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Abstract—In this paper, we discuss geometric structures related to the Lagrange multipliers
rule. The practical goal is to explain how to compute or estimate the Morse index of the second
variation. Symplectic geometry allows one to effectively do it even for very degenerate problems
with complicated constraints. The main geometric and analytic tool is an appropriately
rearranged Maslov index.
We try to emphasize the geometric framework and omit analytic routine. Proofs are often
replaced with informal explanations, but a well-trained mathematician will easily rewrite them
in a conventional way. We believe that Vladimir Arnold would approve of such an attitude.
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1. FIRST VARIATION IN FINITE DIMENSIONS
Our goal in this note will be to develop a general machinery for optimization problems using

the language and results from symplectic geometry.
We start by discussing the Lagrange multiplier rule in the finite-dimensional setting. Let U be

a finite-dimensional manifold, ϕ : U → R a smooth function and Φ : U → M a smooth submersion
onto a finite-dimensional manifold M . We would like to find critical points of ϕ restricted to the
level sets of Φ. It is well known that this can be done via the Lagrange multiplier rule.

Theorem 1 (Lagrange multiplier rule). A point u ∈ U is a critical point of ϕ|Φ−1(q), q ∈ M ,
if and only if there exists a covector λ ∈ T ∗

q M such that

duϕ = λDuΦ,

Φ(u) = q.
(1.1)

This fact has an important geometric implication. Suppose that we have locally a smooth
function q → u(q) such that each u satisfies the Lagrange multiplier rule. Then the covectors λ
corresponding to u(q) are just the values of the differential of the cost function c(q) = ϕ

(
u(q)

)
.

Indeed, we can differentiate the constraint equation Φ
(
u(q)

)
= q to get

id = (DuΦ)
∂u

∂q
⇒ λ = (λDuΦ)

∂u

∂q
= (duϕ)

∂u

∂q
= dqc.

So if we choose a branch of u(q), the set of corresponding Lagrange multipliers is a graph of
a differential of a smooth function that is a Lagrangian submanifold of the symplectic manifold
T ∗M . Let us briefly recall the symplectic terminology.
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SYMPLECTIC GEOMETRY OF CONSTRAINED OPTIMIZATION 751

2. BASIC SYMPLECTIC TOPOLOGY
In this subsection we give some basic definitions from symplectic geometry. For further results

and proofs see [6, 8].
A symplectic space is a pair (W,σ) of an even-dimensional vector space W and a skew-symmetric

nondegenerate bilinear form σ. One can always choose a basis in W such that σ is of the form

σ(λ1, λ2) = λT
1 Jλ2, λi ∈ W,

where

J =

⎛

⎝ 0 id

− id 0

⎞

⎠ .

Such a basis is called a Darboux basis.
A symplectic map is a linear map F : W → W that preserves the symplectic structure, i. e.,

σ(Fλ1, Fλ2) = σ(λ1, λ2).

In a Darboux basis we can equivalently write

F T JF = J.

We define the skew-orthogonal complement of a subspace Γ in a symplectic space W as a subspace

Γ∠ = {λ ∈ W : σ(λ, μ) = 0,∀μ ∈ Γ }.
One has the following special situations:

– If Γ ⊂ Γ∠, then Γ is called isotropic;

– If Γ ⊃ Γ∠, then Γ is called coisotropic;

– If Γ = Γ∠, then Γ is called Lagrangian.

From the definition we can see that Γ is isotropic if and only if the restriction σ|Γ vanishes. Since
σ is nondegenerate, we have

dim Γ + dimΓ∠ = dimW.

Therefore, a subspace Γ is Lagrangian if and only if Γ is isotropic and has dimension (dimW )/2.
Any one-dimensional subspace is isotropic by the skew-symmetry of σ. For the same reasons any
codimension one subspace is coisotropic.

In a Darboux basis each vector λ ∈ W has coordinates (p1, . . . , pn, q1, . . . , qn) = (p, q), where
n = (dim W )/2. Then the subspaces defined by the equations p = 0 or q = 0 are Lagrangian. To
construct more examples, we can consider a graph (p, Sp) of a linear map S between those subspaces.
Then it is easy to check that (p, Sp) gives a Lagrangian subspace if and only if S is symmetric.

There exists a close relation between symplectic maps and Lagrangian subspaces. Given (W,σ),
we can construct a new symplectic space (W × W, (−σ) ⊕ σ) of double dimension. It can be used
to give an alternative definition of a symplectic map.
Proposition 1. Let F : W → W be a linear map. F is symplectic if and only if the graph of F in
(W × W, (−σ) ⊕ σ) is Lagrangian.

We can extend all these definitions to the nonlinear setting. A symplectic manifold is a pair (W,σ)
where W is a smooth manifold and σ is a closed nondegenerate differential two-form. Similarly to
the linear case, one can show that locally all symplectic manifolds have the same structure.

Theorem 2 (Darboux). For any point x of a symplectic manifold (W,σ) one can find a
neighborhood U and a local diffeomorphism ψ : U → R

2n such that

σ = ψ∗(dpi ∧ dqi),

where (p, q) are coordinates in R
2n.
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752 AGRACHEV, BESCHASTNYI

Note that a tangent space TxW has naturally a structure of a symplectic space. Therefore, we
can say that a submanifold N ⊂ M is isotropic/coisotropic/Lagrangian if the same property is true
for each subspace TxN ⊂ TxW for any x ∈ N . Similarly to the linear case, a submanifold N is
isotropic if and only if σ|N = 0 and Lagrangian if additionally dimN = (dim W )/2.

A symplectomorphism of (W,σ) is a smooth map f : W → W that preserves the symplectic
structure, i. e.,

f∗σ = σ.

Given a smooth function h : W → R, a Hamiltonian vector field �h is defined by the identity
dh = σ(·,�h). The flow generated by the Hamiltonian system ẋ = �h(x) preserves the symplectic
structure. In Darboux coordinates, the Hamiltonian system has the form

ṗ = −∂h

∂q
, q̇ =

∂h

∂p
.

The nonlinear analogue of Proposition 1 holds as well.

Proposition 2. A diffeomorphism f : W → W of a symplectic manifold (W,σ) is a symplecto-
morphism if and only if the graph of f in

(
W × W, (−σ) ⊕ σ

)
is a Lagrangian submanifold.

The most basic and important examples of symplectic manifolds are the cotangent bundles T ∗M .
To define invariantly the symplectic form, we use the projection map π : T ∗M → M . Its differential
is a well-defined map π∗ : T (T ∗M) → TM . We can define the Liouville one-form s ∈ Λ1(T ∗M) at
λ ∈ T ∗M as

sλ = λ ◦ π∗.

Then the canonical symplectic form on T ∗M is simply given by the differential σ = ds.
In local coordinates T ∗M is locally diffeomorphic to R

n × R
n with coordinates (p, q), where q

are coordinates on the base and p are coordinates on the fiber. In these coordinates the Liouville
form s is written as s = pidqi. Thus, (p, q) are actually Darboux coordinates. We can use this fact
to construct many Lagrangian manifolds. Namely:

Proposition 3. Let S : M → R be a smooth function. Then the graph of the differential dqS is a
Lagrangian submanifold in T ∗M .

The proof is a straightforward computation in the Darboux coordinates and follows from the
commutativity of the second derivative of S.

We have seen in the previous subsection that the set of Lagrange multipliers is often a graph of
the differential of a smooth function. One can reformulate this by saying that the set of Lagrange
multipliers is actually a Lagrangian submanifold. In the next sections we will see that this is a rather
general fact, but the resulting “Lagrangian set” can be quite complicated. So we will linearize our
problem and extract optimality information from the behavior of what is going to be “tangent
spaces” to this “Lagrangian sets”. In this way we obtain a geometric theory of second variation
that is applicable to a very large class of optimization problems.

3. FIRST VARIATION FOR CLASSICAL CALCULUS OF VARIATIONS
Let us consider a geometric formulation of the classical problem of calculus of variations, which

is an infinite-dimensional optimization problem. We denote by U the set of Lipschitzian curves
γ : [τ, t] → M , where M is a finite-dimensional manifold. Assume that this set is endowed with a
nice topology of a Hilbert manifold. We consider a family of functionals

J t
τ : γ �→

∫ t

τ
l
(
γ(s), γ̇(s)

)
ds.

We define the evaluation map Fs : U → M to be a map that takes a curve and returns a point
on it at a time s ∈ [τ, t], i. e., Fs(γ) = γs. We look for the critical points of the restriction

J t
τ |{F−1

τ (qτ ),F−1
t (qt)}.
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So we apply the Lagrange multiplier rule to ϕ = J t
τ with Φ = (Fτ , Ft) and find that there exists a

pair (−λτ , λt) ∈ T ∗
q(τ)M × T ∗

q(t)M such that

dγJ t
τ = λtDγFt − λτDγFτ . (3.1)

The evaluation map is obviously a submersion. This fact implies that once we fix γ and one
of the covectors (−λτ , λt), the other one will be determined automatically. Indeed, suppose, for
example, that (−λτ , λt) and (−λτ , λ

′
t) both satisfy the Lagrange multiplier rule. Then in addition

to (3.1) we have

dγJ t
τ = λ′

tDγFt − λτDγFτ .

We subtract this equation from (3.1) and obtain

(λ′
t − λt)DγFt = 0,

which gives a contradiction with the fact that Ft is a submersion.
As in the finite-dimensional case, under some regularity assumptions the Lagrange multipliers

form a Lagrangian submanifold in T ∗M × T ∗M endowed with a symplectic form (−σ) ⊕ σ. Since
each λτ determines a unique λt, we get that this Lagrangian submanifold can be identified with a
graph of some map At

τ : T ∗M → T ∗M . Such a graph is a Lagrangian submanifold if and only if At
τ

is symplectic. Moreover, the identity J t
τ = Js

τ + J t
s implies that At

τ is actually a symplectic flow,
i. e., At

τ = At
s ◦ As

τ , where s ∈ [τ, t], Aτ
τ = Id.

Since we have a symplectic flow, it should come from a Hamiltonian system. Let us find an
expression for the corresponding Hamiltonian. We introduce some local coordinates (p, q) on T ∗M .
Then our extremal curve γ is given by a map s → q(s). We denote q̇ = v and write down the
Eq. (3.1)

∫ t

τ

(
∂l

∂q
dqs +

∂l

∂v
dvs

)
ds = ptdqt − pτdqτ .

We differentiate this expression w.r.t. time t:
∂l

∂q
dqt +

∂l

∂v
dvt = ṗtdqt + ptdvt.

Then we obtain
q̇t = vt,

ṗt =
∂l

∂q
, (3.2)

pt =
∂l

∂v
.

The first two equations can be seen to be a Hamiltonian system

q̇t =
∂H

∂p
,

ṗt = −∂H

∂q
, (3.3)

with a Hamiltonian
H(v, p, q) = 〈p, v〉 − l(q, v).

The third equation gives the condition
∂H

∂v
= 0.

If the second derivative of the Hamiltonian H w.r.t. v is nondegenerate, then by the inverse function
theorem we can locally resolve this condition to obtain a function v = v(p, q). Substituting it in
H(p, q, v), we get an autonomous Hamiltonian system with a Hamiltonian H

(
p, q, v(p, q)

)
.
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4. SECOND VARIATION
Now we are going back to the general setting with ϕ : U → R and constraints Φ : U → M . Once

we have found a critical point u ∈ U , we would like to study the index of the Hessian, which is a
quadratic form

Hessu ϕ|Φ−1(q) = ker DuΦ × ker DuΦ → R.

We can write an explicit expression for the Hessian without resolving the constraints in the spirit
of the Lagrange multiplier rule. Consider a curve u(t) ∈ Φ−1(q) such that v = u̇(0) ∈ ker Du(0)Φ.
Then using the Lagrange multiplier rule, we obtain

d2

dt2

∣
∣∣
∣
t=0

ϕ =
d

dt

∣
∣∣
∣
t=0

dϕ

du
u̇ =

〈
d2ϕ

du2
u̇, u̇

〉
+

dϕ

du
ü =

〈
d2ϕ

du2
v, v

〉
+ p

dΦ
du

ü(0).

On the other hand, we can twice differentiate the constraints Φ
(
u(t)

)
= q. We get similarly

〈
d2Φ
du2

v, v

〉
+

dΦ
du

ü(0) = 0.

If we assume that U is a Hilbert manifold, then the two expressions give a formula for the Hessian
in local coordinates that can be written as follows:

Hessu ϕ(v, v) =
〈(

d2ϕ

du2
− p

d2Φ
du2

)
v, v

〉
:= 〈Qv, v〉

such that v satisfies
dΦ
du

v = 0.

We define

L =
{

(p, q, u) : Φ(u) = q,
dϕ

du
− p

dΦ
du

= 0
}

,

and

L = π(L),

where π(u, λ) = λ. L is the set of all Lagrangian multipliers. We say that (Φ, ϕ) is a Morse pair
(or a Morse problem) if Eq. (1.1) is regular, i. e., zero is a regular value for the map

(p, q, u) �→ dϕ

du
− p

dΦ
du

. (4.1)

If dim U < ∞, then generically constrained optimization problems are Morse. Not all functions
ϕ|Φ−1(q) are Morse, though, as the name could suggest. The Morse property of a constrained
optimization problem implies the following important facts.

Proposition 4. Let (ϕ,Φ) be a Morse problem. Then L is a smooth manifold and π|L is a
Lagrangian immersion into T ∗M .

The main corollary of this proposition is that L has a well-defined tangent Lagrangian subspace at
each point

L(u,λ)(ϕ,Φ) =
{

(δp, δq) : ∃δu ∈ TuU ;
dΦ
du

δu = δq, Qδu = δp
dΦ
du

}
, (4.2)

and these subspaces will be the main objects of our study.
Before proving the last proposition, we prove a lemma.

Lemma 1. The point (p, q, u) is regular for the map (4.1) if and only if im Q is closed and

ker Q ∩ ker
dΦ
du

= 0.
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Proof. We compute the differential of the map (4.1):

Qδu − δp
dΦ
du

.

The differential is surjective if and only if its image is closed and has a trivial orthogonal complement
or, equivalently, the existence of w ∈ TuU such that for any (δu, δp)

〈Qδu,w〉 − δp
dΦ
du

w = 0 (4.3)

implies that w = 0. But since (δu, δp) are arbitrary and Q is symmetric, (4.3) is equivalent to the
existence of w ∈ TuU , such that we have simultaneously

Qw = 0,
dΦ
du

w = 0.

Then by assumption we have w = 0 and the result follows. �

Proof (of Proposition 4). The fact that L is a manifold is just a consequence of the implicit function
theorem. We prove now that πM is an immersion. The differential of this map takes the tangent
space to L and maps it to the space L(u,λ)(ϕ,Φ) (see (4.2)). It “forgets” δu. So a nontrivial kernel of
the differential must lie in the subspace δp = δq = 0. But from the definition of Lu,λ(ϕ,Φ) we have
that in this case Qδu = 0 and DuΦδu = 0, which contradicts the fact that the problem is Morse,
as it can be seen from the previous lemma. Thus, the differential is injective.

To prove that this immersion is Lagrangian, it is enough to prove that L(u,λ)(ϕ,Φ) is a Lagrangian
subspace. Since Q is symmetric, it is easy to see that this subspace is isotropic. Take (δp1, δq1) and
(δp2, δq2) in L(u,λ)(ϕ,Φ). Then we compute

σ
(
(δp1, δq1), (δp2, δq2)

)
= δp1δq2 − δp2δq1

= δp1
dΦ
du

δu2 − δp2
dΦ
du

δu1 = 〈Qδu1, δu2〉 − 〈Qδu2, δu1〉 = 0.

Now it just remains to prove that the dimension of this space is equal to n. We are going to do
it only in the finite-dimensional setting, but this is true in general [3]. Note that if we fix (δp, δu)
as in the definition of L(u,λ)(ϕ,Φ), then δq is determined automatically. So it is enough to study
the map

S : (δu, δp) �→ Qδu − δp
dΦ
du

.

Then, clearly, dim L(u,λ)(ϕ,Φ) = dim ker S. But we have seen in the proof of the previous lemma
that this map is actually surjective. Then dim im S = dimU and we have

dim ker S = dim(U × R
n) − dim U = n. �

In a Morse problem, the Lagrange submanifold L often contains all necessary information about
the Morse index and the nullity of the Hessian. We can already give a geometric characterization
of the nullity, while for the geometric characterization of the index we will need more facts from
linear symplectic geometry.

Proposition 5. Hessu ϕ has a nontrivial kernel if and only if λ is a critical point of the map πM |L,
where πM : T ∗M → M is the standard projection. The dimension of the kernel of the Hessian is
equal to the dimension of the kernel of the differential of πM |L.

Schematically this situation is depicted in Fig. 1 on the right.
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Fig. 1. Lagrangian manifolds in the simplest case of dimM = 1.

Proof. Note that λ is a critical point of πM |L if and only if the tangent space L(u,λ)(ϕ,Φ) contains
a vertical direction (δp, 0). If this is the case, by definition there exists δu ∈ ker DuΦ such that

Qδu = δp
dΦ
du

. (4.4)

Then, clearly, for any v ∈ ker DuΦ, we have 〈Qδu, v〉 = 0.
On the contrary, if DuΦδu = 0 and δu belongs to the kernel of the Hessian, then for any

v ∈ ker DuΦ we have 〈Qδu, v〉 = 0 and Qδu must be a linear combination of the rows of DuΦ,
i. e., there exists δp ∈ Tλ(T ∗

q M) such that (4.4) holds. �

If the problem is Morse, then the subspace L(u,λ)(ϕ,Φ) defined in Section 4.2 is Lagrangian.
However, our goal is to handle degenerate cases, and a starting point is the following surprising
fact, which is valid without any regularity assumption on (ϕ,Φ); in particular, u may be a critical
point of Φ.

Proposition 6. If U is finite-dimensional, then the space L(u,λ)(ϕ,Φ) defined in (4.2) is a
Lagrangian subspace of Tλ(T ∗M).

We leave the proof of this interesting linear algebra exercise to the reader. The next example
shows that finite-dimensionality of U is essential.

Let M = R and U be a Hilbert space. Then a = Φ′
u is an element of the dual space U∗, T ∗M =

R
2, and Lagrangian subspaces are just one-dimensional subspaces of R

2. We set L = L(u,λ)(ϕ,Φ).
By the definition we have

L = {(δp, δq) : ∃ v ∈ U, Qv = (δp)a, δq = 〈a, v〉}.
Assume that Q : U → U∗ is injective and not surjective. If a /∈ im Q, then L = {(0, 0)} with a unique
lift v = 0.

Injectivity and symmetricity of Q imply that im Q is everywhere dense in U , hence imQ is not
closed in the example just described. Now we drop the injectivity assumption but assume that
im Q = im Q. Let us show that L is 1-dimensional in this case. Indeed, the self-adjointness of Q
implies that ker Q ⊕ im Q = U . Then we have two possible situations:

1. a ∈ im Q. Then there is a unique preimage of a in im Q, which we denote by v = Q−1a. We
get

L = span
{
(1, 〈a,Q−1a〉)

}
,

where Q−1 is a pseudo-inverse.

2. a /∈ im Q, then we must have δp = 0 and v ∈ ker Q. There exists v ∈ ker Q such that 〈a, v〉 �= 0,
and we obtain

L = span
{
(0, 〈a, v〉)

}
.

If dim U < ∞, then im Q is automatically closed and L is Lagrangian as we have seen.
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5. LAGRANGIAN GRASSMANIAN AND MASLOV INDEX

We are going to give a geometric interpretation of the Morse index of the Hessian in terms of
some curves of Lagrangian subspaces. To do this, we need some results about the geometry of the
set of all Lagrangian subspaces of a given symplectic space (W,σ). This set has a structure of a
smooth manifold and is called the Lagrangian Grassmanian L(W ). We give just the basic facts
about L(W ). For more information see [6].

To construct a chart of this manifold, we fix a Lagrangian subspace Λ2 ∈ L(W ) and consider
the set of all Lagrangian subspaces transversal to Λ2, which we denote by Λ�

2 (the symbol � means
“transversal”). By applying a Gram-Schmidt like procedure that involves σ, we can find some
Darboux coordinates (p, q) on W such that Λ2 = {(0, q)} (see [3] for details). Then Λ0 = {(p, 0)}
belongs to Λ�

2 and any other Λ1 ∈ Λ�
2 can be defined as a graph of a linear map from Λ0 to Λ2. As

we have seen in Section 2, the matrix of this map is symmetric and we obtain the identification of
Λ�

2 with the space of s ymmetric n × n-matrices that gives the desired local coordinates on L(W ).

Fig. 2. Defining a Lagrangian plane Λ1 as a graph of a quadratic form from Λ0 to Λ2.

Since symplectic maps preserve the symplectic form, they also map Lagrangian subspaces to
Lagrangian subspaces. This action is transitive, i. e., there are no invariants of the symplectic
group acting on L(W ). If we consider the action of the symplectic group on pairs of Lagrangian
spaces, then the only invariant is the dimension of their intersection [6]. But triples (Λ0,Λ1,Λ2) do
have a nontrivial invariant, which is called the Maslov index of the triple or the Kashiwara index.

To define it, suppose that Λ0,Λ1,Λ2 ∈ L(W ), such that Λ0 � Λ1 and Λ0 � Λ2. Since the
symplectic group acts transitively on the space of pairs of transversal Lagrangian planes, we can
assume without any loss of generality that Λ0 = {(p, 0)} and Λ2 = {(0, q)}. Then we can identify
Λ1 with a graph {(p, Sp)}, where S is a symmetric matrix. The invariant μ of this triple is then
defined as

μ(Λ0,Λ1,Λ2) = sgn S.

This invariant can be also defined intrinsically as the signature of a quadratic form q̃ : Λ1 ×Λ1 →
R that is defined as follows. Since Λ0 � Λ2, any λ ∈ Λ1 can be decomposed as λ = λ0 + λ2, where
λi ∈ Λi. Then we set q̃(λ) = σ(λ0, λ2). One can check that those definitions agree.

This invariant has a couple of useful algebraic properties. The simplest one is the antisymmetry:

μ(Λ2,Λ1,Λ0) = −μ(Λ0,Λ1,Λ2);

μ(Λ0,Λ2,Λ1) = − sgn(S−1) = −μ(Λ0,Λ1,Λ2).

We are going to state and prove another important property, called the chain rule, after we look
more carefully at the geometry of L(W ). Let us fix some Δ ∈ L(W ). The Maslov train MΔ is the
set MΔ = L(W ) � Δ� of Lagrangian planes that have a nontrivial intersection with Δ. It is an
algebraic hypersurface with singularities, and its intersection with a coordinate chart containing Δ
can be identified with the set of degenerate symmetric matrices.
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The set of nonsmooth points of the hypersurface MΔ consists of Lagrangian subspaces that
have an intersection with Δ of dimension two or more. It is easy to check that this singular part
has codimension two in MΔ. It follows that the intersection number mod 2 of MΔ with any
continuous curve whose endpoints do not belong to MΔ is well defined and is homotopy invariant.
For example, when dim W = 4, we have that the intersection of MΔ with a coordinate chart is
identified with 2× 2 symmetric matrices with zero determinant. This is a cone whose points except
the origin correspond to Lagrangian planes that have a one-dimensional intersection with Δ. The
origin represents the dimension two intersection with Δ, which is equal to Δ itself in this case.
Clearly, a general position curve in L(W ) does not intersect the origin (see Fig. 3) as well as a
general position homotopy of curves, and so the intersection number mod 2 is well defined.

Fig. 3. A curve in a local chart of the Lagrangian Grassmanian L(R4) and the Maslov train.

We would like to define the integer-valued intersection number of curves in L(W ) with MΔ,
and for this we need a coorientation of the smooth part of MΔ. Let Λt ∈ L(W ) such that Λ0 = Λ
and consider any λt ∈ Λt such that λ0 = λ. Then we define

Λ̇(λ) = σ(λ, λ̇).

Thus, we see that to any tangent vector Λ̇ we can associate a quadratic form Λ̇. It is easy to see that
Λ̇(λ) is indeed a well-defined quadratic form, i. e., that σ(λ, λ̇) depends only on Λ̇ and λ. Moreover,
Λ̇ �→ Λ̇(λ), Λ̇ ∈ TΛL(W ) is an isomorphism of TΛL(W ) on the space of quadratic forms on Λ.

From the previous discussion we know that dim(Λt ∩ Δ) = 1 if Λt is a smooth point of MΔ. Let
λ ∈ Λt ∩Δ, λ �= 0; the intersection is transversal at the point Λt if and only if Λ̇(λ) �= 0. We say that
the sign of the intersection is positive if Λ̇(λ) > 0 and negative otherwise. The intersection number
of a continuous curve t �→ Λt with MΔ is called the Maslov index of the curve with respect to MΔ.
Note that the Maslov index of a closed curve (i. e., a curve without endpoint) does not depend
on the choice of Δ. Indeed, the train MΔ can be transformed to any other train by a continuous
one-parametric family of symplectic transformations and the Maslov index is a homotopy invariant.

The Maslov index of a curve and the Maslov index of a triple are closely related. Let
γ : [0, 1] → L(W ) such that the whole curve does not leave the chart Δ�. Then we have

2γ ◦MΛ = μ(Λ, γ(1),Δ) − μ(Λ, γ(0),Δ), (5.1)

which easily follows from definitions.
Now we can state the last property.

Lemma 2 (The chain rule). Let Λi ∈ L(W ), i = 0, 1, 2, 3. Then

μ(Λ0,Λ1,Λ2) + μ(Λ1,Λ2,Λ3) + μ(Λ2,Λ3,Λ0) + μ(Λ3,Λ0,Λ1) = 0.

Proof. Connect Λ0,Λ2 with two curves: one that is completely in Λ�
3 and another that is completely

in Λ�
1 . Schematically this situation is depicted in Fig. 4. This gives a closed curve γ in L(W ) and

we can compute its intersection with MΛ1 and MΛ3 . The chain rule follows from the identities
γ ◦MΛ1 = γ ◦MΛ3 and (5.1). �

REGULAR AND CHAOTIC DYNAMICS Vol. 22 No. 6 2017



SYMPLECTIC GEOMETRY OF CONSTRAINED OPTIMIZATION 759

Fig. 4. An illustration to the proof. Λ�
3 correspond to the region with vertical lines and Λ�

1 to the region with
the horizontal ones.

The formula (5.1) allows us to compute the Maslov index of a continuous curve, without putting
it in general position and really computing the intersection. We just need to split the whole curve
into small pieces such that each of them lies in a single coordinate chart, and then compute the
index of the corresponding triples. This motivates the following definition. A curve γ(t) ∈ L(W ) is
called simple if there exists Δ ∈ L(W ) such that γ(t) ∈ Δ�.

6. MORSE INDEX

Now we return to the study of the second variation of a finite-dimensional Morse problem. We
have seen that L is an immersed Lagrangian submanifold. This allows us to define the Maslov
cocycle in the following way. We fix a curve γ : [t0, t1] → L and consider the corresponding curve
Lt : t �→ Tγ(t)L. Along γ(t) we have vertical subspaces Π = Tγ(t)

(
T ∗

q(t)M
)

which lie in different
symplectic spaces. Vector bundles over the segment [t0, t1] are trivial, so by using a homotopy
argument, we can assume that the symplectic space and the vertical subspace Π are fixed. We
define the Maslov cocycle as

μ
(
γ(t)

)
= Lt ◦MΠ.

Then we have the following theorem.

Theorem 3. Let γ(t) be a curve connecting qt0 with qt1 . Then

−2μ(γ) = δ
(
sgn Hessu ϕ|Φ−1(q)

)
:= sgn Hessut1

ϕ|Φ−1(qt1) − sgn Hessut0
ϕ|Φ−1(qt0).

Proof (A sketch). We denote Q(v) = 〈Qv, v〉. Then

Hessu ϕ|Φ−1(q) = Q|ker Φ′
u
, Φ(u) = q

and the difference of the signatures will be the difference of the corresponding signatures of Q|ker Φ′
u
.

Now we do not restrict Q to the kernel of Φ′
u and use the fact that it depends on the choice of

coordinates. Indeed, the vertical subspace is fixed, but we have a freedom in choosing the horizontal
space.

Exercise: Given a Lagrangian subspace Λ ⊂ Tλ(T ∗M) that is transversal to the fiber T ∗
q M ,

there exist local coordinates in which Λ = {(0, x) : x ∈ R
n}. Operator Q is nondegenerate iff the

horizontal subspace {(0, x) : x ∈ R
n} is transversal to L(u,λ)(ϕ,Φ).

To prove the theorem, we may divide the curve into small pieces and check the identity separately
for each piece. In other words, we can assume that the curve is contained in the given coordinate
chart and, according to the exercise, that Qt is not degenerate for all t ∈ [t0, t1].

Then we can apply the following linear algebra lemma.
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Lemma 3. Let E be a possibly infinite-dimensional Hilbert space, Q a quadratic form on E that is
positive definite on a finite codimension subspace and V a closed subspace of E. Then if we denote
by V ⊥

Q the orthogonal complement of V in E w.r.t. Q, the following formula is valid:

ind− Q = ind− Q|V + ind− QV ⊥
Q

+ dim(V ∩ V ⊥
Q ) − dim(V ∩ ker Q).

Moreover, if Q|V is nondegenerate, then dim(V ∩ V ⊥
Q ) = dim(V ∩ ker Q) = 0.

Thus, by construction we get

sgn Qti = sgn Qti |ker Φ′
u

+ sgn Qti |(ker Φ′
u)⊥Qti

.

Since Qt is nondegenerate and continuously depends on t, we have sgn Qt1 = sgnQt0 . Then the first
summand is just the Hessian and one can show that

sgn Qti |(ker Φ′
u)⊥Qti

= sgn Sti = μ
(
V er, Lt,Hor

)
,

where V er = {(ξ, 0) : ξ ∈ R
n}, Hor = {(0, x) : x ∈ R

n}.
The statement of the theorem now follows from (5.1). �

What about the infinite-dimensional Morse problem? The signature of the Hessian is not
defined in this case, but the difference of the signatures can be replaced with the difference of
the Morse indices if Hessu ϕ|Φ−1(q) are positive definite on a finite codimension subspace and
Hessuti

ϕ|Φ−1(qti)
, i = 0, 1, are nondegenerate.

7. GENERAL CASE

Consider now a general, not necessarily Morse, constrained optimization problem (ϕ,Φ) and a
couple (u, λ) that satisfies the Lagrange multiplier rule duφ = λDuΦ. In local coordinates:

λ = (p, q); ϕ′
u = pΦ′

u, Φ(u) = q.

We would like to consider the subspace L(u,λ)(ϕ,Φ) defined in 4, but in general it is just an isotropic
subspace. Nevertheless, if V ∈ U is finite-dimensional, then the space L corresponding to (ϕ,Φ)|V
is Lagrangian and we denote it by L(u,λ)(ϕ,Φ)|V .

The set of all finite-dimensional subspaces has a partial ordering given by inclusion. Moreover,
it is a directed set, therefore, we can take a generalized limit over the sequence of nested subspaces.
The existence of this limit is guaranteed by the following

Theorem 4 ([2]). The limit

L(u,λ)(ϕ,Φ) = lim
V ↗U

L(u,λ)(ϕ,Φ)|V

exists if and only if ind− Q|Φ′
u

< ∞.

If the limit exists, we call it the L-derivative and denote it by the gothic symbol L to distinguish
it from the isotropic subspace that we would have got otherwise. The L-derivative constructed
over some finite-dimensional subspace of the source space will be called a L-prederivative. In what
follows, we also omit for brevity (u, λ) in the notations. The following property allows to find
efficient ways to compute L(ϕ,Φ).

Theorem 5. Suppose that U is a topological vector space such that ϕ,Φ are continuous on U and
U0 ⊂ U is a dense subspace. Then

L(u,λ)(ϕ,Φ)|U0 = L(u,λ)(ϕ,Φ)|U .
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One can use this theorem in two different directions. Given a topology on U0, one can look for
a weaker topology on U0 such that ϕ and Φ are continuous in that topology. Then we extend U0

to U by completion. This trick was previously used in [2].

Another way is to take a smaller subspace. For example, if U is separable, then we can take a
dense countable subset e1, e2, . . . and compute the limit as

lim
n→∞

L(ϕ,Φ)|span{e1,...,en} = L(ϕ,Φ).

This allows us to see how the L-derivative changes as we add variations. Under some additional
assumptions we can also compute the change in the Maslov index after adding additional subspaces
(see the Appendix).

8. MONOTONICITY

To discuss the Morse theorem in the general setting, we need a very useful notion of monotonicity.
Assume that the curve γt is contained in a chart Δ�, then one can associate a one-parametric
family of quadratic forms St, where γt = {(p, Stp) : p ∈ R

n}, Δ = {(0, q) : q ∈ R
n}. We say that γt

is increasing if St is increasing, i. e., St − Sτ is positive definite when t > τ . It is important that the
property of a smooth curve to be increasing does not depend on the choice of a coordinate chart.
Indeed, the quadratic form p �→ 〈Ṡtp, p〉 is equivalent by a linear change of variables to the form γ̇

t
defined in Section 5, and the definition of γ̇

t
is intrinsic. It does not use local coordinates.

Moreover, if γt, t0 � t � t1 is simple and increasing, then the Maslov index γ ◦MΛ depends only
on γt0 , γt1 ,Λ and can be explicitly expressed via the Maslov index of this triple. More precisely,
assume that γt0 , γt1 ,Λ are mutually transversal and let q̃ be a quadratic form on λ defined by the
formula: q̃(λ) = σ(λ1, λ0), λ ∈ Λ, where λ0 ∈ γt0 , λ1 ∈ γt1 , λ = λ0 + λ1. Actually, if we define

IndΛ(γt0 , γt1) = ind− q̃,

then one can show [1] that

γ ◦MΛ = IndΛ(γt0 , γt1).

A corollary of this fact is the following triangle inequality:

Proposition 7. Let Π,Λi, i = 0, 1, 2 be Lagrangian subspaces in L(Σ). Then

IndΠ(Λ0,Λ2) � IndΠ(Λ0,Λ1) + IndΠ(Λ1,Λ2).

Proof. We consecutively connect Λ0 with Λ1, Λ2 with Λ3, and Λ3 with Λ0 by simple monotone
curves such that we get a closed curve γ. Then we have

γ ◦MΠ = IndΠ(Λ0,Λ1) + IndΠ(Λ1,Λ2) + IndΠ(Λ2,Λ0).

From the definition of Ind, one has

IndΠ(Λ2,Λ0) = n − IndΠ(Λ0,Λ2).

So it is enough to show that γ ◦MΠ � n. This again follows from the fact that the intersection
index of a closed curve does not depend on the choice of Π. Recall that the group of symplectic
transformations acts transitively on the set of pairs of transversal Lagrangian planes. Hence we
can find Δ ∈ L(Σ) such that Λ0 and Λ1 belong to the coordinate chart Δ� and, moreover, Λ0 is
represented by a negative definite symmetric matrix in this chart, while Λ1 is represented by a
positive definite symmetric matrix. Then

γ ◦MΠ = γ ◦MΔ = IndΔ(Λ0,Λ1) + IndΔ(Λ1,Λ2) + IndΔ(Λ2,Λ0) � n

since by definition IndΔ(Λ0,Λ1) = n and IndΔ(Λi,Λj) � 0. �
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So if we take a curve γ(t) ∈ L(Σ) and its subdivision at times 0 = t0 < t1 < . . . < tN = 1, we
can consider the sum

N−1∑

i=0

IndΠ

(
γ(ti), γ(ti+1)

)

which grows as the partition gets finer and finer. For monotone increasing curves this sum
will stabilize and be equal to a finite number. This motivates the next definition. A (perhaps
discontinuous) curve γ : [0, 1] → L(Σ) is called monotone increasing if

sup
D

∑

ti∈D

IndΠ

(
γ(ti), γ(ti+1)

)
< ∞,

where the supremum is taken over all possible finite partitions D of the interval [0, 1].
Monotone curves have properties similar to monotone functions. For example, they have only

jump discontinuities and are almost everywhere differentiable.
It is instructive to see how monotonicity works on curves in L(R2). The Lagrangian Grassmanian

L(R2) topologically is just an oriented circle and a curve is monotone increasing if it runs in the
counterclockwise direction. A coordinate chart is the circle with a removed point. On the left picture
of Fig. 5 the blue curve is monotone and its Maslov index is equal to zero. On the right the black
curve is not monotone increasing. Indeed, if we take any two points, the Maslov index of a triple(
Λti ,Π,Λti+1

)
will be equal to one (the red curve).

Fig. 5. Monotone increasing blue curve and monotone decreasing black curve with the same end-points.

9. L-DERIVATIVE FOR OPTIMAL CONTROL PROBLEMS WITH FREE CONTROLS

In this subsection we consider an optimal control problem with fixed end-points1).

q̇ = f
(
q, u(t)

)
, q ∈ M, u ∈ R

k, (9.1)

q(0) = q0, q(t1) = q1,

J t1
0 =

∫ t1

0
l
(
q(s), u(s)

)
ds.

We may assume that time t1 is fixed. Otherwise, we can make a time scaling s = ατ , where
α > 0 is a constant that will be used as an additional control function. If we denote û(τ) = u(ατ)
and τ1 = t1/α, then we get an equivalent optimal control problem

q̇ = αf
(
q, û(τ)

)
,

(
α, û(τ)

)
∈ R × L2

k[0, τ1],

q(0) = q0, q(τ1) = q1,

1)We do not study free endpoint problems here: see the recent paper [7] and references therein for 2nd order
optimality conditions in the free endpoint case.
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Ĵτ1
0 = α

∫ τ1

0
l
(
q(τ), û(τ)

)
dτ

with fixed time τ1. We see that by varying α we vary the final time t1, so we can assume from the
beginning that t1 is fixed.

A curve q(t) that satisfies (9.1) for some locally bounded measurable function u(t) is called
an admissible trajectory. As in the case of the classical calculus of variations, we can define the
evaluation map Ft that takes an admissible curve and maps it to the corresponding point at time
t. We easily recover the Lagrange multiplier rule (1.1)

νdγJ t
0 = λtDγFt − λ0DγF0, (9.2)

where ν can be normalized in such a way that it takes value 1 or 0. If ν = 1, we call the corresponding
extremal normal, otherwise it is called abnormal. In the case of calculus of variations one has only
normal extremals because (Ft, F0) is a submersion.

We can derive the Hamiltonian system also in this case. Locally we assume that λt = (pt, qt).
Then

ν

∫ t

0

(
∂l

∂q
dqs +

∂l

∂u
dus

)
ds = ptdqt − p0dq0.

We differentiate this expression w.r.t. time t:

ν
∂l

∂q
dqt + ν

∂l

∂u
dut = ṗtdqt + ptdf,

where df = ∂f
∂q dqt + ∂f

∂udut. Now we collect terms and obtain

∂

∂u

(
〈pt, f(qt, u)〉 − νl(qt, u)

)
= 0,

ṗt =
∂

∂qt

(
νl(qt, u) − 〈pt, f(qt, u)〉

)
,

q̇ = f(q, u).

Thus, if we set

H(p, q, u) = 〈p, f(q, u)〉 − νl(q, u),

we see that the equations above are equivalent to a Hamiltonian system, where the Hamiltonian
satisfies

∂H

∂u
= 0.

We can rewrite these equations in the coordinate-free form:

λ̇t = �H(λt, u),
∂H

∂u
= 0, (9.3)

where �H is the Hamiltonian vector field with the Hamiltonian H.
Now fix q0 ∈ M ; then F−1

0 (q0) is just the space of control functions u(·). Let Et : u(·) �→ q(t)
be the endpoint map, Et = Ft

∣∣
F−1

0 (q0)
. It is easy to see that the relation (9.2) is equivalent to the

relation

νduJ t
0 = λtDuEt.

Let ũ(·) satisfy this relation, i. e., let there exist λt, 0 � t � t1 such that (9.3) is satisfied with
u = ũ(t). We are going to compute the L-derivative L(ũ,λt)(νJ t

0, Et). Let Pt : M → M be the flow
generated by the differential equation q̇ = f

(
q, ũ(t)

)
, P0 = Id. We set Gt = P−1

t ◦ Et. The map Gt

is obtained from Et by a “time-dependent change of variables” in M . The intrinsic nature of the
L-derivative now implies that

L(ũ,λt)(νJ t
0, Gt) = P ∗

t

(
L(ũ,λ0)(νJ t

0, Et)
)
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and we may focus on the computation of the L-derivatives L(ũ,λ0)(νJ t
0, Gt) ⊂ Tλ0(T

∗M), 0 � t � t1,
which is more convenient, since all the L-derivatives lie in the same symplectic space Tλ0(T

∗M)
and this way we don’t need a connection or a homotopy argument to compute the Maslov index.

To find Gt we apply a time-dependent change of variables

y = P−1
t (q).

In this way we get an equivalent control system

ẏ = (P−1
t )∗

(
f(u, ·) − f(ũ(t), ·)

)
(y) = g(t, u, y),

where in the center we have the pull-back of vector fields. Then the definitions give us

y0 = q0, g
(
ũ(t), y

)
= 0.

Similarly, in the functional we define ψ(t, u, y) = l
(
Pt(y), u

)
.

To write down an explicit expression for L(ũ,λ0)(νJ t
0, Gt), we must characterize first all the critical

points and Lagrange multipliers in these new coordinates. We apply the Lagrange multiplier rule
exactly as above and find that if

(
y(t), u(t)

)
is a critical point, then there exists a curve of covectors

μt ∈ T ∗
y(t)M that satisfies a Hamiltonian system

μ̇t = �h(t, u, μt), (9.4)

where the Hamiltonian

h(t, u, μt) = 〈μt, g(t, u, y)〉 − νψ(t, u, y)

satisfies also
∂h(t, u, μt)

∂u
= 0. (9.5)

Note that, for the referenced critical point
(
y0, ũ(t)

)
, the corresponding curve of covectors is simply

μt = λ0 and h(t, ũ(t), λ0) = 0.
Recall that the L-derivative is obtained by linearizing the relation for the Lagrange multiplier

rule. But the Lagrange multiplier rule is equivalent to this weak version of the Pontryagin maximum
principle, so it is enough to linearize (9.4) and (9.5) at μt = λ0 and u(t) = ũ(t). Since �h(t, ũ, λ0) = 0,
the linearization of (9.4) gives

η̇t =
∂�h(t, u, λ0)

∂u

∣
∣∣
∣∣
u=ũ

vτ ⇐⇒ ηt = η0 +
∫ t

0
Xτvτdτ, Xτ :=

∂�h(t, u, λ0)
∂u

∣
∣∣
∣∣
u=ũ

.

Similarly, we can linearize Eq. (9.5) and use the definition of a Hamiltonian vector field to derive:

∂2h(t, u, λ0)
∂u2

∣
∣∣
∣
u=ũ

(v(t), ·) +
〈

dμt

∂h(t, u, λ0)
∂u

∣
∣∣
∣
u=ũ

·, ηt

〉
= 0 ⇐⇒ bt(v(t), ·) + σ (ηt,Xt·) = 0,

where bt is the second derivative of h(t, u, λ0) w.r.t. u at u = ũ. Combining these two expressions,
we find that a L-prederivative is defined as

L(νJ t
0, Et)|V = (P t

0)∗

{
ηt = η0 +

∫ t

0
Xτvτdτ : η0 ∈ Tλ0(T

∗
q0

M), vτ ∈ V :
∫ t

0
σ (ητ ,Xτwτ ) + bτ (vτ , wτ )dτ = 0,∀wτ ∈ V

}
.

From this description and the definition of the L-derivative as a limit of L-prederivatives we
can deduce an interesting property that can be successfully used to construct approximations for
the former. This property says that if we know a L-derivative at time s1 ∈ (0, t1), which we denote
by L1, then the L-derivative at time s1 < s2 � t1 can be computed using the vectors from L1 and
variations with support in [s1, s2]. A precise statement is the following

REGULAR AND CHAOTIC DYNAMICS Vol. 22 No. 6 2017



SYMPLECTIC GEOMETRY OF CONSTRAINED OPTIMIZATION 765

Lemma 4. Take 0 < s1 < s2 and suppose that ind− Q|ker DũEt is finite along an extremal curve
defined on [0, s2]. Let L1 and L2 be the two L-derivatives for times s1 and s2, respectively. We
denote by V2 some finite-dimensional subspace of L2

k[s1, s2] and consider the following equation:
∫ s2

s1

[
σ

(
λ +

∫ τ

s1

Xθv2(θ)dθ,Xτw(τ)
)

+ bτ

(
v2(τ), w(τ)

)]
dτ = 0, ∀w(τ) ∈ V2, (9.6)

where v2(τ) ∈ V2 and λ ∈ L1. Then L2 is a generalized limit of the Lagrangian subspaces L2
1[V2]

defined as

L2
1[V2] =

{
λ +

∫ s2

s1

Xτv(τ)dτ : λ ∈ L1, v(τ) ∈ V2satisfies (9.6) for any w(τ) ∈ V2

}
.

This lemma implies that the curve of L-derivatives has some sort of flow property, i. e., the
L-derivative at the current instant of time can be recovered from the L-derivatives at previous
instants. This observation is the key point in our algorithm for computation of the L-derivative
with arbitrary good precision.

The algorithm can be summarized in the following steps:

1. Take a partition 0 = s0 < s1 < . . . < sN = t of the interval [0, t]. The finer the partition is,
the better will be the approximation of the L-derivative at time t;

2. Compute inductively L(u,λ)(νJ t
0, Gt)|Vi , Vi = R

kχ[s0,s1] ⊕ . . . ⊕ R
kχ[si,si+1]

starting from L(u,λ)(νJ t
0, Gt)|V0 = Π, where χ[si,si+1] are characteristic functions.

When max |si+1 − si| → 0, we get in the limit the real L-derivative, since piecewise constant
functions are dense in L2. In this way we reduce the problem to solving iteratively systems of
k linear equations. In Theorem 8 of the Appendix an explicit solution to this system is given.

This algorithm allows one not only to approximate the L-derivative, but also to compute the
index of the Hessian restricted to the subspace of piece-wise constant variations.

Theorem 6. Let D = {0 = s0 < s1 < . . . < sN = t1} be a partition of the interval [0, t1] and let
VD be the space of piece-wise constant functions with jumps at times si. We denote by Vi ⊂ VD the
subspace of functions that are zero for t > si, V 0

i = Vi ∩ ker dũGt1 and Λi = L(νJ t1
0 , Gt1)|Vi . Then

the following formula holds:

ind− Q|V 0
D

=
N∑

i=0

IndΠ(Λi,Λi+1) + dim

(
N⋂

i=0

Λi

)

− n, (9.7)

where Λ0 = ΛN+1 = Π.

Moreover, one can prove the following result, which is the basis of the whole theory.

Theorem 7. Suppose that (q̃, ũ) is an extremal of the problem (9.1) such that the index of the
corresponding Hessian is finite and Lt = L(ũ,λ0)(νJ t

0, Gt), Lt ∈ L(Tλ0(T
∗M)), t ∈ [0, t1] is the

family of L-derivatives associated to it; then t �→ Lt is a monotone curve and

ind− Hessũ J t1
0 |E−1(q0) � sup

D

∑

si∈D

IndΠ(Lsi ,Lsi+1) + IndΠ(Lt1 ,L0) + dim

(
t1⋂

t=0

Lt

)

− n,

where the supremum is taken over all possible finite partitions D of the interval [0, t1].
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10. L-DERIVATIVE WITH CONSTRAINTS ON THE CONTROLS

In our construction of the L-derivative we have heavily used the fact that all variations are two-
sided, but in optimal control theory this is often not the case. The control parameters may take
values in some closed set U . Then on the boundary ∂U we can only vary along smooth directions
of ∂U . To cover also this kind of situations, we are going to use the change of variables introduced
in the previous section.

We consider the optimal control problem (9.1), but now we assume that u ∈ U ⊂ R
k, where U

is a union of a locally finite number of smooth submanifolds Ui without boundaries. In particular,
any semianalytic set is available. A typical situation is when the constraints are given by a number
of smooth inequalities

pi(u) � 0

that satisfy

pi(u) = 0 =⇒ dupi �= 0.

For example, U can be a ball or a polytope. In the latter case Ui consists of the interior of polytope
and faces of different dimensions.

Recall that in the last subsection we used a time scaling to reduce a free time problem to a fixed
one. It is actually very useful to use general time reparameterizations as possible variations, even
in the fixed time case. Assume that t(τ) is an increasing absolutely continuous function such that
t(0) = 0 and if t1 is fixed also τ(t1) = τ1. Actually, instead of the last condition, one can simply
take the time variable as a new variable satisfying

ṫ = 1.

Then we can consider an optimal control problem

q̇ = f
(
q, u(τ−1(t))

)
,

∫ t1

0
l
(
q(s), u(τ−1(s))

)
ds → min, (10.1)

which is essentially the optimal control problem (9.1) written in a slightly different way. Since t(τ)
is absolutely continuous, it is of the form

t(τ) =
∫ τ

0
α(s)ds.

We rewrite (10.1) in the new time τ to get

dq

dτ
= α(τ)f

(
q, u(τ)

)
,

∫ t1

0
α(τ)l

(
q(τ), u(τ)

)
dτ → min .

Variations with respect to α(t) are called time variations. Since α > 0, time variations are always
two-sided and thus one can include them to study the index of the Hessian via L-derivatives. They
have been already used to derive necessary and sufficient optimality conditions in the bang-bang
case, where no two-sided variations are available if we just vary u (see [4, 5]).

Time variations do not give any new contribution to the Morse index of the Hessian if the
extremal control ũ(t) is C2. Indeed, assume, for example, that λt is an abnormal extremal
corresponding to ũ(t). Let us denote for simplicity β = 1/α, i. e.,

τ−1(t) =
∫ t

0
β(s)ds,

so that we don’t have to include differentials of inverse functions in the expressions.
We consider the end-point map Et

(
ũ(β(s))

)
of (10.1) and calculate the Hessian with respect to

β at a point β(s) ≡ 1. We obtain

λtd
2
βEt(γ1, γ2) = λtd

2
ũEt

(
dũ

dt

∫ t

0
γ1(s)ds,

dũ

dt

∫ t

0
γ2(s)ds

)
+ λtdũEt

(
d2ũ

dt

∫ t

0
γ1(s)ds

∫ t

0
γ2(s)ds

)
,
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but the the second term is zero since ũ is extremal and therefore λtdũEt = 0. Thus, we see that all
the time variations in the Hessian could have been realized by variations of u.

If ũ(t) has less regularity, then the time variations become nontrivial. For example, in the bang-
bang case ũ is piece-wise constant and the effect of the time variations concentrates at the points
of discontinuity of ũ. This allows one to reduce an infinite-dimensional optimization problem to a
finite-dimensional one. This finite-dimensional space of variations corresponds simply to variations
of the switching times.

If we include the time variations, we will have enough two-sided variations to cover all the
known cases. It only remains to construct the L-derivative over the space of all available two-sided
variations. Note that after adding the time variations, this space is not empty. It can be a very
difficult computation, but using our algorithm, we can always construct an approximation and
obtain a bound on the Morse index.

To apply our algorithm, we must define “constant” variations. The set U is a union of smooth
submanifolds Ui ∈ R

k+1 without boundaries. Since each Ui is embedded in R
k+1 by assumption,

we can take the orthogonal projections πi
u : R

k+1 → TuUi whenever u ∈ Ui. Then we can define a
projection of a general variation vt ∈ L2

k+1[0, t] to the subspace of two-sided variations as

πτvτ =
n∑

i=0

χUi(τ)πi
ũ(τ)vτ ,

where χUi(τ) are the characteristic functions. “Constant” variations for the constrained problem
are just projections πτv of the constant sections v ∈ R

k+1. Equivalently one can consider directly
constant variations in R

k+1 and simply replace Xτ in the definition of the L-derivative by Xτπτ .
Then the algorithm from the previous subsection is applicable without any further modifications.

An important remark is that the orthogonal projections depend on the metric that we choose on
R

k+1. This choice would indeed give us different L-prederivatives, since the “constant” variations
would be different, but in the limit the L-derivative will be the same, because at the end we just
approximate the same space in two different ways.

APPENDIX. INCREMENT OF THE INDEX
Recall that in Theorem 6 we have stated that by adding piece-wise constant variations we can

track how the Maslov index of the corresponding Jacobi curve changes. But there is no use in
this theorem if we are not able to construct explicitly the corresponding L-prederivatives from our
algorithm. To do this, we can use the following theorem.

Theorem 8. Suppose that we know L(νJ t
0, Gt)|V , where V is some space of variations defined on

[0, t]. We identify L(νJ t
0, Gt)|V with R

n and the space of control parameters with R
k, and put an

arbitrary Euclidean metric on both of them. Let E be the space of all v ∈ R
k for which

σ

(
η,

1
ε

∫ t+ε

t
Xτdτ · v

)
= 0, ∀η ∈ L(νJ t

0, Gt)|V

and let L = L(νJ t
0, Gt)|V ∩L(νJ t

0, Gt)|Ṽ , where Ṽ = V ⊕R
kχ[t,t+ε]. We define the two bilinear maps

A : L(νJ t
0, Gt)|V × E⊥ → R, Q : E⊥ × E⊥ → R:

A : (η,w) �→ σ

(
η,

1
ε

∫ t+ε

t
Xτdτ · w

)
,

Q : (v,w) �→ 1
ε

∫ t+ε

t
σ

(∫ τ

t
Xθdθ · v,Xτw

)
+ bτ (v,w)dτ,

and we use the same symbols for the corresponding matrices.
Then the new L-prederivative L(u,λ)(νJ t

0, Gt)|Ṽ is a span of vectors from the subspace L and
vectors

ηi +
1
ε

∫ t+ε

t
Xτdτ · vi,
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where vi is an arbitrary basis of E⊥ and ηi are defined as

ηi = −A+Qei

with A+ being the Penrose –Moore pseudoinverse.

Although we use some additional structures in the formulation like a Euclidean metric, it will only
give a different basis for L(νJ t

0, Gt)|Ṽ , but the L-derivative itself will be the same.
In general, if we would like to compute the difference between indices of the Hessian

Hessũ ϕ|Φ−1(q0) restricted to two finite-dimensional subspaces U1 ⊂ U , the Maslov index will only
give us a lower bound:

ind− Q|U0 − ind− Q|U0
1

� IndΠ

(
L(ϕ,Φ)|U1 , L(ϕ,Φ)|U

)
,

where as before U0
1 = U1 ∩ ker dũΦ and the same for U0. This formula was proved in [2].

One can ask when this inequality becomes an equality. It seems that there is no general if and
only if condition, but one can find some nice situations where the equality holds, as in the piece-wise
constant case. Another condition that is quite general is stated in the following theorem.

Theorem 9. Assume that the index of the Hessian at a point (u, λ) is finite and that we can find
a splitting U1 ⊕ U2 of a possibly infinite-dimensional U such that

1. U1 and U2 are orthogonal with respect to Q;

2. Q|U0
2

> 0, where U0
2 = U2 ∩ ker Φ′

u;

3. dim L(u,λ)(ϕ,Φ)|U1 ∩ Π = 0.

Then

ind− Q|U0 − ind− Q|U0
1

= IndΠ

(
L(ϕ,Φ)|U1 ,L(ϕ,Φ)|U

)
.

We are going to apply Lemma 3 twice: first, to the subspace U0
1 in U0 and, second, to U0

2 in
(U0

1 )⊥. Assume for now that dimU < ∞. First we clarify what are all the subspaces presented in
the formula. We have

(U0
1 )⊥ =

{
v = v1 + v2 ∈ U : f ′

u(v1 + v2) = 0, 〈Qv1, U
0
1 〉 = 0

}
.

Here we have used our orthogonality assumptions. We claim that (U0
1 )⊥ is actually equal to the

subspace
{

v1 + v2 ∈ U : f ′
u(v1 + v2) = 0,∃ξ1 ∈ T ∗

f(u)M, 〈Qv1 + ξ1f
′
u, U1〉 = 0

}
.

It is clear that the second space is a subspace of (U0
1 )⊥. We want to prove the converse statement.

Assume that v ∈ (U0
1 )⊥. Firstly, we put any Euclidean metric on Tf(u)M and use it to define an

isomorphism between T ∗
f(u)M and Tf(u)M . Secondly, we choose a subspace E ⊂ U1 complementary

to U0
1 and a basis ei of E such that f ′

u(ei) form an orthogonal subset. Then the covector ξ1 that
we need is simply given by

ξ1 = −
dimE∑

i=1

f ′
u(ei)

|f ′
u(ei)|2

〈Qv1, ei〉.

Thus, the claim has been proved.
From the orthogonality assumption it follows that U0

2 ∈ (U0
1 )⊥. The orthogonal complement of

U0
2 in (U0

1 )⊥ is equal to (U0
1 + U0

2 )⊥, which is equal to

(U0
1 + U0

2 )⊥ =
{

v1 + v2 ∈ U : f ′
u(v1 + v2) = 0,∃ξ1 ∈ T ∗

f(u)M, 〈Qv1 + ξ1f
′
u, U1〉 = 0, 〈Qv2, U

0
2 〉 = 0

}
.
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Similarly to the above, this is equivalent to

(U0
1 + U0

2 )⊥ =
{

v1 + v2 ∈ U : f ′
u(v1 + v2) = 0,∃ξ1, ξ2 ∈ T ∗

f(u)M,〈Qv1 + ξ1f
′
u, U1〉 = 0,

〈Qv2 − ξ2f
′
u, U2〉 = 0

}
.

We can now compute the quadratic form Q restricted to (U0
1 + U0

2 )⊥. Again we use the
orthogonality assumption and the equivalent definition of (U0

1 + U0
2 )⊥ above. Assume that v =

v1 + v2 ∈ (U0
1 + U0

2 )⊥ and ξ = ξ1 + ξ2. Then

〈Q(v1 + v2), v1 + v2〉 = 〈Qv1, v1〉 + 〈Qv2, v2〉 = −ξ1f
′
uv1 + ξ2f

′
uv2 = −ξf ′

uv1.

Now we would like to write down the expression for the matrix S from the definition of the
Maslov index. First we write down the definition of the two L-derivatives:

L(ϕ,Φ)|U1 = {(η1, f
′
uv1

1) : 〈Qv1
1 + η1f, U1〉 = 0};

L(ϕ,Φ)|U = {
(
η2, f

′
u(v2

1 + v2)
)

: 〈Qv2
1 + η2f, U1〉 = 0, 〈Qv2 + η2f, U2〉 = 0}.

The quadratic form from the Maslov index is defined on (L(ϕ,Φ)|U1 + L(ϕ,Φ)|U ) ∩ Π. We write
v1
1 + v2

1 = v1, ξ1 = η1 + η2, ξ2 = −η2 and suppose that f ′
u(v1) + f ′

u(v2) = 0. Then for the quadratic
form q̃ we have

q̃ = σ
(
(η1, f

′
uv1

1), (η2, f
′
u(v2

1 + v2))
)

= σ
(
(η1, f

′
uv1

1), (0, f
′
uv2)

)
= η1f

′
uv2 = −η1f

′
uv1 = −ξf ′

uv1.

In the second equality we have used the fact that (η1, f
′
uv1

1) and (η2, f
′
uv2

1) belong to L(ϕ,Φ)|U1 by
definition.

We see that this gives the same expression as for Q|(U0
2 )⊥ . But, moreover, both quadratic forms

are actually defined on the same space. Indeed, we have

(L(ϕ,Φ)|U1 + L(ϕ,Φ)|U ) ∩ Π = {(ξ1 + ξ2, 0) : ∃vi ∈ Vi, f
′
u(v1 + v2) = 0, (ξ1, f

′
uv1) ∈ L(ϕ,Φ)|U1 ,

(−ξ2, f
′
uv2) ∈ L(ϕ,Φ)|U2} = (L(ϕ,Φ)|U1 + L(ϕ,Φ)|U2) ∩ Π.

But if we add to (ξ1 + ξ2) ∈ (L(ϕ,Φ)|U1 + L(ϕ,Φ)|U ) ∩ Π the corresponding vi and to vi ∈ Ui ∩
(U0

1 + U0
2 )⊥ the corresponding ξ1 + ξ2, we obtain the same space.

Now we compute the other terms from the formula in Lemma 3. We have

U0
1 ∩ (U0

1 )⊥ = {v1 ∈ U0
1 : Q(v1, U

0
1 ) = 0}.

Similarly to the discussion at the beginning of the proof, we can show that

U0
1 ∩ (U0

1 )⊥ = {v1 ∈ U0
1 : ∃ξ ∈ T ∗

f(u)M,Q(v1 + ξf ′
u, U1) = 0}.

We do now the same for ker Q|U0 ∩ U0
1 :

ker Q|U0 ∩ U0
1 = {v1 ∈ U0

1 : 〈Qv1, U
0〉 = 0} = {v1 ∈ U0

1 : 〈Qv1 + ξf ′
u, U〉 = 0}.

To understand the dimensions, we look carefully at the equation

〈Qv1 + ξf ′
u, U1〉 = 0.

If there are two solutions (ξ, v1) and (ξ, v′1) of this equation, then by linearity (0, v1 − v′1) is a
solution as well and thus all solutions are uniquely defined by different ξ modulo ker Q|U1 ∩ U0

1 .
These ξ lie in L(ϕ,Φ)|U1 ∩ Π, as can be seen from the definitions. Therefore,

dim
(
U0

1 ∩ (U0
1 )⊥

)
= dim

(
L(ϕ,Φ)|U1 ∩ Π

)
+ dim

(
ker Q|U1 ∩ U0

1

)
.

Now we do the same for

0 = Q(v1 + ξf ′
u, V ) = Q(v1 + ξf ′

u, U1) + ξf ′
uU2.
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Again ξ are defined uniquely modulo ker Q|U1 ∩ U0
1 , but now they lie in L(ϕ,Φ)|U ∩ Π. Therefore,

dim
(
ker Q|U0 ∩ U0

1

)
= dim

(
L(ϕ,Φ)|U ∩ Π

)
+ dim

(
ker Q|U1 ∩ U0

1

)
.

Since Q is positive on U0
2 , we have (U0

2 )⊥ ∩U0
2 = {0} and so we can collect all the formulas using

the fact that
(
L(ϕ,Φ)|U ∩ Π

)
⊂

(
L(ϕ,Φ)|U1 ∩ Π

)
:

ind− Q|U0 − ind− Q|U0
1

= IndΠ

(
L(ϕ,Φ)|U1 , L(ϕ,Φ)|U

)
+

1
2

dim
(
L(ϕ,Φ)|U1 ∩ Π

)
−

− 1
2

(dim L(ϕ,Φ)|U ∩ Π) .

Under the third assumption the formula is valid also in the infinite-dimensional case. We know
that the L-prederivatives will converge and that the quadratic form from the Maslov-type index is
continuous. The only possibly discontinuous terms are the dimensions of various intersections, but
they are zero now for L-prederivatives close to the L-derivatives.
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