ ∞.

Consequently, given Lemma 23 Exp: MAX1+
+− → I+

z+ is proper. Hence by Theorem 12 the
restriction of the exponential map is a diffeomorphism.
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APPENDIX C

In this Appendix we prove some technical lemmas from Section 5.

Proof (of Lemma 11). We apply Theorem 12. Notice first that conditions (1) and (2) hold. Further
compute the derivative of each coordinate by k:

dY 2
1 (k, 0)
d k

= − E(k)
(1 − k2)

√
2k3ι1(k)

< 0, (C.1)

d W 2
1 (k, 0)
d k

=
ι3(k)

(
2kι1(k)

)5/2
, (C.2)

where ι3(k) =
3E2(k) − (5 − 4k2)E(k)K(k) + 2(1 − k2)K2(k)

1 − k2
> 0 for k ∈ (0, k0), since ι3(0) = 0,

and ι′3(k) =
ι22(k) + k2ι1(k)

(
2E(k) + K(k)

)

k(1 − k2)2
> 0. Thus, for k ∈ (0, k0) we have

dW 2
1 (k, 0)
d k

> 0. (C.3)

Thus, the map Exp : CMAX2+
1+ → CI+

x+ is nondegenerate, and condition (3) of Theorem 12 holds.
In order to prove condition (4), consider an arbitrary sequence kn, n = 1, 2, 3, . . . , tending to the

boundary of CMAX2+
1+ and show that one of the coordinates tends to infinity:

1. kn → 0, then

Y 2
1 (kn, 0) → ∞, W 2

1 (kn, 0) → 0. (C.4)

2. kn → k0, then

Y 2
1 (kn, 0) → 0, W 2

1 (kn, 0) → ∞. (C.5)

Thus, Exp : CMAX2+
1+ → CI+

x+ is a proper map and hence a diffeomorphism by Theorem 12.

Proof (of Lemma 12). Follows from Lemma 11 and expressions (C.1)–(C.5).

Lemma 24. The inclusion Exp(MAX2+
1++) ⊂ I+

x+ holds.

Proof. Notice the inequalities

J21
11 =

∂Y 2
1 (k, u2)
∂u2

=

√
ι1(k)
2kc3

2

s2 > 0, (C.6)

J21
12 =

∂W 2
1 (k, u2)
∂u2

=

(
ι2(k) + k2s2

2ι1(k)
)
s2

2c2

(
2kι1(k)c2

)3/2
> 0. (C.7)

Thus, if u2 grows, then both coordinates Y 2 and W 2 grow as well. Thus, for a fixed k = k̂ the
curve

(
Y 2(k̂, u2),W 2(k̂, u2)

)
, u2 ∈ (0, π/2), lies above the curve W 2 = W 21

conj(Y
2), Y2 > Y 2(k̂, 0),

see Lemma 12. This proves this lemma by definition (5.2).

Proof (of Lemma 13). Apply Theorem 12. Conditions (1) and (2) follow from definitions of the
sets MAX2+

1++, I+
x+. Condition (3) follows from results of [4]. Given Lemma 24, in order to prove

condition (4), it suffices to consider arbitrary sequences (kn, un
2 ) in the image of Exp tending to

the boundary of the set MAX2+
1++, and to show that the sequence

(
Y 2

1 (kn, un
2 ),W 2

1 (kn, un
2 )

)
tends

to the boundary of the set I+
x+:
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1. un
2 → 0, by definition of CI+

x+ we have
(
Y 2

1 (kn, un
2 ),W 2

1 (kn, un
2 )

)
→ CI+

x+.

2. un
2 → π/2, kn → k̂ ∈ [0, k0), or kn → 0, then Y 2

1 (kn, un
2 ) ≈ 1√

knc2
→ ∞.

3. un
2 → π/2, kn → k0, then ι1(kn) → 0, thus W 2

1 (kn, un
2 ) ≈ E(k0)

(
ι1(k)c2

)3/2
→ ∞.

4. kn → k0, u
n
2 → û2 ∈ (0, π/2), then ι1(kn) → 0, thus Y 2

1 (kn, un
2 ) ≈

√
ι1(kn) → 0.

Thus, Exp: MAX2+
1++ → I+

x+ is a proper map and hence a diffeomorphism by Theorem 12.

Introduce the functions
ι4(k) = (2 − k2)K(k) − 2E(k), (C.8)

ι5(k) = (2 − k2)E(k)K(k) + (1 − k2)K2(k) − 3E2(k),

ι6(k) = E(k) + (−1 + k2)K(k) > 0.

Lemma 25. Let k ∈ (0, 1). Then inequalities ιi(k) > 0, i = 4, 5, 6 hold.

Proof. Notice that ιi(0) = 0, i = 4, 5, 6. Further,
(

ι4(k)√
1 − k2

)′
=

kι2(k)
(1 − k2)3/2

> 0 for k ∈ (0, 1); since
(
(2 − k2)E(k) − 2(1 − k2)K(k)

)′ = 3kι2(k) > 0, we have
(

ι5(k)√
1 − k2

)′
=

ι4(k)
(
(2 − k2)E(k) − 2(1 − k2)K(k)

)

k(1 − k2)3/2
> 0;

finally, ι′6(k) = kK(k) > 0. Hence, ιi(k) > 0, i = 4, 5, 6, for k ∈ (0, 1).

Proof (of Lemma 14). Apply Theorem 12. Notice that conditions (1) and (2) hold. Compute further
the derivative of each coordinate in k:

∂Y 2
2 (k, 0)
∂k

= − kι2(k)
2(1 − k2)5/4

√
ι4(k)

< 0, (C.9)

∂W 2
2 (k, 0)
∂k

=
k3ι5(k)

4(1 − k2)7/4ι
5/2
4 (k)

> 0. (C.10)

By virtue of sign-definiteness of the derivatives, the map is nondegenerate, thus condition (3) of
Theorem 12 holds.

In order to prove condition (4), consider arbitrary sequences kn, n = 1, 2, 3, . . . , tending to the
boundary of the set CMAX2+

2++:

1. kn → 0, then

Y 2
2 (kn, 0) → 0, W 2

2 (kn, 0) → 1/
√

π. (C.11)

2. kn → 1, then

Y 2
2 (kn, 0) → −∞, W 2

2 (kn, 0) → ∞. (C.12)

Thus, Exp : CMAX2+
2++ → CN+

x++ is a proper map and hence a diffeomorphism by Theorem 12.

Proof (of Lemma 15). Follows from Lemma 14 and expressions (C.9)–(C.12).
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Proof (of Lemma 16). Apply Theorem 12. Conditions (1) and (2) hold. Compute the derivative of
each coordinate in k:

∂Y 2
2 (k, π/2)

∂k
= − kι6(k)

2(1 − k2)
√

ι4(k)
< 0, (C.13)

∂W 2
2 (k, π/2)
∂k

=
k3ι5(k)

4(1 − k2)ι5/2
4 (k)

> 0, (C.14)

thus, the map Exp|CMAX2+
2+−

is nondegenerate.

Consider arbitrary sequences kn, n = 1, 2, 3, . . . , tending to the boundary of the set CMAX2+
2+−:

1. k → 0, then
Y 2

2 (kn, π/2) → 0, W 2
2 (kn, π/2) → −1/

√
π. (C.15)

2. k → 1, then

Y 2
2 (kn, π/2) → −∞, W 2

2 (kn, π/2) → 0. (C.16)

Thus, Exp : CMAX2+
2+− → CN+

x+− is proper and hence a diffeomorphism by Theorem 12.

Proof (of Lemma 17). Follows from Lemma 16 and expressions (C.13)–(C.16).

Proof (of Lemma 18). To prove the lemma, consider the following fixed points of the symmetry

ε2 for λ ∈ C3: FIX2+
3+ =

{
(σ, p, τ) ∈ C+

3+ × R+ | τ = 0
}
⊂ FIX2. The exponential map transforms

the set FIX2+
3 into the set

Fix2+
3+ =

{
(Y 2,W 2) =

(
Y 2

3 (p),W 2
3 (p)

)
| p ∈ (0,∞)

}
,

(
Y 2

3 (p),W 2
3 (p)

)
=

(
2 sinh p − p cosh p√

p cosh p − sinh p
,
9 sinh p − 12p cosh p + sinh(3p)

24(p cosh p − sinh p)
3
2

)

.

Since
(
2 sinh p − p cosh p

)′ = cosh p − p sinh p, we have

dY 2
3 (p)
d p

< 0, (C.17)

moreover,

lim
p→0

Y 2
3 (p) = +∞, lim

p→∞
Y 2

3 (p) = −∞, (C.18)

thus, the curve Fix2+
3+ is a graph of a smooth function W 3

fix(Y
2), Y 2 ∈ (−∞,+∞).

Let p = p3 > 0 be the positive root of the equation p = 2 tanh p, then

Y 2
3 (p3) = 0, W 2

3 (p3) =
sinh2 p3 − 3
6
√

sinh p3
.

Let sinh p0 = 3, then p0 = ln(3 +
√

10). It is known that the inequalities ln 2 < 0.7, ln 3 < 1.1
hold. Now we estimate p0:

ln(6 +
√

10 − 3) < ln 6 +
√

10 − 3
6

< 0.7 + 1.1 +
√

10
6

− 1
2

<
13
√

10
30

+
√

10
6

= 2 tanh p0,

whence p0 < 2 tanh p0, then p3 > p0, thus the inequality sinh p3 > 3 holds. It follows that W 2
3 (p3) >

W 2
3 (p0) =

1√
3

>
1√
π

, i. e., W 3
fix(0) >

1√
π

. Whence it follows that

∃ε > 0 ∀0 < Y 2 < ε − W 22−
conj (−Y 2) < W 3

fix(Y
2) < W 21

conj(Y
2), (C.19)

i. e., the statement of the lemma holds in a neighborhood of zero.
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Now assume that there exists a point where this condition is false, i. e., there exists Y 2
ε > 0 such

that −W 22−
conj (−Y 2

ε ) = W 21
conj(Y

2
ε ). Then by continuity there is a point (Y 2,W 2) ∈ Fix2+

3+ ∩(CI+
x+ ∪

CN+
x−−), which contradicts to Lemma 1. Consequently, our assumption is false. �

Lemma 26. The inclusion Exp(MAX2+
2−−) ⊂ N+

x− holds.

Proof. Exp(MAX2+
2−−) lies in the right half-plane of the plane (Y 2,W 2).

Notice that for k ∈ (0, 1), u2 ∈ (π/2, π) the following conditions hold:

J22
11 (k, u2) = −∂Y 2

2 (k, u2)
∂u2

= −
√

ι4(k)k2c2s2

2
√

d3
2

√
1 − k2

> 0, (C.20)

J22
21 (k, u2) = −∂Y 2

2 (k, u2)
∂k

=
k
(
(1 − k2)ι6(k) + c2

2

(
ι4(k) + k2ι6(k)

))

2
√

d3
2ι4(k)

√
(1 − k2)5

> 0, (C.21)

∇22(k, u2) =
∂W 2

2

(
k, u2

)
/∂k

∂Y 2
2

(
k, u2

)
/∂k

−
∂W 2

2

(
k, u2

)
/∂u2

∂Y 2
2

(
k, u2

)
/∂u2

=
d3
2k

2
(
E2(k) − (1 − k2)K2(k)

)

ι24(k)
√

1 − k2
(
(1 − k2)ι6(k) + c2

2

(
ι4(k) + k2ι6(k)

)) > 0, (C.22)

moreover, J22
11 (k, π/2) = 0, J22

21 (k, π/2) > 0, and ∇22(k, π/2) > 0. Hence, it follows from Lemma 22
and the definition of N+

z− that the set Exp(MAX1+
−−) lies below the curve −W 22−

conj (−Y 2), Y 2 ∈
(0,∞), which defines the upper boundary of the set N+

x−.

Now we should show that the set Exp(MAX2+
2−−) lies above the curve −W 22+

conj (−Y 2), Y 2 ∈ (0,∞).
To this end we consider in the preimage of the exponential map a symmetric set MAX2+

2++

with a symmetric curve W 22+
conj (Y

2), Y 2 ∈ (−∞, 0), with the inverted parameter k̃ = 1 − k, and
u2 ∈ (0, π/2). In this case the hypotheses of Lemma 22 hold as well, thus the set MAX2+

2++

lies below the curve W 22+
conj (Y

2), Y 2 ∈ (−∞, 0). So the set Exp(MAX2+
2−−) lies above the curve

−W 22+
conj (−Y 2), Y 2 ∈ (0,∞). Consequently, Exp(MAX2+

2−−) ⊂ N+
x−.

Proof (of Lemma 19). Apply Theorem 12. Conditions (1) and (2) follow from definitions of the sets
in the image and the preimage of the exponential map. Condition (3) follows from results of [4]. By
virtue of Lemma 26, to prove condition (4) we consider arbitrary sequences (kn, un

2 ) in the image of
Exp tending to the boundary of the set MAX2+

2−−, and show that such sequences, under the action
of the exponential map, tend to the boundary of N+

z−:

1. k → 0, then Y 2(kn, un
2 ) → 0.

2. k → 1, then Y 2(kn, un
2 ) → ∞.

3. un
2 → π/2, then by definition we have

(
Y 2(kn, un

2 ),W 2(kn, un
2 )

)
→ CMAX2+

2−−.

4. un
2 → π, then by definition we have

(
Y 2(kn, un

2 ),W 2(kn, un
2 )

)
→ CMAX2+

2−−.

Hence, by Theorem 12 the map Exp(MAX2+
2−−) → N+

x− is a diffeomorphism.
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Proof (of Lemma 21). Given the symmetry ε4, it suffices to consider the case CN+
x+.

Lemma 15 and Corollary 4 imply that CN+
x+ form a decreasing continuous curve. Since the

curves CN+
x++ and CN+

x−− are continuous, in order to prove smoothness of the union of these
curves at the point CC+

x+, it suffices to show that the limits of the corresponding derivatives at this
point coincide one with another. To this end we evaluate the corresponding Taylor polynomials at
the point k = 0:

(
Y 2

2 (k, 0),W 2
2 (k, 0)

)
=

(

−
√

πk2

4
+ o(k3),

1√
π

+
3k2

16
√

π
+ o(k3)

)

,

(
− Y 2

2 (k, π/2),−W 2
2 (k, π/2)

)
=

(√
πk2

4
+ o(k3),

1√
π
− 3k2

16
√

π
+ o(k3)

)

.

Now it follows that the curves CN+
x++ and CN+

x−− join one another smoothly at the point CC+
x+.
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