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Abstract—We consider the system of a rigid body in a weak gravitational field on the zero level
set of the area integral and study its Poincaré sets in integrable and nonintegrable cases. For
the integrable cases of Kovalevskaya and Goryachev–Chaplygin we investigate the structure
of the Poincaré sets analytically and for nonintegrable cases we study these sets by means of
symbolic calculations. Based on these results, we also prove the existence of periodic solutions
in the perturbed nonintegrable system. The Chaplygin integrable case of Kirchhoff’s equations
is also briefly considered, for which it is shown that its Poincaré sets are similar to the ones of
the Kovalevskaya case.
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1. INTRODUCTION

Let us consider a nearly integrable Hamiltonian system

ẏ = −∂H

∂x
, ẋ =

∂H

∂y
, H = H0(y) + μH1(x, y) + o(μ).

Everywhere below we assume that H is an analytical function and is 2π-periodic in x. Classical
perturbation theory allows one to formally present this system as follows:

u̇ = −∂K

∂v
, v̇ =

∂K

∂u
, K = K0(u) + μK1(u) + μ2K2(u) + . . . + μmKm(u, v) + o(μm).

Here K is 2π-periodic in v. However, this formal procedure may lead to the appearance of so-
called resonant harmonics in K , which are unbounded as action variables tend to the Poincaré sets
(resonant surfaces) [1].

The structure of the Poincaré sets plays an important role in the integrability of Hamiltonian
systems. In particular, if these sets are complex enough, then the system cannot have a full set of
analytical first integrals.

In addition, information about resonant harmonics in K can be used to prove the existence
of periodic solutions. To be more precise, it was proved [2] that a resonant torus of an integrable
system may produce a pair of periodic solutions (one elliptic and one hyperbolic) as we add a small
perturbation. In some sense, this result complements the KAM theorem on the preservation of most
of the nonresonant tori.

Unfortunately, the classical perturbation methods generally lead to cumbersome calculations,
which complicates their implementation.

In our work, we consider the Hamiltonian system of a dynamically symmetric rigid body in a
weak gravitational field on the zero level set of the area integral. For this system we obtain recurrent
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relations for the components of the generating function formal series and for finding Ki. It is shown
that in the integrable Kovalevskaya case, the numbers of the resonant harmonics lie on four lines
and in the Goryachev –Chaplygin case they are located on two lines.

Based on the results of symbolic calculations and considering O(μ3) terms of the perturbed
Hamiltonian, we show that there always exist periodic solutions in nonintegrable cases for μ small
enough. We also study the resonance sets of the Chaplygin integrable case of Kirchhoff’s equations
and prove that the resonances lie on four lines, as in the Kovalevskaya case.

2. AUXILIARY RESULTS AND DEFINITIONS

Let us briefly recall classical perturbation theory [1–3], which we are going to use below. Let us have
a Hamiltonian system with the Hamiltonian H0 + μH1, where H = H0(y) and H1 = H1(x, y) are
analytical functions and the variable y is defined in a domain in R

n, x is the angle variable defined
on a torus T

n, and μ is a small parameter. In all systems considered below, H0 has the form
H0(y) = (a11y

2
1 + a22y

2
2)/2, which is also assumed in Corollary 1.

The main idea of classical perturbation theory is to find a canonical transformation y, x
mod 2π �→ u, v mod 2π which transforms the Hamiltonian H0 + μH1 to the form K0(u) +
μK1(u) + μ2K2(u) + . . .. The generating function of the canonical transformation has the form

S = S0(u, x) + μS1(u, x) + μ2S2(u, x) + . . .

It is also assumed that S0 =
∑n

i=1 uixi, i. e., the transformation is close to the identical one. The
correspondence between the variables y, x and u, v is given as follows:

yi =
∂S

∂xi
, vi =

∂S

∂ui
, i = 1, . . . , n.

The function S satisfies the Hamilton – Jacobi equation

H0

(
∂S

∂x

)

+ μH1

(

x,
∂S

∂x

)

= K0 + μK1(u) + μ2K2(u) + . . .

This equation can be solved formally, i. e., one can find functions Si satisfying it. After a finite
number of steps of the perturbation procedure, the Hamiltonian takes the form

K = K0(u) + μK1(u) + . . . + μm−1Km−1(u) + μkKm(u, v) + o(μm). (2.1)

It is known that for μ small enough, the system with such a Hamiltonian has a periodic solution in
a vicinity of a resonant torus of the unperturbed system, under additional conditions satisfied by
the system. To be more precise, the following result holds:

Theorem 1. Let u = u0 be an invariant resonant torus of the unperturbed system (μ = 0); let
ω1, . . . , ωn be the frequencies of the unperturbed τ -periodic solution. We assume that ωn �= 0.
Consider the following function k:

k(λ1, . . . , λn−1) =
1
τ

∫ τ

0
Km(ω1t + λ1, . . . , ωn−1t + λn−1, ωnt, u0

1, . . . , u
0
n) dt.

Let λ0 be a nondegenerate critical point of the function k. Then for small values of μ �= 0 there
exists an isoenergetically nondegenerate τ -periodic solution of the perturbed Hamiltonian system
and this solution analytically depends on μ.

Remark 1. Nonzero characteristic exponents of the periodic solution corresponding to λ0 analyt-
ically depend on

√
μ and it is possible to investigate linear stability of the solution. In particular,

for n = 2, the solution is unstable if

∂2k

∂λ2

∣
∣
∣
λ=λ0

·
(

ω2
1

∂2K0

∂u2
2

− 2ω1ω2
∂2K0

∂u1∂u2
+ ω2

2

∂2K0

∂u2
1

)

> 0.
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Taking into account the periodicity of K in u, for n = 2, the function Km(u, v) in (2.1) has the
form

Km(u, v) =
∑

(τ1,τ2)∈Z2

kτ
m(u)ei(τ1v1+τ2v2).

Here values kτ
m(u) can be nonzero for some u and, from the above theorem, we obtain the following

result.

Corollary 1. Let us consider the system with the Hamiltonian (2.1). Let τ1, τ2 be a pair of coprime
numbers and let these numbers belong to the convex hull of all indices for which km

τ (u0) �= 0, for
〈u0, τ〉 = a11u

0
1τ1 + a22u

0
2τ2 = 0. Suppose that the Hamiltonian K is defined on the invariant torus

u = u0 and this torus is nondegenerate and isoenergetically nondegenerate. Then for small μ �= 0
in the vicinity of this torus there exists a pair of isoenergetically nondegenerate periodic solutions
one of which is linearly stable and the other is unstable.

We now give a definition of a resonant harmonic of Kk(u, v). First, let the perturbation in the
Hamiltonian H0 + μH1 be a trigonometric polynomial on the angle variables

H1 =
∑

(τ1,τ2)∈Z2

hτe
i(τ1v1+τ2v2). (2.2)

Here hτ = h̄−τ ∈ C are constants. It can be shown [4] that in this case the terms Si of the generating
function are calculated recursively as follows:

Sτ
1 = ihτ/〈u, τ〉, Sτ

m =
1

2i〈u, τ〉
∑

u+v=m

∑

σ+δ=τ

〈σ, δ〉Sσ
u Sδ

v , m > 1.

If Sτ
m is known, the function km

τ from (2.2) can be calculated from the relation

Sτ
m = ikm

τ /〈u, τ〉, τ �= 0. (2.3)

From (2.3) we find that kτ
m = kτ

m(u1, u2) is a rational function of u1 and u2. Moreover, its
denominator is a product of the values of the form 〈u, τ〉 for various τ . Therefore, we find that, for
a given τ �= 0 and for all u �= 0, 〈τ, u〉 = 0, one of the following cases occurs:

1. kτ
m is zero,

2. kτ
m is nonzero (for almost all u),

3. kτ
m is not defined.

Definition 1. For a given τ �= 0, we say that kτ
m is a resonant harmonic in Km if either case 2

or case 3 holds.

Remark 2. This definition is consistent for a broader class of perturbations. In particular, it will
be consistent for the systems considered below.

One can see (2.3) that, for a resonant harmonic kτ
m, the function Sτ

m is not defined on the line
〈τ, u〉 = 0 and the canonical transformation S is not defined on the same line. Therefore, if we know
the numbers of the resonant harmonics of the system, we can obtain the Poincaré sets of the system
up to a set of measure zero.

As an illustration of the above definition, we present the numbers of the resonant harmonics of
the system (Fig. 1) with a polynomial perturbation (2.2), where

h0,1 = h1,1 = h0,2 = −h0,−1 = −h−1,−1 = −h0,−2 = i.

Note that if the numbers (τ1, τ2) = τ are coprime and kτ
i ≡ 0 for i < m, and kτ

m �≡ 0, then kτ
m is

defined on the corresponding line. Moreover, if τ belongs to the convex hull of all resonant numbers
(for all steps of the perturbation procedure up to m), then the Hamiltonian K is defined for u �= 0,
〈u, τ〉 = 0 and Corollary 1 can be applied.
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Fig. 1. Numbers of nonzero harmonics in Km for the case of trigonometric polynomial perturbation (τ �= 0).
Numbers τ of harmonics well defined on 〈τ, u〉 = 0, u �= 0 are shown in color (it may be possible to apply
Corollary 1 to these harmonics). Pairs of coprime number are also highlighted.
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3. RIGID BODY IN A WEAK GRAVITATIONAL FIELD

3.1. Equations of Motion and Formal Solution of the Hamilton – Jacobi Equation

In the special canonical variables, the Hamiltonian of a dynamically symmetric rigid body with a
fixed point in a weak gravitational field takes the form [5]

H =
1

2A
G2 +

1
2

(
1
C

− 1
A

)

L2 + μ
[x

r

(H

G

√

1 − L2

G2
sin l

+
L

G

√

1 − H2

G2
sin l cos g +

√

1 − H2

G2
cos l sin g

)

+
z

r

(LH

G2
−

√

1 − L2

G2

√

1 − H2

G2
cos g

)]
.

Here (x, 0, z) are the coordinates of the center of mass in the principal axes of inertia, r =
√

x2 + z2,
and μ is a small parameter. Let z = 0 and H = 0, then the form of the Hamiltonian simplifies to

H =
1
2

( 1
C

− 1
A

)
L2 +

1
2A

G2 + μ
[L

G
sin l cos g + cos l sin g

]
.

Let us introduce the following notation: 1/C − 1/A = a11, 1/A = a22, L = y1, G = y2, l = x1,
g = x2. The Hamiltonian H takes the form

H =
a11

2
y2
1 +

a22

2
y2
2 +

y1

y2
μ

i

4
(
− ei(x1+x2) − ei(x1−x2) + ei(−x1+x2) + ei(−x1−x2)

)

+ μ
i

4
(
− ei(x1+x2) + ei(x1−x2) − ei(−x1+x2) + ei(−x1−x2)

)
.

(3.1)

In accordance with the classical perturbation procedure, we find a canonical transformation
y, x mod 2π → u, v mod 2π which transforms H0 + μH1 to the form (2.1). The Hamilton – Jacobi
equation can be represented as

(
u2 + μ

∂S1

∂x2
+ . . .

)
· H0

(
u1 + μ

∂S1

∂x1
+ . . . , u2 + μ

∂S1

∂x2
+ . . .

)

+ μ
(
u1 + μ

∂S1

∂x1
+ . . .

)
· H11(x1, x2) + μ

(
u2 + μ

∂S1

∂x2
+ . . .

)
· H12(x1, x2)

=
(
u2 + μ

∂S1

∂x2
+ . . .

)
·
(
K0 + μK1(u) + μ2K2(u) + . . .

)
.

(3.2)

Here, y1/y2 ·H11 + H12 = H1. If we consider m− 1 steps of the perturbation procedure, i. e., Si = 0
for i > m − 1, then Km(u, x) may depend both on u and x. One can show that

Km(u, x) = Km(u) −
∑

τ

i〈τ, u〉Sτ
mei(τ,x), m > 0.

Here Km(u) is the mth term in the Hamiltonian K when m steps of the perturbation procedure
are done.
From (3.2), for m = 0, we obtain H0 = K0. Similarly, for m = 1 and m = 2, we have

K1 =
u1h

11
0 + u2h

12
0

u2
= 0, Sτ

1 = −u1h
11
τ + u2h

12
τ

iu2〈τ, u〉
,

−u2K2 =
∑

ξ

(
Sξ

1S
−ξ
1 (1/2 · u2〈−ξ, ξ〉 + ξ2〈−ξ, u〉) − i(ξ1S

ξ
1h

11
−ξ + ξ2S

ξ
1h

12
−ξ)

)
,

u2i〈τ, u〉Sτ
2 =

∑

ξ+η=τ

(
Sξ

1S
η
1 (1/2 · u2〈ξ, η〉 + ξ2〈η, u〉) − i(ξ1S

ξ
1h

11
η + ξ2S

ξ
1h

12
η )

)
.
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For an arbitrary m > 2, we obtain

−u2Km =
∑

ξ+η=0

∑

n+k=m
n,k>0

(
1
2
u2〈ξ, η〉 + ξ2〈η, u〉

)

Sξ
nSη

k − i
∑

ξ+η=0

Sξ
m−1(ξ1h

11
η + ξ2h

12
η )

+
i

2

∑

ξ+η+ζ=0

∑

n+k=m
n>0,k>1

∑

k1+k2=k
k1,k2>0

ξ2〈η, ζ〉Sξ
nSη

k1
Sζ

k2
,

u2i〈τ, u〉Sτ
m =

∑

ξ+η=τ

∑

n+k=m
n,k>0

(
1
2
u2〈ξ, η〉 + ξ2〈η, u〉

)

Sξ
nSη

k − i
∑

ξ+η=τ

Sξ
m−1(ξ1h

11
η + ξ2h

12
η )

+
i

2

∑

ξ+η+ζ=τ

∑

n+k=m
n>0,k>1

∑

k1+k2=k
k1,k2>0

ξ2〈η, ζ〉Sξ
nSη

k1
Sζ

k2
+

∑

n+k=m
n,k>0

iτ2S
τ
nKk.

(3.3)

These equations can be solved for any m and, in particular, it is seen that the definition of the
resonant harmonics can be correctly applied to the system with the Hamiltonian (3.1).

3.2. Integrable Cases

The expressions obtained for Si can be cumbersome. By means of symbolic calculations, for A = 2,
C = 1 (the Kovalevskaya case), we obtain the following results for the first three steps of the
perturbation procedure:

S1,1
1 = S−1,−1

1 = S−1,1
1 = S1,−1

1 =
1

2u2
,

S2,2
2 = S̄−2,−2

2 =
−i · u1

8(u1 + u2)u3
2

, S2,0
2 = S̄−2,0

2 =
i

4u1u
2
2

, S2,−2
2 = S̄−2,2

2 =
i · u1

8(u1 − u2)u3
2

,

S0,2
2 = S̄0,−2

2 =
−i

4u3
2

,

S3,3
3 = S−3,−3

3 =
−2u1 + u2

24u5
2(u1 + u2)

, S3,1
3 = S−3,−1

3 = S1,1
3 = S−1,−1

3 =
1

8u4
2(u1 + u2)

,

S−3,1
3 = S3,−1

3 = S1,−1
3 = S−1,1

3 =
−1

8u4
2(u1 − u2)

, S3,−3
3 = S−3,3

3 = − 2u1 + u2

24u5
2(u1 − u2)

,

S1,3
3 = S−1,−3

3 = S1,−3
3 = S−1,3

3 =
−2u1 + u2

8u5
2(u1 − u2)

.

Taking into account (3.2), we note that kτ
m can be zero on the line 〈u, τ〉 = 0, while Sτ

m �≡ 0.
Similarly, the following results are obtained for the Goryachev – Chaplygin case:

S1,1
1 = S−1,−1

1 =
u1 + u2

u2 (3u1 + u2)
, S1,−1

1 = S−1,1
1 =

u1 − u2

u2 (3u1 − u2)
,

S2,2
2 = S̄2,2

2 =
i(2u2 (−u1 − u2) (3u1 + u2) + 2u2 (u1 + u2)

2 + (u1 + u2)
2 (3u1 + u2))

2u3
2 (3u1 + u2)

3 ,

S2,−2
2 = S̄−2,2

2 =
i (u1 − u2) (2u2 (u1 − u2) − 2u2 (3u1 − u2) − (u1 − u2) (3u1 − u2))

2u3
2 (3u1 − u2)

3 .

(3.4)

Based on the results of symbolic calculations, we can conclude that, in the integrable systems
considered, all nonzero resonant harmonics in Km(u, x) lie on the four lines for m � 7. The numbers
of the resonant harmonics are presented above (the explicit expressions for kτ

m are cumbersome and
omitted). Moreover, the following proposition holds.

Proposition 1. For the Kovalevskaya case, the numbers τ of nonzero resonant harmonics kτ
m(u) �≡

0 of Km(u, v) can lie only on the four lines: τ1 = 0, τ2 = 0, τ1 = ±τ2.
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Fig. 2. Numbers of nonzero harmonics in Km for the Goryachev –Chaplygin case A = 4, C = 1 (τ �= 0).
Numbers τ of harmonics well defined on 〈τ, u〉 = 0, u �= 0 are shown in color.

Proof. First, consider the case of an identical transformation, i. e., S = S0. The Hamiltonian and
the additional first integral have the form

K (u, v) = K0(u) + μK1(u, v) + o(μ),
F (u, v) = F0(u) + μF1(u, v) + o(μ).

Here, K0(u)=(u2
1+u2

2)/2 and F0(u)=(u2
2−u2

1)
2/2. From {F ,K }=0, we have {K0,F1}={F0,K1}.
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Fig. 3. Numbers of nonzero harmonics in Km for the Kovalevskaya case A = 2, C = 1 (τ �= 0). Numbers τ of
harmonics well defined on 〈τ, u〉 = 0, u �= 0 are shown in color.

For m = 1, one easily finds that

f τ
m(u) =

(u2
2 − u2

1)(τ1u1 − τ2u2)
τ1u1 + τ2u2

kτ
m(u) = λ(u, τ)kτ

m(u). (3.5)

The function λ(u, τ) is defined for all u if either τ1 = 0 or τ2 = 0 or τ1 = ±τ2. For other
(τ1, τ2) = τ �= 0, the function λ(u, τ) is not defined on the line 〈u, τ〉 = 0. Suppose that τ is not on
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the four lines considered and for some nonzero u, 〈u, τ〉 = 0 we have kτ
1 (u) �= 0. Therefore, f τ

1 is
not defined in u, which contradicts the existence of the analytical first integral.

Moreover, Eq. (3.5) holds for all m > 1. This follows from the fact that, for the kth step of the
perturbation procedure, Fm = Fm(u), m < k. Suppose that, up to the (k − 1)th step, the resonant
numbers lie on the four lines and, for the kth step, the number τ of a resonant harmonic kτ

k does not
belong to the lines considered. In this case, the function f τ

k (u) is not defined on the line 〈τ, u〉 = 0.
At the same time, the generating function is defined everywhere except on the four lines, i. e., the
additional integral has to be defined for u �= 0, 〈τ, u〉 = 0. The contradiction proves the result. �

A similar result holds for the Goryachev – Chaplygin case.

Lemma 1. For the Goryachev –Chaplygin case, the numbers τ of nonzero resonant harmonics
kτ

m(u) �≡ 0 of Km(u, v) can lie only on the three lines: τ1 = 0, τ1 = ±τ2.

Based on this lemma, we prove the following

Proposition 2. For the Goryachev –Chaplygin case, the numbers τ of nonzero resonant harmonics
kτ

m(u) �≡ 0 of Km(u, v) can lie only on the two lines τ1 = ±τ2.

Proof. For the first two steps, we have shown (3.4) that Sτ
1 �≡ 0 or Sτ

2 �≡ 0 only for τ1 = ±τ2. Now
we consider the case m > 2. For given τ and m, the function Sτ

m can be presented as the sum of
four groups of terms (3.3). We will show that, for τ1 = 0, the sum of terms in each group equals
zero. Without loss of generality, we assume here that A = 4 and C = 1.

Let us consider the first group of terms in (3.3). Taking into account the obvious equalities
ξ + η = τ = η + ξ and n + k = m = k + n, we find that the first group of terms can be presented
as a sum of the values Σi

1 · Ci
1, where Ci

1 are some numbers and Σi
1 takes the form

Σi
1 = u2〈ξ, η〉 + ξ2〈η, u〉 + η2〈ξ, u〉

= u2

(
3
4
ξ1η1 +

1
4
ξ2η2

)

+ ξ2

(
3
4
η1u1 +

1
4
η2u2

)

+ η2

(
3
4
ξ1u1 +

1
4
ξ2u2

)

=
3
4
(u2ξ2η2 + u2ξ1η1 + u1ξ2η1 + u1ξ1η2) = 0.

In the last equality we use the fact that ξ1 = ξ2 = −η1 = η2.
Now we consider the second group. Note that h11

η and h12
η are nonzero only for four values of η.

Therefore, for τ1 = 0 and τ2 �= 0, the sum ξ + η is equal to either (0, 2) or (0,−2), i. e., there are
four possibilities

ξ = (1, 1), η = (−1, 1), ξ = (−1, 1), η = (1, 1),
ξ = (−1,−1), η = (1,−1), ξ = (1,−1), η = (−1,−1).

It is not hard to show that in all these cases the term ξ1h
11
η + ξ2h

12
η equals zero.

Similarly to the first group, one can prove that the third group can be presented as a sum of
the values Σi

3 · Ci
3, where Ci

3 are some numbers and Σi
3 takes the form

Σi
3 = ξ2〈η, ζ〉 + η2〈ζ, ξ〉 + ζ2〈ξ, η〉

= ξ2

(
3
4
η1ζ1 +

1
4
η2ζ2

)

+ η2

(
3
4
ζ1ξ1 +

1
4
ζ2ξ2

)

+ ζ2

(
3
4
ξ1η1 +

1
4
ξ2η2

)

=
3
4
(ξ2η2ζ2 + ξ2η1ζ1 + ξ1η2ζ1 + ξ1η1ζ2) = 0.

The last equality follows from the fact that, for any ξ, η, ζ which belong to the lines τ1 = ±τ2,
we have ξ1 = ±ξ2, η1 = ±η2, ζ1 = ±ζ2. Therefore, all four terms in the last sum have the same
absolute value. Since ξ1 + η1 + ζ1 = 0 and ξ2 + η2 + ζ2 �= 0, there are two positive and two negative
terms in the sum considered.

Since, by the assumption, for n < m, all nonzero Sτ
n belong to the lines τ1 = ±τ2, the last group

equals zero, which proves the result. �
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In addition, we consider another system with the toric configuration space for which it is also
possible to prove that the resonant numbers lie on several lines. Consider Kirchhoff’s equations of
motion of a rigid body moving in a perfect incompressible fluid, possessing a single-valued potential
of velocities and at rest at infinity. The Hamiltonian has the form

H =
1
2
(AM,M) + (BM,γ) +

1
2
(Cγ, γ).

Here M and γ are three-dimensional vectors of “impulsive moment” and “impulsive force”,
respectively.

We assume that the rigid body has three planes of symmetry. In this case, we can consider
B to be zero matrix, A and C are arbitrary symmetric matrices. In addition, we assume that
A = diag(1, 1, a), C = diag(μ,−μ, 0) and the system is considered on the level sets of the first
integrals (M,γ) = 0, γ2 = 1. When a = 2, we obtain the Chaplygin integrable case. In the special
canonical variables, we have (here H = 0)

H =
1
2

(
G2 + L2a − L2

)
+

μ

2

(

−L2

G2
cos2 g cos 2l +

L

G
sin 2g sin 2l + sin2 g cos 2l

)

.

In the Chaplygin case, the additional first integral has the form

F = (M2
1 − M2

2 + μγ2
3)2 + 4M2

1 M2
2 .

Therefore, in the special canonical variables, we have F0 = (G2 −L2)2 and H0 = (G2 + L2)/2, i.e.,
up to a constant multiplier, the functions F0 and H0 coincide with the ones of the Kovalevskaya
case. Similarly to the Kovalevskaya and Goryachev –Chaplygin cases, the following result can be
proved.
Proposition 3. For the integrable Chaplygin case of Kirchhoff’s equations, the numbers τ of
nonzero resonant harmonics kτ

m(u) �≡ 0 of Km(u, v) can lie only on the four lines: τ1 = 0, τ2 = 0,
τ1 = ±τ2.

3.3. Nonintegrable Cases and Periodic Solutions

Unlike the Kovalevskaya and Goryachev – Chaplygin systems, in the nonintegrable cases the
numbers of resonant harmonics lie on more than four lines and the number of lines increases
as we proceed to the higher steps of the perturbation procedure. Taking into account Corollary 1,
we can expect the birth of many pairs of periodic solutions (linearly stable and unstable) in the
system. To be more precise, if we consider the Hamiltonian K up to o(μ3) terms, the following
holds.
Proposition 4. Let C = 1 and τ1 = 2, τ2 = 0, then for A > 1, A �= 4 and for all u �= 0, 〈u, τ〉 = 0,
for small μ �= 0, in a vicinity of the resonant torus u, there are two periodic solutions of the system
with the Hamiltonian (3.1).
Proof. Let u1 = 0 and u2 = −2λa11, then we obtain

k2,0
2 =

A3(A − 4)
64λ2(A − 1)2

.

Clearly, for A �= 4 and λ �= 0, we have k2,0
2 �= 0 (which can also be seen in Figs. 2–4) and the result

follows from Corollary 1. �

Proposition 5. Let C = 1 and τ1 = 3, τ2 = 1, then for A > 1, A �= 4/3, A �= 2, A �= 4 and for
all u �= 0, 〈u, τ〉 = 0, for small μ �= 0, in a vicinity of the resonant torus u, there are two periodic
solutions of the system with the Hamiltonian (3.1).

Proof. Let u1 = −λa22 and u2 = 3λa11, then we obtain

k3,1
3 = −i

A5(4 − 3A)2(A − 4)(A − 2)(3A − 2)
12288λ3(A − 1)6

.

For the values of A considered here and for λ �= 0, we have k3,1
3 �= 0 and Corollary 1 can be applied.

�
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Note that the harmonic under consideration is zero only in the integrable cases and for A = 4/3.
Similar results can be proved for various m and τ in accordance with Fig. 4. For instance, the
following is also true.

Fig. 4. Numbers of nonzero harmonics in Km for the nonintegrable case A = 8, C = 1 (τ �= 0). Numbers τ of
harmonics well defined on 〈τ, u〉 = 0, u �= 0 are shown in color.

Proposition 6. Let C = 1 and τ1 = 1, τ2 = 3, then for A > 1, A �= 2, A �= 4 and for all u �= 0,
〈u, τ〉 = 0, for small μ �= 0, in a vicinity of the resonant torus u, there are two periodic solutions
of the system with the Hamiltonian (3.1).
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Proof. For u1 = −3λa22 and u2 = λa11 we have

k1,3
3 = i

A5(A − 4)3(A − 2)(A + 2)
4096λ3(A − 1)6

.

Therefore, k1,3
3 �= 0 for the values of A under consideration. �

4. CONCLUSION
It is well known [6] that a natural mechanical system with the Hamiltonian H = T (p, q) + V (q) on a
two-dimensional compact analytical configuration space has no additional first integral independent
of the Hamiltonian if the genus of the configuration space is greater than one. At the same time,
there are a few integrable systems with a toric configuration space, including systems considered
above. Moreover, there are several results on the integrability of a Hamiltonian system with the
Hamiltonian H = T (p) + V (q) on a torus. In [4], a criterion for the existence of a full set of
formally analytical first integrals was proved for V (q) being a trigonometric polynomial. In [7–
10], the connection between the arrangement of the spectrum of the potential and the existence of
polynomial first integrals is studied. In particular, it is shown that if there is a polynomial integral
of degree three in momenta, then all nonzero harmonics are on a single line.

The Goryachev –Chaplygin integrable system illustrates the difference between the case of a
perturbation in the form of a trigonometric polynomial (or series) and the case where the potential
depends on the momenta. As was proved above, in this system, all resonant harmonics lie on two
lines, not one, even though the additional first integral is a polynomial of degree three. Moreover,
unlike the Kovalevskaya case, these lines are not orthogonal in the kinetic metric.

Based on a few steps of classical perturbation theory, we can conclude that the nonintegrable
cases considered above are similar to the case of a trigonometric polynomial perturbation, i. e.,
the number of lines on which the resonances are located is increasing when we consider the higher
approximations of the perturbation calculations. In particular, this leads to the birth of many
periodic solutions from the resonant tori.
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