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Abstract—We consider a natural Lagrangian system defined on a complete Riemannian
manifold being subjected to action of a time-periodic force field with potential U(q, t, ε) =
f(εt)V (q) depending slowly on time. It is assumed that the factor f(τ) is periodic and vanishes
at least at one point on the period. Let Xc denote a set of isolated critical points of V (x) at
which V (x) distinguishes its maximum or minimum. In the adiabatic limit ε → 0 we prove the
existence of a set Eh such that the system possesses a rich class of doubly asymptotic trajectories
connecting points of Xc for ε ∈ Eh.
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1. INTRODUCTION

We study a Lagrangian system on a complete Riemannian manifold M with Lagrangian

L(q, q̇, t, ε) =
1
2
|q̇|2 − U(q, t, ε), (1.1)

where the potential U(q, t, ε) ∈ C2(M× R, R) has the representation

U(q, t, ε) = f(εt)V (q) (1.2)

with some periodic function f . The parameter ε is assumed to be small and the Lagrangian depends
slowly on time. The limit ε → 0 is called the adiabatic limit [1].

Introducing the slow time τ = εt, we obtain a singular perturbed system:

L(q, εq′, τ) =
ε2

2
|q′|2 − f(τ)V (q), q′ =

dq

dτ
(1.3)

and the limit ε → 0 can also be regarded as the anti-integrable limit [5, 6].
We note here that all results stated below are also valid for a system with Lagrangian

L(q, q̇, t, ε) = K(q, q̇) − U(q, t, ε), where the kinetic energy K is a positive definite quadratic form
in q̇ and U(q, t, ε) satisfies (1.2). However, to simplify exposition, we prefer to consider the case

K =
1
2
|q̇|2. We will also assume that the manifold M is noncontractible to get a multiplicity result.

The study of transversal homoclinic and heteroclinic intersections for systems of type (1.1)
or (1.3) is the subject of many papers. In [8, 21] under assumptions that the system q′′ = DqV has
a pair of hyperbolic equilibria x0, x1 connected by a heteroclinic (homoclinic if x0 = x1) orbit, while
the factor f is positive and has a nondegenerate critical point, the authors proved that for small
ε �= 0 the system (1.3) has a transverse heteroclinic (homoclinic) orbit connecting x0 and x1. The
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main tool used in [8, 21] was the theory of exponential dichotomies. Due to the Birkhoff –Smale
theory this result also implies the existence of an infinite number of multibump trajectories close to
chains of heteroclinic orbits. Using the variational approach allowed constructing similar multibump
trajectories without the transversality assumption [5]. In [15, 24] the authors applied variational
arguments to prove the existence of infinitely many homoclinic orbits for systems of type (1.1)
without the smallness assumption on the parameter ε. Another approach to establish homoclinic
(heteroclinic) intersections is due to singular perturbation theory [13]. Systems of type (1.1) give
the simplest example of the slow-fast systems. Indeed, the Hamilton equations associated to (1.1)
and considered in the extended phase space TM× R can be written as

q̇ = p, ṗ = −f(τ)DqV (q, τ), τ̇ = ε.

Thus, (q, p) can be considered as fast variables and τ as a slow one. Setting ε = 0, one gets the
so-called “frozen” system which is a one-parameter family with respect to the parameter τ . Under
the assumption that the frozen system possesses for all values of τ a hyperbolic equilibrium which
depends smoothly on τ one may prove (see, e. g., [29]) the existence of a periodic hyperbolic orbit
of the system (1.1) for sufficiently small ε �= 0. Besides, if some Melnikov-type condition holds, the
separatrices of such a hyperbolic periodic orbit intersect transversally [13, 30]. It is to be noted
that the nonvanishing condition on the factor f is crucial for all mentioned results. The aim of this
paper is to prove the existence of a rich set of connecting orbits for the systems (1.3) in the case
when the factor f has at least one zero on its period. To formulate the main result, we introduce
some notations.

Due to compactness of the manifold M, the function V distinguishes maximum and minimum
on M. Let Vmax (Vmin) stand for the maximum (minimum) value of V . We introduce Xmax =
V −1(Vmax) and Xmin = V −1(Vmin). Then in accordance with the behavior of the factor f one may
define a set Xc as follows:

T+ = {τ ∈ R : f(τ) > 0} , T− = {τ ∈ R : f(τ) < 0} ,

Xc =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Xmax, T− = ∅,

Xmax ∪ Xmin, T± �= ∅,

Xmin, T+ = ∅.

(1.4)

We assume that
(A0) Xc consists of isolated nondegenerate critical points of V .
In addition to (A0), we also assume that f satisfies the following conditions:
(A1) there exist L different solutions τl ∈ T

1 = R/(TZ), l = 1, . . . , L of the equation f(τ) = 0;
(A2) for each l = 1, . . . , L there exists a neighborhood of τl where the function f can be

represented as f(τ) = (τ − τl)κlgl(τ) with κl ∈ N and some C1-function gl such that gl(τl) �= 0.
In the theory of singular perturbed equations τl is called the turning point and κl is the order of

the turning point τl [28]. Thus, (A1) and (A2) are equivalent to an assumption that the system (1.1)
possesses L different turning points of finite order.

We will say that a solution q : R → M is a heteroclinic (homoclinic) solution if there exist
x1, x2 ∈ M (for the homoclinic solution x2 = x1) such that q joins x1 to x2, i. e., lim

t→−∞
q(t) = x1,

lim
t→+∞

q(t) = x2 and lim
t→±∞

q̇(t) = 0.

Let T denote the period of the function f . It follows from the periodicity of a Lagrangian that
if q(t) is a solution of the system (1.1), then q(t + jT/ε) is also a solution for all j ∈ Z. Thus,
connecting (i. e., homoclinic or heteroclinic) solutions are defined up to a translation.

Then we may formulate the main theorem.

Theorem 1. Under assumptions (A0)–(A2) for any x1, x2 ∈ Xc there exist a positive ε0 and a
subset Eh ⊂ (0, ε0) such that for any ε ∈ Eh the system (1.1) possesses a rich class of heteroclinic
(homoclinic) trajectories emanating from x1 and terminating at x2.
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Remarks. 1. To prove this theorem, we construct connecting orbits of the system (1.1) which
stay most of the time in a small neighborhood of the set Xc and leave this neighborhood when τ
approaches some of the turning points. In particular, for any x1, x2 ∈ Xc we prove the existence of
connecting orbits with a minimal number of bumps, the so-called one- or two-bump trajectories.
One-bump trajectories stay in small neighborhoods of the points x1, x2 and jump from one to
another when the parameter τ is in a small (with respect to ε) vicinity of a turning point τl. Two-
bump trajectories connect x1 and x2 via some intermediate critical point xmid. They stay near the
points x1, xmid, x2 and jump from one to another as τ gets close to turning points τl1, τl2 .

2. If T+ = ∅ or T− = ∅, the subset Eh coincides with (0, ε0). It is also to be noted that in this case
the existence of heteroclinic (homoclinic) and multibump trajectories can be obtained by variational
methods for all ε > 0 (see, e. g., [4, 25]). However, the origin of such trajectories is not related to
the existence of turning points in contrast to the connecting orbits from Theorem 1.

3. In the case T± �= ∅ the subset Eh has the structure Eh = (0, ε0) \
∞⋃

j=1
[aj , bj ], where positive

constants aj , bj are such that aj = O(j−1), bj − aj = O
(
e−Cj

)
as j → +∞ for some constant C > 0.

2. STABILITY OF EQUILIBRIA
We begin with the observation that due to the special form of the potential (1.2) any critical

point x0 ∈ Xc is an equilibrium of the system (1.1). In this section we analyze the stability of an
equilibrium x0 for sufficiently small ε. Consider a smooth embedding of the manifold M into R

N

for N = 2n + 1 with n = dimM and denote by 〈·, ·〉 the Euclidean structure in R
N together with

its restriction to M. Let ∇ stand for the gradient operator with respect to the variable x. We fix
a critical point x0 of the function V and assume without loss of generality that the embedding
of M into R

N is such that a small neighborhood of x0 lies in a linear subspace R
n ⊂ R

N . Taking
r > 0 to be sufficiently small, we may always assume that this neighborhood coincides with the ball
Br(x0) = {x ∈ R

n : |x − x0| < r}. To analyze the stability of the equilibrium, it is more convenient
to introduce the fast time τ and consider the system (1.3). Then the equations of motion take the
form

ε2Dτ q′ + f(τ)∇V (q) = 0, (2.1)

where Dτ is the covariant derivative (with respect to the Riemannian structure of M). Using local
coordinates in a vicinity of x0, we substitute q(τ) = x0 + v(τ) into (2.1) and make linearization
around q = x0 to get the variational equations

ε2 d2v

dτ2
+ f(τ)HV (x0)v = 0, (2.2)

where HV stands for the Hessian of V . Since HV is symmetric, we may perform a change of
coordinates to diagonalize HV (x0) = diag{Λ2

1, . . . ,Λ
2
n} and represent (2.2) as

ε2 d2vk

dτ2
+ f(τ)Λ2

kvk = 0, k = 1, . . . , n. (2.3)

Further we will refer to such a local coordinate system near the point x0 as LC(x0).
To analyze the stability of x0, we rewrite the kth equation of (2.3) in the Hamiltonian form

μ−1
k v′k = pk, μ−1

k p′k = −f(τ)vk, μk = ε−1Λk (2.4)

and consider the Poincaré map Φk, which is the period map for the equation of (2.4), i. e.

Φk(τ, μk) :

⎛

⎝
vk(τ)

pk(τ)

⎞

⎠ →

⎛

⎝
vk(τ + T )

pk(τ + T )

⎞

⎠. (2.5)

Then x0 becomes a fixed point of Φk. Since the Poincaré map is an area-preserving diffeomorphism,
detΦk = 1 and the point x0 is hyperbolic if

|TrΦk(τ, μk)| > 2.

Note that TrΦk(τ, μk) is independent of τ .
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We use WKB-method to obtain an asymptotics of Φk when μk � 1 (see e. g. [8, 12, 18]
and literature therein). For simplicity we will omit the subscript k when it does not lead to
misunderstanding. Let δ > 0 be sufficiently small. Then one may divide T

1 into intervals of the
form Δ′

l = [τl + δ, τl+1 − δ] and Δ′′
l = [τl − δ, τl + δ]. According to WKB-theory the general solution

of (2.3) has different representation depending on how close the parameter τ is to a turninig point. In
particular, on the interval Δ′

l (i. e. far from the turning points) it has the following asymptotics [12]:

v(τ, l) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
|f(τ)|1/4

(
Ale

−μS
(1)
l (τ) + Ble

μS
(1)
l (τ)

) (
1 + O(μ−1)

)
, f(τ) < 0,

1
|f(τ)|1/4

(

Al sin
(
μS

(1)
l (τ) +

π

4

)

+ Bl cos
(
μS

(1)
l (τ) +

π

4

))
(
1 + O(μ−1)

)
, f(τ) > 0,

(2.6)

where Al, Bl are arbitrary constants and

S
(1)
l (τ) =

τ∫

τl+δ

|f(s)|1/2ds.

On the interval Δ′′
l (i. e. in a vicinity of a turning point τl) the general solution of (2.3) can be

represented [11] as

v(τ, l) =
1

(f̂(τ))1/4

(

C
(1)
l V

(1)
l

(
μ

2
ml S

(2)
l (τ)

)
+ C

(2)
l V

(2)
l

(
μ

2
ml S

(2)
l (τ)

))
(
1 + O(μ−1)

)
, (2.7)

where C
(1)
l , C

(2)
l are arbitrary constants and

S
(2)
l (τ) =

⎛

⎝

τ∫

τl

|f(s)|1/2ds

⎞

⎠

2
ml

sign(τ − τl), f̂(τ) =
4

m2
l

|f(τ)||S(2)
l (τ)|2−ml , ml = κl + 2,

while the functions {V (1)
l , V

(2)
l } denote a fundamental system of solutions of the model equation

d2w

dξ2
= αl

m2
l

4
ξml−2w, αl = ±1. (2.8)

The model Eq. (2.8) possesses (see e. g. [11]) the following fundamental system:
Case 1: ml is even, αl = 1

V
(1)
l (ξ) =

⎧
⎨

⎩

√
2ξ
π K1/ml

(ξml/2), ξ > 0,
√

2|ξ|
π

[
π csc π

ml
I1/ml

(|ξ|ml/2) + K1/ml
(|ξ|ml/2)

]
, ξ < 0,

where I1/m and K1/m stand for the modified Bessel functions of the first and second kind,
respectively.

The second function V
(2)
l is defined as V

(2)
l (ξ) = V

(1)
l (−ξ) and the Wronskian W of these

solutions is

W (V (1)
l , V

(2)
l ) = ml csc

π

ml
.

The function V
(1)
l has the following asymptotics as |ξ| → ∞:

V
(1)
l (ξ) =

⎧
⎨

⎩

ξ
2−ml

4 e−ξml/2(
1 + O

(
ξ−ml/2

) )
, ξ → +∞,

csc π
ml

|ξ|
2−ml

4 e|ξ|
ml/2 (

1 + O
(
|ξ|−ml/2

))
, ξ → −∞.

(2.9)
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Case 2: ml is even, αl = −1

V
(1)
l (ξ) =

⎧
⎨

⎩

−
√

πξ
2

[
tan π

2ml
J1/ml

(ξml/2) + Y1/ml
(ξml/2)

]
, ξ > 0,

√
π|ξ|
2

[
cot π

2ml
J1/ml

(|ξ|ml/2) − Y1/ml
(|ξ|ml/2)

]
, ξ < 0,

where J1/m and Y1/m denote the Bessel functions of the first and second kind, respectively.

As in the previous case, the second solution can be defined as V
(2)
l (ξ) = V

(1)
l (−ξ), while the

Wronskian takes the form

W (V (1)
l , V

(2)
l ) = mlsec

π

ml
.

In this case the asymptotics of the function V
(1)
l for large values of argument is

V
(1)
l (ξ) =

⎧
⎨

⎩

sec π
2ml

ξ
2−ml

4

[
cos

(
ξml/2 + π

4

)
+ O

(
ξ−ml/2

)]
, ξ → +∞,

csc π
2ml

|ξ|
2−ml

4

[
cos

(
|ξ|ml/2 − π

4

)
+ O

(
|ξ|−ml/2

)]
, ξ → −∞.

(2.10)

Case 3: ml is odd, αl = 1

V
(1)
l (ξ) =

⎧
⎨

⎩

√
2ξ
π K1/ml

(ξml/2), ξ > 0,
√

π|ξ|
2

[
cot π

2ml
J1/ml

(|ξ|ml/2) − Y1/ml
(|ξ|ml/2)

]
, ξ < 0,

V
(2)
l (ξ) =

⎧
⎨

⎩

√
2ξ
π

[
π csc π

ml
I1/ml

(ξml/2) + K1/ml
(ξml/2)

]
, ξ > 0,

−
√

π|ξ|
2

[
tan π

2ml
J1/ml

(|ξ|ml/2) + Y1/ml
(|ξ|ml/2)

]
, ξ < 0,

with the Wronskian

W (V (1)
l , V

(2)
l ) = ml csc

π

ml
.

The asymptotics of V
(1)
l , V

(2)
l for large |ξ| are

V
(1)
l (ξ) =

⎧
⎨

⎩

ξ
2−ml

4 e−ξml/2 (
1 + O

(
ξ−ml/2

))
, ξ → +∞,

csc π
2ml

|ξ|
2−ml

4

[
cos

(
|ξ|ml/2 − π

4

)
+ O

(
|ξ|−ml/2

)]
, ξ → −∞,

(2.11)

V
(2)
l (ξ) =

⎧
⎨

⎩

csc π
ml

ξ
2−ml

4 eξml/2 (
1 + O

(
ξ−ml/2

))
, ξ → +∞,

sec π
2ml

|ξ|
2−ml

4

[
cos

(
|ξ|ml/2 + π

4

)
+ O

(
|ξ|−ml/2

)]
, ξ → −∞.

(2.12)

Case 4: ml is odd, αl = −1.
One may see that this case can be reduced to the previous one by the change ξ → −ξ.

It has to be noted that all asymptotics for the functions V
(1)
l , V

(2)
l can be differentiated with

respect to ξ.
To obtain an asymptotics of the Poincaré map Φ, we introduce new variables:

⎛

⎝
v̂(τ)

p̂(τ)

⎞

⎠ = Ξ(τ)

⎛

⎝
v(τ)

p(τ)

⎞

⎠ , Ξ(τ) =

⎛

⎝
|f(τ)|1/4 0

0 |f(τ)|−1/4

⎞

⎠ , τ �= τl. (2.13)
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Due to periodicity of f the map Φ(τ1 − δ) can be represented as a composition

Φ(τ1 − δ) = Ξ−1(τ1 − δ) ◦ Φ(L) ◦ Φ(L−1) ◦ . . . ◦ Φ(1) ◦ Ξ(τ1 − δ), (2.14)

where

Φ(l) :

⎛

⎝
v̂(τl − δ)

p̂(τl − δ)

⎞

⎠ →

⎛

⎝
v̂(τl+1 − δ)

p̂(τl+1 − δ)

⎞

⎠ . (2.15)

We also decompose the map Φ(l) as follows:

Φ(l) = Θ(l) ◦ Ψ(l), (2.16)

where

Ψ(l) :

⎛

⎝
v̂(τl − δ)

p̂(τl − δ)

⎞

⎠ →

⎛

⎝
v̂(τl + δ)

p̂(τl + δ)

⎞

⎠ , (2.17)

Θ(l) :

⎛

⎝
v̂(τl + δ)

p̂(τl + δ)

⎞

⎠ →

⎛

⎝
v̂(τl+1 − δ)

p̂(τl+1 − δ)

⎞

⎠ . (2.18)

Introduce the following notations:

R(α) =

⎛

⎝
cos α sinα

− sin α cos α

⎞

⎠ , Z(α) =

⎛

⎝
e−α 0

0 eα

⎞

⎠ .

Then substituting (2.9)–(2.12) into (2.7) and taking into account that
(
μ2/mlS

(2)
l (τ)

) 2−ml
4 (

f̂l(τ)
)−1/4 = μ

2−ml
2ml

(ml

2

)1/2
|f(τ)|−1/4,

one gets the asymptotics of the map Ψ(l) up to the factor (1 + O(μ−1)):

Ψ(l) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R
(π

4

)
Z

(

μS+
l + μS−

l + ln
(

csc
π

ml

))

R
(
−π

4

)
, ml− even, gl(τl) < 0,

R
(
μS+

l +
π

4

)
Z

(

ln
(

csc
π

ml

))

R
(
μS−

l − π

4

)
, ml− even, gl(τl) > 0,

R
(π

4

)
Z

(

μS+
l +

1
2

ln
(

csc
π

ml

)

+
1
2

ln
(

cot
π

2ml

))

R
(
μS−

l − π

4

)
, ml− odd, gl(τl) < 0,

R
(
μS+

l +
π

4

)
Z

(

μS−
l +

1
2

ln
(

csc
π

ml

)

+
1
2

ln
(

cot
π

2ml

))

R
(
−π

4

)
, ml− odd, gl(τl) > 0,

(2.19)

where

S−
l =

τl∫

τl−δ

|f(s)|1/2ds, S+
l =

τl+δ∫

τl

|f(s)|1/2ds.

Using (2.6) we obtain

Θ(l) =

⎧
⎨

⎩

R
(

π
4

)
Z
(
μS0

l

)
R
(
−π

4

) (
1 + O(μ−1)

)
, gl(τl) < 0,

R
(
μS0

l

) (
1 + O(μ−1)

)
, gl(τl) > 0,

(2.20)
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where

S0
l =

τl+1−δ∫

τl+δ

|f(s)|1/2ds.

Note that R(α1 + α2) = R(α1)R(α2), Z(α1 + α2) = Z(α1)Z(α2). Hence, (2.19), (2.20) together
with (2.14)–(2.18) yield

TrΦ(τ, μ) = Tr [R(μSe)Z(μSh + γ)]
(
1 + O(μ−1)

)
, (2.21)

where

Se =
∫

T+

|f(s)|1/2ds, Sh =
∫

T−

|f(s)|1/2ds, γ =
L∏

l=1

γl, (2.22)

γl =

⎧
⎨

⎩

ln
(
csc π

ml

)
, ml− even

1
2 ln

(
csc π

ml

)
+ 1

2 ln
(
cot π

2ml

)
, ml− odd.

(2.23)

Consider an inequality

|TrΦ0| � 2.

Due to (2.21)–(2.23) it is equivalent to

| cos(μSe)|eμSh+γ
(
1 + O(μ−1)

)
� 2. (2.24)

Solving (2.24) we arrive at the following lemma.

Lemma 1. There exists a sufficiently large constant μ0 > 0 such that on the interval (μ0,+∞) the

inequality (2.24) holds if μ ∈
∞⋃

j=j0

[(
π
2 + πj

)
S−1

e − r′j ,
(

π
2 + πj

)
S−1

e + r′′j

]
, where r′j , r

′′
j are positive

constants of the order O

(

e−(π
2
+πj)Sh

Se

)

and j0 is the least integer such that
(

π
2 + πj0

)
S−1

e > μ0.

We now point out that the subscript k enumerating degrees of freedom was omitted. Taking this
into account and the definition of μk (2.4), one obtains the following corollaries to the previous
lemma:

Corollary 1. There exists a sufficiently small ε0 > 0 such that for any k = 1, . . . , n and for any
positive ε such that

ε ∈ (0, ε0) \ Ek(x0), Ek(x0) =
∞⋃

j=j0

[

Λk

(π

2
+ πj

)−1
Se − ε′j,Λk

(π

2
+ πj

)−1
Se + ε′′j

]

,

where ε′j , ε
′′
j are positive constants of the order O

(

e−(π
2
+πj)Sh

Se

)

, the origin is a hyperbolic

equilibrium for a system described by (2.3)k.

Denote by Eh(x0)

Eh(x0) = (0, ε0) \
n⋃

k=1

Ek(x0).

Then due to the Floquet theory the following corollary holds:
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Corollary 2. For any positive ε ∈ Eh(x0) the system (2.3) has two sets of n linear independent
solutions:

vs
(k)(τ) = e−λkτws

(k)(τ), vu
(k)(τ) = eλkτwu

(k)(τ), k = 1, . . . , n,

where λk = λk(x0) are the Floquet exponents and ws,u
(k)(τ) are T -periodic functions. The solutions

vs,u
(k)(τ) span the stable and unstable subspaces Es,u(x0, τ) of the system (2.3).

Summarizing all these results, one gets

Corollary 3. For any positive ε ∈ Eh(x0) the point x0 is a hyperbolic equilibrium of the sys-
tem (2.1) possessing n + 1-dimensional invariant stable W s(x0) and unstable W u(x0) manifolds
in TM× R. For any ε1 < ε0 the Lebesgue measure leb of the set (0, ε1) ∩ Eh(x0) can be estimated
as

leb((0, ε1) ∩ Eh(x0)) = O

(

e−
Sh
ε1

)

.

For the rest of the paper we introduce the following notations. Consider the modified inequal-
ity (2.24)

| cos(μkSe)|eμkSh+γ
(
1 + O(μ−1

k )
)

� 2 + ρ (2.25)

for some positive parameter ρ and define a set Ek(x0, ρ) such that for ε ∈ Ek(x0, ρ) (2.25) holds.
Then

Ek(x0, ρ) =
∞⋃

j=j0

[

Λk

(π

2
+ πj

)−1
Se − ε′j(ρ),Λk

(π

2
+ πj

)−1
Se + ε′′j (ρ)

]

and ε′j(ρ), ε′′j (ρ) are of the order O

(

e−(π
2
+πj)Sh

Se

)

. We also introduce

Eh(x0, ρ) = (0, ε0) \
n⋃

k=1

Ek(x0, ρ). (2.26)

It is to be noted that if ε ∈ Eh(x0, ρ), the Floquet exponent λk(x0) > log(1 +
√

ρ).

3. DYNAMICS NEAR TURNING POINTS

In this section we fix a turning point τ∗ = τl for some l = 1, . . . , L and consider the behavior of
the system (2.1) in a vicinity of τ∗. Due to assumption (A2) the factor f is represented in a small
neighborhood of τ∗ as f(τ) = (τ − τ∗)κ∗g∗(τ) with some nonvanishing at τ∗ C1-function g∗. If we
introduce a new scaled time ζ by the formula τ − τ∗ = ε2/m∗ζ with m∗ = κ∗ + 2, the equations of
motion (2.1) in the neighborhood of τ∗ take the form

Dζq
′
ζ + ζκ∗g∗(τ∗ + ε2/m∗ζ)∇V (q) = 0, q′ζ =

dq

dζ
. (3.1)

Putting ε = 0 in (3.1), we obtain the reference system

Dζq
′
ζ + ζκ∗g∗(τ∗)∇V (q) = 0. (3.2)

Note that the reference system is parameter-free and it is expected to be a good approximation for
the system (2.1) in a vicinity of the turning point τ∗. The Lagrangian of the system (3.2) can be
written as

L(q, q′ζ , ζ) = K(q, q′ζ) − a(ζ)V (q), a(ζ) = ζκ∗g∗(τ∗).

The factor a(ζ) satisfies the following conditions:
(C1) ζ = 0 is a unique point ζ ∈ R such that a(ζ) = 0,
(C2) |a(ζ)| → +∞ as ζ → ±∞,
(C3) there exist constants Ca, Za > 0 such that |a(ζ)| > Ca|a′(ζ)| for all |ζ| > Za.
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Introduce subsets X∗
± ⊂ Xc defined by the behavior of the factor f near τ∗

X∗
+ =

⎧
⎨

⎩

Xmax, a(1) > 0,

Xmin, a(1) < 0,
X∗

− =

⎧
⎨

⎩

Xmax, a(−1) > 0,

Xmin, a(−1) < 0.
(3.3)

The following theorem was proved in [17] by variational arguments:

Theorem 2. For any two points x± ∈ X∗
± there exist infinitely many heteroclinic (homoclinic)

solutions of the system (3.2) emanating from x− and terminating at x+, i. e., lim
ζ→±∞

q(ζ) = x± and

lim
ζ→±∞

q′ζ = 0.

We denote the set of heteroclinic (homoclinic) solutions of the reference system (3.2) connecting
points x± ∈ X± by Qh(x−, x+, τ∗). Then we arrive at the following lemma.

Lemma 2. For any q ∈ Qh(x−, x+, τ∗) there exists ζ0 = ζ0(q) > 0 such that for all |ζ| > ζ0

|q(ζ) − x±| = O

(

ζ
2−m∗

4 e−σζ
m∗
2

)

, ζ → ±∞,

where σ is an arbitrary constant such that

0 < σ < σmin, σmin =
2|g∗(τ∗)|1/2Λmin

m∗
, Λmin = min

k=1,...,n
{Λk} .

Proof. First we note that due to lim
ζ→±∞

q(ζ) = x± there exist constants ζ± > 0 such that q(ζ) ∈

Br(x±) for ζ > ζ+ (ζ < −ζ−, respectively). Here and in what follows Br(x0) stands for the ball
Br(x0) = {x ∈ M : |x− x0| < r}. Put ζ0 = max{ζ+, ζ−}. Then the lemma follows immediately from
the following proposition.

Proposition 1. Let U be an open subset of the tangent bundle TM containing the equilibrium
(x+, 0) and φζ be the flow of the reference system (3.2). Then there exists an n + 1-dimensional dif-
ferentiable manifold Ws(x+) ⊂ TM× R such that for any ζ1 > ζ0 φζ1

(
Ws(x+, ζ0)

)
⊂ Ws(x+, ζ1),

where Ws(x+, ζ0) = {(a, b) ∈ TM : (a, b, ζ0) ∈ Ws(x+)}, and for any (a, b) ∈ Ws(x+, ζ0)

lim
ζ→+∞

φζ(a, b) = (x+, 0).

Moreover, if q(ζ) is a solution of (3.2) such that
(
q(ζ0), q′(ζ0)

)
∈ Ws(x+, ζ0), then

|q(ζ) − x±| = O

(

ζ
2−m∗

4 e−σζ
m∗
2

)

, ζ → ±∞.

Proof. The proof of this proposition is rather straightforward and similar to the proof of the
standard Stable Manifold Theorem (see, e. g., [23]). Let r > 0 be sufficiently small. We take ζ0 > 0
such that q(ζ) ∈ Br(x+) for all ζ > ζ0 and consider the reference system on the interval (ζ0,+∞).
Then one may rewrite (3.2) as

Dζv
′
ζ + ζκ∗g∗(τ∗)HV (x+)v = ζκ∗g∗(τ∗)

(
HV (x+)v −∇V (x+ + v)

)
, (3.4)

where v = q − x+. Noting that −g∗(τ∗)HV (x+) is positively defined, we may rewrite (3.4) in the
local coordinates LC(x+) as follows:

v′′k − ζκ∗ |g∗(τ∗)|Λ2
kvk = ζκ∗|g∗(τ∗)|

(
HV (x+)v −∇V (x+ + v)

)

k
, k = 1, . . . , n. (3.5)

Introduce a new time

η =
(

4|g(τ∗)|
m2

∗

)1/m∗

ζ.
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Then (3.5) reads

v′′k − m2
∗

4
ηκ∗Λ2

kvk =
m2

∗
4

ηκ∗
(
HV (x+)v −∇V (x+ + v)

)

k
, k = 1, . . . , n. (3.6)

We supply (3.6) by the initial conditions

vk(η0) = ak, v′k(η0) = bk, η0 =
(

4|g(τ∗)|
m2

∗

)1/m∗

ζ0, k = 1, . . . , n (3.7)

and rewrite the Cauchy problem (3.6), (3.7) as an integral equation:

vk(η) = γ+
k v+

k (η) + γ−
k v−k (η) + v+

k (η)

η∫

η0

W−1
k v−k (s)hk(v(s))ds

− v−k (η)

η∫

η0

W−1
k v+

k (s)hk(v(s))ds, k = 1, . . . , n,

(3.8)

where v±k are expressed via solutions of the model Eq. (2.8) with α = 1:

v+
k (η) = V (1)(Λ2/m∗

k η), v−k (η) = sin
(

π

m∗

)

V (2)(Λ2/m∗
k η), (3.9)

Wk = −m∗Λk is the Wronskian of solutions (v−k , v+
k ) and hk(v) is the right-hand side of Eq. (3.6)k.

The constants γ± satisfy

γ+
k v+

k (η0) + γ−
k v−k (η0) = ak, γ+

k v′
+
k (η0) + γ−

k v′
−
k (η0) = bk. (3.10)

It follows from (2.9), (2.11), (2.12) that v+
k , v−k have the asymptotics

v+
k (η) = Λ

2−m∗
2m∗

k η
2−m∗

4 e−Λkηm∗/2
(
1 + O

(
η−m∗/2

))
, η → +∞, (3.11)

v−k (η) = Λ
2−m∗
2m∗

k η
2−m∗

4 eΛkηm∗/2
(
1 + O

(
η−m∗/2

))
, η → +∞. (3.12)

Note that
(
v(η), v′(η)

)
should converge to the origin as η → +∞. According to (3.8), (3.9) this

holds if

γ−
k v−k (η0) =

+∞∫

η0

W−1
k v+

k (s)hk

(
v(s)

)
ds, k = 1, . . . , n. (3.13)

Taking into account (3.13) together with (3.10), we rewrite (3.8) as

vk(η) = Tk(v, η), k = 1, . . . , n,

where

Tk(v, η) =
(
bkv

−
k (η0) − akv

′−
k (η0)

)
W−1

k v+
k (η) + v+

k (η)

η∫

η0

W−1
k v−k (s)hk

(
v(s)

)
ds

+v−k (η)

+∞∫

η

W−1
k v+

k (s)hk

(
v(s)

)
ds.

(3.14)

One may solve this equation by the method of successive approximations. Define a sequence

v
(0)
k (η) = 0, v

(j+1)
k (η) = Tk(v(j), η)
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and introduce

Δv(j+1)(η) = v(j+1)(η) − v(j)(η).

It follows from (3.11), (3.14) that for sufficiently large η0 and any 0 < Λ < Λmin there exists a
constant K > 0 such that for all η > η0

|Δv(1)(η)| <
K|γ+|e−Ληm∗/2

η
m∗−2

4

.

Assume that the induction hypothesis

|Δv(j+1)(η)| <
K|γ+|e−Ληm∗/2

2jη
m∗−2

4

(3.15)

holds for j � m. Using the Lipschitz estimate satisfied by the function h with some positive
constant Ch

|h(v2) − h(v1)| � Ch|v2 − v1|

and taking η0 large enough for the asymptotics (3.11), (3.12) to be valid, one gets

|Δv(j+1)(η)| � KCh|γ+|
2j−1

max
k

{

v+
k (η)

η∫

η0

W−1
k v−k (s)

e−Λsm∗/2

s
m∗−2

4

ds

+ v−k (η)

+∞∫

η

W−1
k v+

k (s)
e−Λsm∗/2

s
m∗−2

4

ds

}

� KChd|γ+|
2j−1

max
k

{
e−Λkηm∗/2

η
m∗−2

4

η∫

η0

W−1
k

e(Λk−Λ)sm∗/2

s
m∗−2

2

ds

+
eΛkηm∗/2

η
m∗−2

4

+∞∫

η

W−1
k

e−(Λk+Λ)sm∗/2

s
m∗−2

2

ds

}

� KChd|γ+|
2j−2m∗η

m∗−2
0

max
k

{(
1

(Λk − Λ)η2
0

+
1

(Λk + Λ)

)
e−Λkηm∗/2

η
m∗−2

4

}

,

where d = 4max
k

{Λ
2−m∗

m∗
k }.

Hence, for η0 such that

4Chd

m∗η
m∗−2
0

max
k

{
1

(Λk − Λ)η2
0

+
1

(Λk + Λ)

}

< 1

the estimate (3.15) holds also for j = m + 1 and consequently for all j ∈ N. In a similar manner
one can prove

|Δv′
(j+1)(η)| < 2−jK ′|γ+|η

m∗−2
4 e−Ληm∗/2

with some positive constant K ′.
Thus, for i > j > N and η > η0

|v(i)(η) − v(j)(η)| �
∞∑

l=N

|v(l+1)(η) − v(l)(η)| � K|γ+|e−Ληm∗/2

η
m∗−2

4

∞∑

l=N

1
2l

� K|γ+|e−Ληm∗/2

2N−1η
m∗−2

4

(3.16)
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and similarly

|v′(i)(η) − v′
(j)(η)| � K ′|γ+|η m∗−2

4 e−Ληm∗/2

2N−1
.

The last two expressions tend to zero as N → ∞ and therefore {(vj , v′j)} is a Cauchy sequence. It
is standard to show that for sufficinetly small |γ+| there exists

lim
j→∞

v(j)(η) = v∗(η, γ+),

which is a twice differentiable function of η and γ+ satisfying (3.8) and therefore (3.6). It also
follows from (3.15) that for η > η0

|v∗(η, γ+)| <
2K|γ+|e−Ληm∗/2

η
m∗−2

4

.

Finally, to prove the proposition we note that if one takes γ+
k as coordinates, then equations

γ+
k v+

k (η0) +

+∞∫

η0

W−1
k v+

k (s)hk

(
v∗(s, γ+)

)
ds = ak,

γ+
k v′

+
k (η0) +

v′−k (η0)
v−k (η0)

+∞∫

η0

W−1
k v+

k (s)hk

(
v∗(s, γ+)

)
ds = bk

define an n-dimensional invariant manifold Ws(x+, η0). �

4. CONSTRUCTION OF CONNECTING ORBITS
In this section we fix two points x± ∈ Xc and suppose first that there exists a turning point

τ∗ such that x± ∈ X∗
± defined by (3.3). Due to Theorem 2 the reference system corresponding

to the turning point τ∗ possesses a rich set Qh(x−, x+, τ∗) of connecting orbits. Introduce a subset
Qtr

h (x−, x+, τ∗) ⊂ Qh(x−, x+, τ∗) consisting of transversal heteroclinic (homoclinic) solutions. In the
rest of the paper we will assume

(A3) the subset Qtr
h (x−, x+, τ∗) is nonempty.

For any q0 ∈ Qtr
h (x−, x+, τ∗) define

q̂0(τ) = q0

(
(τ − τ∗)ε−2/m∗

)
(4.1)

and rewrite (2.1) in local coordinates as

ε2Dτ q̂′0 + ε2Dτu′ + f(τ)D2V (q̂0)u + f(τ)
(
∇V (q̂0 + u) −∇V (q̂0) − D2V (q̂0)u

)

+
(
f(τ) − g∗(τ∗)(τ − τ∗)κ∗

)
∇V (q̂0) + g∗(τ∗)(τ − τ∗)κ∗∇V (q̂0) = 0,

(4.2)

where u = q − q̂0. Note that the first and the last terms on the left-hand side of (4.2) vanish since
q0 is a solution of the reference system. Thus, one can rewrite (4.2) as

ε2Dτu′ + f(τ)D2V (q̂0)u = −f(τ)
(
∇V (q̂0 + u) −∇V (q̂0) − D2V (q̂0)u

)

−
(
f(τ) − g∗(τ∗)(τ − τ∗)κ∗

)
∇V (q̂0).

(4.3)

Now let us consider a linear equation

ε2Dτu′ + f(τ)D2V (q̂0)u = 0. (4.4)

If we set z = (v, ε−1v′), it may be rewritten as the first-order equation

Dτz = A(τ, ε)z (4.5)
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with the matrix

A(τ, ε) = ε−1

⎛

⎝
0 I

−f(τ)D2V (q̂0(τ)) 0

⎞

⎠ , (4.6)

where I stands for the unit matrix in R
n.

Let A(τ) be a real n × n matrix function, piecewise continuous on an interval J . It is said that
the system

z′ = A(τ)z (4.7)

has an exponential dichotomy on the interval J [9] if there exist a projection P and constants
K � 1, α > 0 such that a fundamental matrix X(τ) of the system (4.7) satisfies for all s, τ ∈ J

|X(τ)PX−1(s)| � Ke−α(τ−s) for s � τ, (4.8)

|X(τ)(I − P )X−1(s)| � Ke−α(s−τ) for s � τ. (4.9)

Denote E±
h (ρ) = Eh(x±, ρ). Then one obtains the following

Lemma 3. There exists ε1 > 0 such that for any ρ � 0 and all ε ∈ (0, ε1)∩ E+
h (ρ)∩ E−

h (ρ) Eq. (4.5)
possesses an exponential dichotomy on J = R± for any constant α < min

k
{λk(x±)}, where R+ =

[0,+∞), R− = (−∞, 0] and λk(x±) stands for the Floquet exponent of the Poincaré map Φk

corresponding to the point x±.

Proof. Fix ρ � 0. We replace q̂0(τ) by x+ in Definition (4.6) and consider Eq. (4.5) with the matrix

A+(τ, ε) = ε−1

⎛

⎝
0 I

−f(τ)D2V (x+) 0

⎞

⎠ .

This modified equation will be referred to as (4.5)+. If we use local coordinates LC(x+)
and take ε ∈ E+

h (ρ), then by Corollary 2 one may define a fundamental matrix X(τ) =
{zs

(1), . . . , z
s
(n), z

u
(1), . . . , z

u
(n)} and a projection P s on Es(x+, 0) along Eu(x+, 0), where zs,u

(k)(τ) =
(vs,u

(k)(τ), ε−1v′s,u(k)(τ)) and vs,u
(k) are the Floquet solutions. Note that for such a defined fundamental

matrix the projection P s takes the form

P s =

⎛

⎝
I 0

0 0

⎞

⎠ .

Taking into account the representation of the Floquet solutions via T -periodic functions ws,u
(k) we

conclude that Eq. (4.5)+ has an exponential dichotomy on R with constant α = min
k

{λk(x+)} and

K = max
k

‖ws,u
(k)‖ with ‖ · ‖ standing for the supremum norm. Note that due to Lemma 2 the distance

between q̂0(τ) and x+ is of the order

|q̂0(τ) − x+| = O

((
(τ − τ∗)ε−2/m∗

) 2−m∗
4 e−ε−1σ+(τ−τ∗)

m∗
2

)

. (4.10)

Hence, we may choose ε+
1 > 0 such that for all ε < ε+

1 and τ > τ∗ + δ the point q̂(τ) lies in the chart
LC(x+). In local coordinates LC(x+) one may rewrite (4.5) in the form (4.7) and obtain that

‖A(τ, ε) −A+(τ, ε)‖ = O(ε−1|q̂0(τ) − x+|).
Then due to (4.10) for any Δ > 0 there exists τ+ > 0 such that for any τ > τ+

‖A(τ, ε) −A+(τ, ε)‖ < Δ.
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Using the roughness theorem from [9], we conclude that Eq. (4.5) has an exponential dichotomy on
the interval [τ+,+∞) with exponent α̃ = α− 2KΔ. Since an exponential dichotomy on the interval
[τ+,+∞) implies an exponential dichotomy on R+ with the same exponent α (see [9]) and due to
an arbitrary smallness of Δ we prove that for any ρ � 0 and all ε ∈ (0, ε+

1 ) ∩ E+
h (ρ) Eq. (4.7) has

an exponential dichotomy on R+ for any constant α < min
k

{λk(x+)}.

Arguing in a similar way, one may prove that there exists ε−1 > 0 such that for any ρ � 0
and all ε ∈ (0, ε−1 ) ∩ E−

h (ρ) Eq. (4.5) has an exponential dichotomy on R− for any constant
α < min

k
{λk(x−)}. Combining these results and taking ε1 = min{ε+

1 , ε−1 }, one finishes the proof.

�

Let X±(τ) and P s
± stand for the fundamental matrix and the projection corresponding to the

exponential dichotomy of (4.5) on R±. Then one may define the stable and unstable subspaces
Es,u

± (τ) as

Es
±(τ) = im

(
X±(τ)P s

±X−1
± (τ)

)
, Eu

±(τ) = ker
(
X±(τ)P s

±X−1
± (τ)

)
.

Let Ψ(τ, τ0) stand for the evolution operator of Eq. (4.5), i. e., z : τ �→ Ψ(τ, τ0)(z0) is the unique
solution of (4.5) satisfying the initial condition z(τ0) = z0. Since (4.5) has an exponential dichotomy
on R±, it follows from [9] that Eq. (4.5) has an exponential dichotomy on R iff Ψ(τ∗ + δ, τ∗ −
δ)Eu

−(τ∗ − δ) is transverse to Es
+(τ∗ + δ).

To analyze the transversality condition, we consider Eq. (4.4) on the interval [τ∗ − δ, τ∗ + δ]. If δ
is sufficiently small, it can be approximated by

Dζv
′
ζ + ζκ∗g∗(τ∗)HV

(
q0(ζ)

)
v = 0, (4.11)

where ζ ∈ [−δε−2/m∗ , δε−2/m∗ ]. Let us define the evolution operator Ψ0(ζ, ζ0) associated with (4.11),
i. e., v : ζ �→ Ψ0(ζ, ζ0)(v0, v

′
0) is the unique solution of (4.11) satisfying v(ζ0) = v0, v

′(ζ0) = v′0.

Lemma 4. If (v0, v
′
0) /∈ T(q0(ζ0),q′0(ζ0))Ws(x+, ζ0), then the solution v(ζ) = Ψ0(ζ, ζ0)(v0, v

′
0) satis-

fies

|v(ζ)| > C(v0, v
′
0)ζ

2−m∗
4 eσ+ζ

m∗
2 , ζ → +∞,

where σ+ is an arbitrary constant such that 0 < σ+ < σ+
min and σ+

min is defined in Lemma 2.

Proof. Since q0(ζ) → x+ as ζ → +∞, we may take ζ0 to be sufficiently large and use local
coordinates LC(x+). Then introducing new variables

ξ =
2

m∗
ζm∗/2, u = ζ

2−m∗
4 v, (4.12)

rewrite (4.11) as

Dξu
′
ξ + g∗(τ∗)HV

(
q̃0(ξ)

)
u +

(
1
4
− 1

m2
∗

)
1
ξ2

u = 0, (4.13)

where q̃0(ξ) = q0

((
m∗
2 ξ

)2/m∗
)
.

Letting w = (u, u′
ξ), one may represent (4.13) as

w′ = B(ξ)w, B(ξ) = B+ + O(ξ−2) + O(|q̃0(ξ) − x+|), (4.14)

B+ =

⎛

⎝
0 I

−g∗(τ∗)D2V (x+) 0

⎞

⎠ .
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Since B+ is a constant matrix with eigenvalues {±|g∗|1/2Λk}, the equation w′ = B+w has an
exponential dichotomy with exponent α = |g∗|1/2 min

k
{Λk}. Due to (4.14) the difference B(ξ) − B+

tends to zero as ξ → +∞. Hence, one can apply the roughness theorem [9] to show that (4.14) has
an exponential dichotomy on R+ with any exponent α̃ < |g∗|1/2 min

k
{Λk}. Denote by W (ξ) and PB

a fundamental matrix and an exponential dichotomy projection associated with Eq. (4.14). Then
the condition (v0, v

′
0) /∈ T(q0(ζ0),q′0(ζ0))Ws(x+, ζ0) of the lemma guarantees that the initial point

w(ξ0) /∈ im
(
W (ξ0)PBW−1(ξ0)

)
. Substituting w(ξ) into (4.9) and using (4.12), we get the desired

estimate of the lemma. �

Remark. The similar estimate is valid as ζ → −∞. Namely, if (v0, v
′
0) /∈ T(q0(ζ0),q′0(ζ0))Wu(x−, ζ0),

then the solution v(ζ) = Ψ0(ζ, ζ0)(v0, v
′
0) satisfies

|v(ζ)| > C(v0, v
′
0)|ζ|

2−m∗
4 eσ−|ζ|

m∗
2 , ζ → −∞,

where σ− is an arbitrary constant such that 0 < σ− < σ−
min and σ−

min is defined in Lemma 2.
Denote by {

(
vs
(k)(ζ), v′s(k)(ζ)

)
}n

k=1 and {
(
vu
(k)(ζ), v′u(k)(ζ)

)
}n

k=1 two bases in T(q0(ζ),q′0(ζ))Ws(x+, ζ)
and T(q0(ζ),q′0(ζ))Wu(x−, ζ), respectively. We also define n × n matrices

Vs = (vs
(1), . . . , v

s
(n)), Vu = (vu

(1), . . . , v
u
(n)).

If the assumption (A3) holds, then T(q0(ζ),q′0(ζ))TM = T(q0(ζ),q′0(ζ))Ws(x+, ζ)⊕T(q0(ζ),q′0(ζ))Wu(x−, ζ)
and

Vs(ζ) = |ζ|
2−m∗

4 eσ−|ζ|m∗/2
Bs,−, V ′s(ζ) = −|ζ|

m∗−2
4 eσ−|ζ|m∗/2

Ds,−, ζ → −∞

Vu(ζ) = |ζ|
2−m∗

4 e−σ−|ζ|m∗/2
Bu,−, V ′u(ζ) = |ζ|

m∗−2
4 e−σ−|ζ|m∗/2

Du,−, ζ → −∞

Vs(ζ) = |ζ|
2−m∗

4 e−σ+|ζ|m∗/2
Bs,+, V ′s(ζ) = −|ζ|

m∗−2
4 e−σ+|ζ|m∗/2

Ds,+, ζ → +∞

Vu(ζ) = |ζ|
2−m∗

4 eσ+|ζ|m∗/2
Bu,+, V ′u(ζ) = |ζ|

m∗−2
4 eσ+|ζ|m∗/2

Du,+, ζ → +∞.

Here n × n matrices Bs,±, Bu,±,Ds,±,Du,± are nondegenerate and satisfy

‖Bs,−‖ � βs,−, ‖Bu,−‖ � βu,−, ζ → −∞ (4.15)

Ds,− =
m∗σ−

2
Bs,−

(
1+O

(
|ζ|−m∗/2

))
, Du,− =

m∗σ−

2
Bu,−

(
1+O

(
|ζ|−m∗/2

))
, ζ → −∞

‖Bs,+‖ � βs,+, ‖Bu,+‖ � βu,+, ζ → +∞

Ds,+ =
m∗σ+

2
Bs,+

(
1+O

(
|ζ|−m∗/2

))
, Du,+ =

m∗σ+

2
Bu,+

(
1+O

(
|ζ|−m∗/2

))
, ζ → +∞,

where βs,±, βu,± are some positive constants independent of ζ.
Represent (4.11) as the first-order equation by setting y = (v, v′ζ):

y′ = A0(ζ)y, (4.16)

A0(ζ) =

⎛

⎝
0 I

−ζκ∗g∗(τ∗)HV (q0(ζ)) 0

⎞

⎠

and define a fundamental matrix Y (ζ) as

Y (ζ) =

⎛

⎝
Vs(ζ) Vu(ζ)

V ′s(ζ) V ′u(ζ)

⎞

⎠ . (4.17)

Consider the evolution operator Ψ0(ζ0,−ζ0) = Y (ζ0)Y −1(−ζ0) : T(q0(−ζ0),q′0(−ζ0))TM →
T(q0(ζ0),q′0(ζ0))TM, associated with (4.16).
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Lemma 5. In local coordinates LC(x±) the operator Ψ0(ζ0,−ζ0) has the following asymptotics as
ζ0 → +∞:

Ψ0(ζ0,−ζ0) = e(σ++σ−)|ζ0|m∗/2

⎛

⎝
Gu 2

m∗σ− |ζ0|−
m∗−2

2 Gu

m∗σ+

2 |ζ0|
m∗−2

2 Gu σ+

σ− Gu

⎞

⎠
(
1 + O

(
|ζ0|−m∗/2

))
,

where Gu = Bu,+ (Bu,−)−1.

Proof. The lemma immediately follows from (4.15), (4.16) and (4.18). �

Now take sufficiently small δ > 0. In particular, let δ = O(εγ/m∗) with some 0 < γ < 2. Then we
arrive at the following lemma.

Lemma 6. For any positive constants δ0 and γ < 2 define δ = δ0ε
γ/m∗ . Then the evolution operator

Ψ(τ∗ − δ, τ∗ + δ) has the following representation as ε → 0

Ψ(τ∗− δ, τ∗+ δ) = e
σ++σ−

ε1−γ/2
δ

m∗
2

0

⎛

⎜
⎝

Gu 2ε
1−γ m∗−2

2m∗
m∗σ− δ

−m∗−2
2

0 Gu

m∗σ+

2ε
1−γ

m∗−2
2m∗

δ
m∗−2

2
0 Gu σ+

σ− Gu

⎞

⎟
⎠

(
1+O

(
ε1− γ

2

)
+O

(
ε

γ
2

))
.

Proof. Due to (A2) one may rewrite (4.5) in terms of the variable ζ = (τ − τ∗)ε−2/m∗ as

Dζu
′ + ζκ∗g∗(τ∗)

(
1 + O(ζε2/m∗)

)
D2V (q0(ζ))u = 0. (4.18)

Hence, if one puts ζ0 = δ0ε
− 2−γ

m∗ , then on the interval [−ζ0, ζ0] we get

Ψ̂(−ζ, ζ) = Ψ0(−ζ, ζ)
(
1 + O

(
ε

γ
m∗

))
,

where Ψ̂ denotes the evolution operator of (4.19). Applying Lemma 2 and taking into account that
Dτ = ε−2/m∗Dζ yield the desired estimate. �

In accordance with (2.4) and (2.14), introduce variables

z± = (z±1 , z±2 ), z±1 = |f(τ)|1/4v±, z±2 = ε−1|f(τ)|−1/4Λ±v′
±
, (4.19)

where v± denotes the local coordinates LC(x±) and Λ± = diag{Λ1(x±), . . . ,Λn(x±)}.
In these variables the evolution operator Ψ takes the form

Ψ(τ∗ − δ, τ∗ + δ) = e
σ++σ−

ε1−γ/2
δ

m∗
2

0

⎛

⎝
Gu 2

m∗σ− GuΛ−
m∗σ+

2 Λ−1
+ Gu σ+

σ− Λ−1
+ GuΛ−

⎞

⎠
(
1 + O

(
ε1− γ

2

)
+ O

(
ε

γ
2

))
.(4.20)

Since q0(ζ) → x± as ζ → ±∞, the invariant subspaces Eu
−(τ∗ − δ) and Es

+(τ∗ + δ) become
exponentially close to TW u(x−; τ∗ − δ) and TW s(x+; τ∗ + δ), respectively. But TW u(x−; τ∗ − δ)
and TW s(x+; τ∗ + δ) expressed in terms of z± are the unstable and stable subspaces of the Poincaré
map Φ±(τ∗ ± δ) associated with the equilibria x±, respectively. We also note that the map Φ± is
of the form

Φ± =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Φ±
1 0 . . . 0

0 Φ±
2 . . . 0

...
...

. . .
...

0 0 . . . Φ±
n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where Φ±
k (τ) are defined by (2.5), (2.15).
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Let E be a subspace of a Hilbert space V . Denote by CN (E,κ) a cone neighborhood of E, i. e.,

CN(E,κ) = {v ∈ V : |∠(v,E)| < κ},
where ∠(v,E) denotes the angle between v and E.

Define

N− = ker

⎛

⎝
I 2

m∗σ− Λ−

I 2
m∗σ− Λ−

⎞

⎠ , R+ = im

⎛

⎝
I − 2

m∗σ+ Λ+

I − 2
m∗σ+ Λ+

⎞

⎠ ,

Lemma 7. Assume TW u(x−; τ∗ − δ), TW s(x+; τ∗ + δ) satisfy

zu /∈ CN(N−, κ), ∀zu ∈ TW u(x−; τ∗ − δ),

zs /∈ CN(R+, κ), ∀zs ∈ TW s(x+; τ∗ + δ),

κ = κ0 max{ε1− γ
2 , ε

γ
2 }

for some constant κ0 > 0. Then Ψ(τ∗ − δ, τ∗ + δ)Eu
−(τ∗ − δ) is transversal to Es

+(τ∗ + δ).

Proof. The first condition of the lemma guarantees that one may use the leading term of (4.20)
and TW u(x−; τ∗ − δ) to control the image Ψ(τ∗ − δ, τ∗ + δ)Eu

−(τ∗ − δ). The second condition of the
lemma implies the transversality. �

Remark. It has to be noted that Lemma 7 gives sufficient conditions for transversality of
the subspaces Ψ(τ∗ − δ, τ∗ + δ)Eu

−(τ∗ − δ) and Es
+(τ∗ + δ) for small ε in terms of the stable

Es(x+, τ∗ + δ) = TW s(x+; τ∗ + δ) and unstable Eu(x−, τ∗ − δ) = TW s(x−; τ∗ − δ) subspaces (see
Corollary 2) associated to the equilibria x±. They can be analyzed by means of the Poincaré map
Φ± and its representation (2.14). Note that (2.14) contains information on all turning points. It
follows from the estimate (2.24) that the invariant subspaces Es(x+, τ∗ + δ), Eu(x−, τ∗ − δ) rotate
rapidly as ε approaches the boundary of E±

h (0). In contrary, the subspaces N−,R+ are independent
of ε. Hence, one may conclude that the subset Etr(x−, x+) ⊂ E±

h (0) of those values of the parameter
ε for which the conditions of Lemma 7 hold is nonempty. In Section 5 we discuss the case when
the function f(τ) has two simple turning points. In this case the asymptotics of the Poincaré map
Φ± is constructed using (2.14)–(2.20) and it is shown that the conditions of Lemma 7 are valid for
all ε ∈ E±

h (0). We point out that in the general case, i. e., for an arbitrary set of turning points, it
seems cumbersome to get the asymptotics of the Poincaré map.

As an immediate consequence of this lemma we get

Corollary 4. Provided that the conditions of Lemma 7 are fulfilled for some positive κ0, Eq. (4.5)
has an exponential dichotomy on R with any exponent α < min

k
{λk(x±)}.

We now state the following

Proposition 2. For any positive constants ρ, κ0, γ < 2 and any q0 ∈ Qtr
h (x−, x+, τ∗) there exists

a positive constant ε1 such that for all ε ∈ (0, ε1) ∩ E+
h (ρ) ∩ E−

h (ρ) ∩ Etr(x−, x+) the system (1.3)

possesses a doubly asymptotic trajectory connecting x− and x+ which stays in εγ m∗−1
m∗ -neighborhood

of the curve q0.

Proof. To prove Proposition 2, represent (4.3) as

Dτz = A(τ, ε)z + h(z, τ), h(z, τ) = h1(τ) + h2(z, τ), (4.21)

with the matrix (4.6) and

h1(τ) =

⎛

⎝
0

− (f(τ) − g∗(τ∗)(τ − τ∗)κ∗)∇V (q̂0)

⎞

⎠ , (4.22)
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h2(z, τ) =

⎛

⎝
0

−f(τ)
(
∇V (q̂0 + z1) −∇V (q̂0) − D2V (q̂0)z

)

⎞

⎠ . (4.23)

Denote by BC the Banach space of bounded and continuous functions BC = {z : R → T (TM)}
endowed with the norm

‖z‖ = sup
τ∈R

|z(τ)|.

Since (4.5) possesses an exponential dichotomy on R, one may rewrite (4.21) as

zs(τ) = Ψ(τ, τ0)zs(τ0) +

τ∫

τ0

Ψ(τ, s)P(s)h(z(s), s)ds,

zu(τ) = Ψ(τ, τ0)zu(τ0) +

τ∫

τ0

Ψ(τ, s)(I − P(s))h(z(s), s)ds,

where zs(τ) = P(τ)z(τ), zu(τ) =
(
I −P(τ)

)
z(τ) and P(τ) = X(τ)P sX−1(τ) is a projection-valued

function associated with the exponential dichotomy of (4.5) on R, which is guaranteed by
Corollary 4. One may show that P(τ) is invariant with respect to the evolution Ψ, i. e., P(τ)Ψ(τ, s) =
Ψ(τ, s)P(s) [9]. Note that |z(τ)| is bounded as τ → ±∞. Together with (4.8), (4.9) this leads to

zs(τ) =

τ∫

−∞

Ψ(τ, s)P(s)h
(
z(s), s

)
ds,

zu(τ) = −
∞∫

τ

Ψ(τ, s)
(
I − P(s)

)
h
(
z(s), s

)
ds.

Then (4.21) takes the form

z(τ) =

τ∫

−∞

Ψ(τ, s)P(s)h
(
z(s), s

)
ds −

∞∫

τ

Ψ(τ, s)
(
I − P(s)

)
h
(
z(s), s

)
ds.

In a vicinity of x± the potential V admits an estimate ∇V (x) = O(|x − x±|). Hence, Lemma 2
together with (A2) yields

|h1(τ)| < C1ε
(2+3γ)m∗−4−6γ

4m∗ e−σδ
m∗
2

0 ε−(1−γ/2)
, |τ − τ∗| > δ0ε

γ/m∗ ,

for some positive constant C1, 0 < γ < 2 and sufficiently small ε. On the other hand, if τ is close
to τ∗, we get for some constant C2 > 0

|h1(τ)| < C2δ
m∗−1
0 εγ m∗−1

m∗ , |τ − τ∗| < δ0ε
γ/m∗ .

Then h1 ∈ BC and there exists a positive constant C3 independent of ε such that

‖h1‖ � C3ε
γ m∗−1

m∗ . (4.24)

Besides, it follows from (4.23) that for sufficiently small ‖z‖
|h2(z, τ)| < C4|z(τ)|2 (4.25)

with some constant C4 > 0.
Define a map F : BC → BC according to

F : z �→
τ∫

−∞

Ψ(τ, s)P(s)h
(
z(s), s

)
ds −

∞∫

τ

Ψ(τ, s)
(
I − P(s)

)
h
(
z(s), s

)
ds. (4.26)
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The estimate (4.25) implies

‖F(0)‖ � sup
τ∈R

⎛

⎝

τ∫

−∞

|Ψ(τ, s)P(s)h1(s)|ds +

∞∫

τ

|Ψ(τ, s)
(
I − P(s)

)
h1(s)|ds

⎞

⎠ � 2Kα−1C3ε
γ m∗−1

m∗ ,

where K,α are the parameters of exponential dichotomy associated to (4.5).

Denote by BCr the closed ball of radius r in BC centered at 0. Then (4.25), (4.26) imply for
sufficiently small r

‖F(z) −F(0)‖ � Kα−1C4‖z‖2

and all z ∈ BCr. This shows that F is a contraction on BCr whenever

εγ m∗−1
m∗ <

α

4KC3
r, r <

α

4KC4
. (4.27)

Thus, we conclude that if for some κ0 > 0 the conditions of Lemma 7 are valid, then for any ρ > 0
there exists ε0 > 0 such that for any ε ∈ (0, ε0) ∩ E+

h (ρ) ∩ E−
h (ρ) inequalities (4.27) hold and there

exists a unique fixed point zε of F . This finishes the proof of Proposition 2. �

Finally, we consider the case when two fixed equilibria x± ∈ Xc satisfy x± /∈ X l
± for all turning

points τl, l = 1, . . . , L. This may occur only if T± �= ∅ and both points x± ∈ Xmax (or x± ∈ Xmin).
Then there exists a sequence of turning points τl1 < . . . < τlM such that x− ∈ X l1

− , x+ ∈ X lM
+

and x± /∈ X lk
± , 2 � k � M − 1. Besides, one may take x0 ∈ Xc satisfying x0 ∈ X l2

− , x0 ∈ X
lM−1
+ (it

also follows that x0 ∈ X lk
± , 2 � k � M − 1). Assume that Qtr

h (x−, x0, τl1) and Qtr
h (x0, x+, τlM ) are

nonempty. Then for any q− ∈ Qtr
h (x−, x0, τl1) and q+ ∈ Qtr

h (x0, x+, τlM ) define

q̌0(τ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q−
(
(τ − τl1)ε

−2/ml1

)
, τ � τmid − δ,

ω(τ, ε), |τ − τmid| < δ,

q+

(
(τ − τlM )ε−2/mlM

)
, τ � τmid + δ,

(4.28)

where τmid is any middle point τmid ∈ (τl1 , τlM ) such that τmid �= τl for all l = 1, . . . , L and δ is
a small positive constant such that the interval (τmid − δ, τmid + δ) does not contain the turning
points. The function ω(τ, ε) is a solution of the Lagrange equation (2.1) satisfying the following
boundary conditions:

ω(τ, ε) = q−
(
(τ − τl1)ε

−2/ml1

)
, τ = τmid − δ,

ω(τ, ε) = q+

(
(τ − τlM )ε−2/mlM

)
, τ = τmid + δ.

The existence of such a function ω(τ, ε) for sufficiently small ε follows from the theory of singular
perturbed differential equations [27] and is similar to the Shilnikov lemma [10, 26] (see also [5]).
Besides, one may prove [27] that |ω(τ, ε) − x0| = O(ε) as ε → 0.

Then we get the following

Proposition 3. For any positive constants ρ, κ0, γ < 2 and any q− ∈ Qtr
h (x−, x0), q+ ∈

Qtr
h (x0, x+) there exists a positive constant ε1 such that for all ε ∈ (0, ε1) ∩ E+

h (ρ) ∩ E0
h(ρ)∩ E−

h (ρ)∩
Etr(x−, x0) ∩ Etr(x0, x+) the system (1.3) possesses a doubly asymptotic trajectory connecting

x− and x+ which stays in εγ m∗−1
m∗ -neighborhood of the curve q̌0, where m∗ = min{ml1 ,mlM},

E0
h(ρ) = Eh(x0, ρ).
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Proof. The proof of this proposition is similar to the proof of Proposition 2. Indeed, the conditions
of the proposition guarantee that the variational Eq. (4.4) along the curve q̌0 defined by (4.28) has
an exponential dichotomy on R with any exponent α < min

k
{λk(x±), λk(x0)}. Then applying the

contraction principle to (4.2) (where q̂0 is replaced by q̌0), one obtains the existence of a doubly
asymptotic trajectory connecting x− and x+ in a small neighborhood of q̌0. �

Remark. Following [5, 25], we call the trajectories constructed in Proposition 2 (Proposition 3)
as one-bump (two-bump) orbits. In a similar way one may construct multibump orbits. Namely, if
one takes a sequence of turning points τk, k = 1, . . . ,M (here we consider turning points not in T

1

as above, but in R), a sequence of equilibria xk, k = 0, . . . ,M , satisfying xk−1 ∈ Xk
−, xk ∈ Xk

+, and
a sequence of heteroclinics qk ∈ Qtr

h (xk−1, xk), k = 1, . . . ,M , one may define

q̌0(τ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q1

(
(τ − τ1)ε−2/m1

)
, τ � τmid,1 + δ,

qk

(
(τ − τk)ε−2/mk

)
, τmid,k−1 + δ � τ � τmid,k − δ, 2 � k � M − 1

ωk(τ, ε), |τ − τmid,k| < δ, 2 � k � M − 1

qk+1

(
(τ − τk+1)ε−2/mk+1

)
, τmid,k + δ � τ � τmid,k+1 − δ, 2 � k � M − 1

qM

(
(τ − τM )ε−2/mM

)
, τ � τmid,M − δ,

with functions ωk(τ, ε) solving the Lagrange equation (2.1) and satisfying

ωk(τ, ε) = qk−1

(
(τ − τk−1)ε−2/mk−1

)
, τ = τmid,k − δ,

ωk(τ, ε) = qk

(
(τ − τk)ε−2/mk

)
, τ = τmid,k + δ,

where τmid,k are some intermediate points and δ > 0 such that (τmid,k − δ, τmid,k + δ) does not
contain the turning points. Then arguing as in Propositions 2 and 3, one may prove the existence
of a doubly asymptotic trajectory connecting x0 and xM which stays in a small neighborhood of q̌0.

It is essential that multiplicity of such connecting orbits follows from arbitrariness of all
considered sequences (of turning points, equilibria and heteroclinics).

5. AN EXAMPLE
To illustrate the results obtained, we consider a classical example of conservative systems with

two degrees of freedom — the double mathematical pendulum. It consists of two masses m1,m2
attached to sequentially connected arms of lengths l1 and l2, respectively. The upper end of the
first arm is fixed and the system is subjected to the action of the constant gravity force with
acceleration g. Following [16], denote by ϕ1, ϕ2 the angles of deviation of the arms from the
vertical axis and introduce parameters

δ =
m2

m1
, ε =

(
l2
l1

)1/2

, ν =
(

E

2m1gl1

)1/2

,

where E is the energy of the system. If one takes x1 = ϕ1, x2 = ϕ2 − ϕ1 as coordinates of the
system, then in the limit δ → 0, ε → 0 the equation of motion takes the form

x′′
1 + sin x1 = 0, (5.1)

ε2x′′
2 + (3 cos x1 + 4ν2 − 2) sin x2 = 0. (5.2)

The general solution of (5.2) is

x1(τ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2arctan
(
ν sn(τ−τ0,ν)

dn(τ−τ0,ν)

)
, ν < 1;

2arctan(sinh(τ − τ0) or π, ν = 1;

2arctan
(

sn(ν(τ−τ0),ν−1)
cn(ν(τ−τ0),ν−1)

)
, ν > 1,
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where sn(τ, k), cn(τ, k),dn(τ, k) are the Jacobi elliptic functions of module k and τ0 is an arbitrary
constant. If we put ϕ = x2 − π/2, Eq. (5.3) describes a Lagrangian system defined on TM× R

1,
M = S1 with a Lagrangian

L(ϕ,ϕ′, ε) =
1
2
|ϕ′|2 − fν(τ) sin ϕ, (5.3)

fν(τ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

6dn2(τ, ν) + 4ν2 − 5, ν < 1;

6 cosh−2(τ) − 1 or − 1, ν = 1;

6cn2(ντ, ν−1) + 4ν2 − 5, ν > 1.

We will refer to this system as the reduced system. Note that for ν �= 1 the factor fν is a T -periodic
function with T = 4K(ν), where K(ν) is the elliptic integral of the first kind:

K(ν) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

π/2∫

0

dθ√
1−ν2 sin2 θ

, ν < 1;

π/2∫

0

dθ√
1−ν−2 sin2 θ

, ν > 1.

If ν < 1√
2

or ν >
√

5
2 , the factor fν(τ) > 0 for all τ . In that case it was proved [16] by Fenichel’s

geometric singular perturbation theory (see, e. g., [13, 30]) that for sufficiently small ε the reduced
system possesses a hyperbolic periodic orbit whose invariant manifolds intersect transversally. On
the contrary, when 1√

2
< ν <

√
5

2 the factor fν has two zeroes of multiplicity 1 (or one zero of

multiplicity 2 if ν ∈ { 1√
2
,
√

5
2 }) and the singular perturbation theory cannot be applied to the

reduced system.

In what follows we assume that ν ∈
[

1√
2
,
√

5
2

]
\ {1}. In this case the set Xc defined by (1.4)

consists of two points {±π/2} if ν ∈
(

1√
2
,
√

5
2

)
\ 1 and of one point {π/2} if ν ∈

{
1√
2
,
√

5
2

}
. The

variational Eq. (2.2) around ϕ = ±π/2 is

ε2v′′ ∓ fν(τ)v = 0.

Let τ± be the turning points such that

fν(τ±) = 0, τ+ > 0, τ− < 0, |τ±| < 2K(ν).

Then (2.23) reads

S+
e =

∫

τ+<|s|<2K(ν)

|fν(s)|1/2ds, S+
h =

∫

|s|<τ+

|fν(s)|1/2ds, S−
e = S+

h , S−
h = S+

e , γ± = ln 2.

Using properties of the elliptic functions, one gets

f ′
ν(τ±) = ±

(
2
3
(1 + 4ν2)(2ν2 − 1)(5 − 4ν2)

)1/2

.

Noting that the conditions (A1), (A2) hold, we obtain the reference system associated to τ±

d2ϕ

dζ2
+ fν(τ±)ζ cos ϕ = 0, ζ = (τ − τ±)ε−2/3. (5.4)

Applying the results of [17] to the reference system (5.4), we arrive at

Proposition 4. For any m ∈ Z there exists a doubly asymptotic trajectory ϕ±
m(ζ) of the

system (5.4) associated to the turning point τ± such that limζ→−∞ ϕ±
m(ζ) = ∓π/2 − mπ and

limζ→+∞ ϕ±
m(ζ) = ±π/2 + mπ, i.e., the trajectories ϕ±

m(ζ) connect the points ∓π/2 − mπ with
±π/2 + mπ via m full rotations.
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Due to symmetry of (5.4) with respect to (ζ, ϕ) → (−ζ,−ϕ) one may show that the functions ϕ±
m(ζ)

are odd. If one considers the variational Eq. (4.11) along the trajectory ϕ±
m(ζ), it also can be proved

that ϕ±
m(ζ) is transversal at least for m = 0.

To verify the conditions of Lemma 7, we note first that one may easily obtain an expression
for the Poincaré map Φ(τ) corresponding to ϕ = ±π/2. Indeed, take, for example, ϕ = −π/2.
Then (2.14), (2.16), (2.19), (2.20) yield up to a factor

(
1 + O(ε)

)

Φ(τ− − δ) = Ξ−1(τ− − δ)R(π/4)Z(a)R(b)Z(c)R(−π/4)Ξ(τ− − δ), (5.5)

where

a = ε−1

τ−∫

τ−−δ

|fν(s)|ds +
γ−
2

, b = ε−1

τ+∫

τ−

|fν(s)|ds, c = ε−1

4K(ν)+τ−−δ∫

τ+

|fν(s)|ds +
γ−
2

.

Hence, the stable and unstable subspaces Es,u(−π/2; τ− − δ) in coordinates z− (see (4.19)) are
spanned by the vectors zs,u:

zs,u = R(π/4)

⎛

⎝
sin bec−a

cos b sinh(a + c) ± (cos2 b sinh2(a + c) − sin2 b)1/2

⎞

⎠ (1 + O(ε)), (5.6)

where the sign ′+′ corresponds to zu and ′−′ to zs.
Let ψ denote the angle between the stable and unstable subspaces. Then

cos2 ψ =
sin2 b

(
e2(c−a) + 1

)2

sin2 b
(
e2(c−a) + 1

)2 + 4e2(c−a)(cos2 b cosh2(a + c) − 1)

(
1 + O(ε)

)
. (5.7)

One may see that ψ oscillates as ε → 0. However, since Λ− = 1, the first condition of Lemma 7
holds as it follows from (5.5), (5.6). In the same manner one may check that the second condition
of Lemma 7 is also fulfilled. Thus, applying Proposition 2 we get

Proposition 5. For any m ∈ Z there exists a doubly asymptotic trajectory ϕ̂±
m(τ) of the sys-

tem (5.3) such that limτ→−∞ ϕ̂±
m(τ) = ±π/2 and limζ→+∞ ϕ±

m(τ) = ∓π/2, which stays in O(ε2/3)-
neighborhood of the curve ϕ±

0

(
(τ − τ± − 4mK(ν))ε−2/3

)
.
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