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Abstract—In this paper, we consider in detail the 2-body problem in spaces of constant positive
curvature S2 and S3. We perform a reduction (analogous to that in rigid body dynamics) after
which the problem reduces to analysis of a two-degree-of-freedom system. In the general case,
in canonical variables the Hamiltonian does not correspond to any natural mechanical system.
In addition, in the general case, the absence of an analytic additional integral follows from the
constructed Poincaré section. We also give a review of the historical development of celestial
mechanics in spaces of constant curvature and formulate open problems.
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1. HISTORICAL REVIEW OF THE DEVELOPMENT OF CELESTIAL MECHANICS
IN SPACES OF CONSTANT CURVATURE

In the literature concerned with celestial mechanics in spaces of constant curvature (hereinafter
referred to as SCCs), there are several review papers [2, 50, 106] which describe sufficiently
thoroughly the history of the development of individual branches of this area of mechanics, but do
not give a general picture. On the other hand, recently there have been an increasing number of
publications which very “creatively”1) misrepresent both the current situation in this area and the
history of obtaining various results. In view of this, in this paper we give a fairly detailed historical
review, in which we have endeavored not only to give a faithful account of the state of the art in this
area of dynamics, but also to describe a historically trustworthy chronological order of obtaining
the main results and to point out their authorship. We are aware of the fact that our review bears
some subjectivity, but we are ready to maintain a debate on this interesting area of mechanics,
where there are still many unsolved problems.

To justify the study of dynamics in spaces of constant curvature (SCCs), we present two classical,
but still up-to-date quotations, one of which belongs to E. Schrödinger [103, p. 14], who considered
the quantization of a hydrogen atom on a sphere.

“As far as I know, this is a new problem, which I found difficult to tackle in any other way. It may appear
foolish to pay attention to the extremely feeble curvature of the Universe in dealing with the hydrogen atom,
because even the influence of those much stronger fields of gravitation in which all our observations are
actually made is (if the frame is properly chosen) entirely negligible. But this problem, by obliterating the
sharp cut between “elliptic and hyperbolic orbits” (the classical orbits here are all closed) and by resolving
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1)The concept of a “creative way of writing” was proposed in [49]. Interestingly, some authors [120] who have read

such a popular history seriously believe that the whole celestial mechanics in SCCs has been constructed by
Bolyai, Lobachevsky and ... Diacu!
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the continuous spectrum into an intensely crowded line spectrum, has extremely interesting features, well
worth investigating by a method which proves hardly more complicated here than in the flat case. . . ”

The second quotation belongs to H. Weyl, who in his book Space, Time, Matter [118, p. 76]
considered multidimensional equations of motion of a rigid body2).

“. . .On the other hand, the fact that we have freed ourselves from the limitation to a definite dimensional
number and that we have formulated physical laws in such a way that the dimensional number appears
accidental in them, gives us an assurance that we have succeeded fully in grasping them mathematically. . . ”

Indeed, the laws of celestial mechanics in curved spaces are much more complicated and diverse
than those in the Euclidean case and their understanding is of great importance for dynamical
systems theory. Moreover, the above-mentioned differences between flat space and SCC can be
used to explain the discrepancies between astronomical observations and theoretical predictions
(along with other possible explanations based on general relativity theory and on taking account
of atmospheric refraction, nonsphericity of planets etc.).

The recent surge of interest in exploring SCCs was largely initiated by the papers of P. Higgs [59]
and the Belarussian authors Yu. A.Kurochkin and V. S.Otchik [76].

Remark. The paper by Higgs [59] holds the third place in the number of citations among all his
works. The first two of his works are devoted to a theoretical prediction of the boson, which he
discovered experimentally in 2012 (for this discovery he was awarded the Nobel prize in 2013).

These papers were written mainly for the study of the quantum problem and continue the
investigations started by E. Schrödinger [103]. Later, N. A.Chernikov, a researcher from the Dubna
Nuclear Center, published the paper [38], in which he formulated the Kepler laws for L2 and even
developed a relativistic problem on L2.

Analysis of the dynamics of a material point in spaces of constant curvature from the point of
view of classical mechanics was undertaken by V.V. Kozlov in [70, 73], where the Kepler problems
and the problem of two centers were examined. In the paper [69], published in 1995, V.V. Kozlov
posed the problem of systematically investigating the n-body problem in curved space and of
generalizations of the Sundman theorem. As far as we know, this problem has not been solved yet.
By the way, the Levi-Civita regularization in SCCs is discussed in [53]. A more detailed analysis
of the two- and three-body problem was carried out by A. V.Borisov, I. S.Mamaev, A. A. Kilin,
V. A.Chernoivan [26, 29, 39] using [73, 76]. The monograph [21] is concerned with various integrable
problems generalizing the problem of two centers, with stationary configurations of the two-body
problem, nonintegrability of the general two-body problem on S2, poses and investigates the
bounded two- and three-body problems, and presents a stability analysis of libration points. The
authors of [29] investigate the interesting classical (nonrelativistic) problem of the perihelion of
Mercury shifting due to the curvature of space. The paper [27] is concerned with the study of a
transformation relating the planar and curved problems of two centers.

Available reviews on dynamics in SCCs. The historical aspects of mechanics in SCCs
were first pointed out by P. Dombrowski and J. Zitterbarth in the paper [50]. Using this paper,
A. V.Borisov and I. S.Mamaev published Russian translations of the most important classical works
of W. Killing, H. Liebmann, P. Serret and others as a separate book [22], and added the references
and comments given in [50]. Previously, they had published the monograph [21], where one of the
chapters is entirely devoted to mechanics in SCCs, but where, in referring to the main works, they
mention only [35, 59, 73, 103] (in which there are no references to the classical works either).

Based on the above-mentioned two books [21, 22], A. V. Shchepetilov [106] published a mono-
graph in the English language in which all historical aspects of mechanics in SCCs were gathered
once again. This review is the most complete, but it still lacks some important details that are
interesting from the point of view of classical mechanics.

The main historical aspects of advances in the celestial mechanics of SCCs are presented in
Tables 1 and 2. In what follows, some comments and explanations on individual items of these
tables are given.

2)It is well known that the motion of a four-dimensional rigid body about a fixed point is isomorphic to the free
motion of a rigid body on S3.
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Table 1. Celestial mechanics in spaces of constant curvature.

Problems Author, year, results

1. Newton’s laws
P. Serret [104] 1860 (Newtonian potential for S3)

E. Schering [100] 1870 (Newtonian potential for L3)

2. Kepler’s laws

P. Serret [104] 1860 (first Kepler’s law)

W. Killing [68] 1885

C. Neumann [94] 1886

H. Liebmann [79] 1902 (Kepler’s laws for L3, S3)

N. A. Chernikov [38] 1992

V. V. Kozlov [70] 1994

3. Kepler’s equation V. V. Kozlov [70] 1994 (Kepler’s equation for S2)

4. The Laplace –Runge –Lenz
vector in the Kepler problem

P. W. Higgs [59] 1979

N. Katayama, [64] 1990

5. Bertrand’s theorem

G. Darboux [40] 1884

H. Liebmann [80] 1903, [81] 1905

J. J. Slawianowski [108] 1980 (see a detailed comment in [70])

M. Ikeda, N. Katayama [60] 1982

V. V. Kozlov, A. O.Kharin [73] 1992

6. The problem of two centers
and generalizations

W. Killing [68] 1885

W. S. Otchik [96] 1991

V. V. Kozlov, A. O.Kharin [73] 1992 (addition of Hooke’s center)

A. V. Borisov, I. S. Mamaev [21], (see also [88]) 1999 (homogeneous
field), [24] 2005 (addition of imaginary centers)

7. The bounded two-body
problem

V. A. Chernoivan, I. S. Mamaev [39] 1999 (chaotic dynamics and
analytic nonintegrability, see also [26])

S. L. Ziglin [121] 2001 (meromorphic nonintegrability according to
Ziglin –Morales – Ramis)

A. J.Maciejewski, M. Przybylska [86] 2003 (meromorphic noninte-
grability according to Ziglin – Morales –Ramis)

8. The two-body problem

A. V. Shchepetilov [109] 2000

A. V. Borisov, A. A. Kilin, I. S. Mamaev [29] 2004 (chaotic dynam-
ics and analytical nonintegrability)

A. V. Shchepetilov [105] 2006 (meromorphic nonintegrability ac-
cording to Ziglin –Morales – Ramis)

10. Rigid body dynamics

W. K.Clifford [36] 1876, [37] 1882

R. S. Ball [9] 1881

R. S. Heath [58] 1884

W. Killing [68] 1885

D. Francesco [43] 1902

REGULAR AND CHAOTIC DYNAMICS Vol. 21 No. 5 2016



THE SPATIAL PROBLEM OF 2 BODIES ON A SPHERE 559

Table 2. Special issues of dynamics in SCCs.

Problems Author, year, results

1. The theory of potential and
figures of equilibrium

E. Schering [101] 1873

V. V. Kozlov [71] 2000 (Ivory’s theorem)

I. A. Bizyaev, A. V. Borisov, I. S. Mamaev [13] 2015 (potential of
a homogeneous spheroid)

2. Hamilton’s hodograph
A. V. Borisov, I. S. Mamaev [25] 2005

J. F. Carinena, M. F. Ranada, M. Santander [33] 2007

3. Trajectory isomorphism with
a plane

P. Appell [6] 1891 (Kepler’s problem)

P. W. Higgs [59] 1979 (Kepler’s problem)

A. Albouy [1] 2003, [2] 2013 (two centers)

A. V. Borisov, I. S. Mamaev [27] 2007

I. A. Bizyaev, A. V. Borisov, I. S. Mamaev [14] 2014

4. Superintegrable combinations
of Hooke’s centers with a
high-degree integral

E. Onofri, M. Pauri [95] 1978

V. V. Kozlov, Yu. N. Fedorov [72] 1994

A. V. Borisov, A. A. Kilin, I. S. Mamaev [19] 2009

F. Tremblay, A. V., Turbiner, P. Winternitz [111] 2009

I. A. Bizyaev, A. V. Borisov, I. S. Mamaev [14] 2014

5. Choreographies in the two-
and three-body problem

A. V. Borisov, A. A. Kilin, I. S. Mamaev [29] 2004

Montanelli H., Gushterov N. I. [90, 91] 2016

Comment (concerning the papers by F.Diacu). We briefly discuss the papers by F. Diacu gain-
ing popularity, which we omit to mention in the main text of our paper. In his historical reviews (see,
e.g., [44, 45]), he uses compilations of the well-known papers, however, he does not pay proper attention to
them. By adding his reasoning and some references that are not relevant to the topics under discussion (for
example, references to Einstein, Gauss and others), F. Diacu has created “his own” history, which makes
one to believe that it is he who has revived interest in the dynamics in SCCs. Of interest in this connection
is, for example, his passage concerning a common alma mater which he shared with H. Liebmann (see [45]).
We note that, acting in the role of a historian of science, Diacu fails to avoid inaccuracies in referencing.
For example, in his popular paper [45] he makes no reference to the work of Higgs [59], and the reference
to the work of Killing [67] is erroneous and has nothing to do with the dynamics in SCCs. Moreover, the
book [46] mentions a paper that has never existed. In particular, he writes about the nonrecognition of the
papers by S. P.Novikov in the Soviet Union and his “only hope to get published in a Western journal with a
good reputation”. Further, the author asserts that J.Moser helped the Soviet scientist to publish a paper in
the US journal Annals of Mathematics. However, there is no such paper by S. P. Novikov in this journal; he
had his quite voluminous papers published without trouble in Izvestiya Akademii Nauk SSSR (mathematical
series) and was awarded the Fields Prize for it. The scientific publications of Diacu are devoted to partial
solutions of the n-body problem in SCCs; however, it does not seem possible to single out and classify his
results. The publications are poorly structured, and no genealogical relationship can be traced between his
investigations and classical mechanics in Euclidean spaces. Also, “distracting” terminology (for example,
rotor-pulsator) is often used. But the physical essence is not elucidated, and the results themselves require
verification by other, clearer, methods. As for the book [44], it actually presents a combination of elementary
trigonometric substitutions and notation invented by the author for scalar and vector products. Of course,
the above comments do not cancel the necessity of carrying out an additional analysis of his works in order
to draw concrete conclusions on the results.
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The laws of gravitation and the theory of potential. Traditionally, to prove the Newtonian
law in Euclidean space, one uses either the theory of potential, where this law arises as a spherically
symmetric solution of the Poisson equation, or the Bertrand theorem, according to which all
trajectories of a particle in the field of the attracting center turn out to be closed only in the
case of Newtonian and Hookean3) potentials (interestingly, the original version of the proof of the
theorem was known already to Lagrange, and some technical details are still being discussed [62]).

It is of interest that, when postulating the law of gravitation in S3, P. Serret [104] actually used
the fact that the sphero-conical trajectories are closed, while E. Schering [100], using a generalization
of the Poisson equation, pointed out the possibility of obtaining an analogous potential. In the
book [104], also in the analysis of the behavior of sphero-conical curves, P. Serret formulated an
analog of the first Kepler law. The same law was independently obtained by Darboux in [40] (the
reference to Serret was added by him in the expanded edition of his work [41] in an appendix to the
mechanics course of Despeyrous). For a more complete discussion of Kepler’s laws in SCCs, see [2].

A development of the theory of Newtonian potential in SCCs is contained in the work of
E. Schering [100, 101] (1870 and 1873) and in the much later work of V. V.Kozlov [71] (2000).
In [68] (1885) W. Killing set forth in a brief and not very comprehensible form the results of [101],
which will hardly be intelligible to the modern reader and should be interpreted from a modern
perspective. The paper [71] contains assertions generalizing the Newton theorem for the potential
of a homogeneous ball; however, the formulated analog of the Ivory theorem is not proved (see also
the discussions in [113]).

Interestingly, the attempts at generalizing to SCCs the Maclaurin ellipsoids, which are figures of
equilibrium of a rotating fluid, were not successful and required the addition of internal flows [13].
We note that there are still many outstanding questions in the theory of potential and in the theory
of rotating liquid ellipsoids (and figures of equilibrium in general) in SCCs.

Remark. It is interesting that a somewhat different approach is possible to the search for possible
laws of gravitation in SCCs. For example, in the dynamics of point vortices on a sphere, to
exclude the antipodal singularity in solving the Poisson equation on a two-dimensional sphere, one
introduces background vorticity (see, e.g., [17]). Without such a background vorticity the model of
point vortices (containing antipodes) was postulated and developed in [18]. In a similar way, one
can proceed in curved celestial mechanics by introducing background “antimatter”. An example of
such an approach with uniform distribution of antimatter can be found in [15]. However, we note
that the authors of [15] consider a two-dimensional analog of the Newtonian law of gravitation
(which depends on the logarithm, has no physical meaning and is of purely mathematical interest).
In addition, the paper [15] contains a number of inaccuracies and obvious errors. For example,
Theorem 9.2 is wrong: the functions presented in it are not integrals of motion.

Nevertheless, a more reasonable addition of “antimatter” (not necessarily uniformly distributed)
can lead to obtaining new interesting versions of the gravity law. For example, the analog of the
Newtonian law of gravitation with uniform distribution of “antimatter” in S3 has the form

U(θ) = −k(π − θ) cot θ,

where θ is the length of the arc between the bodies. This law does not satisfy the conditions of the
Bertrand theorem, but is undoubtedly of interest to researchers.

The only reasonable choice between different models can be made only using astronomical
measurements, which unfortunately cannot be performed so far. We note that an analogous problem
exists in relativistic theories (general relativity theory etc.), where only indirect measurements have
been performed, still giving rise to various debates. In this sense, the works of Lipschitz [84] and
Mordukhai-Boltovsky [93], who defined the law of gravitation in a different way, may be not only
of historical interest.

Remark. In some studies, the choice of a generalization of the gravitational interaction to SCCs
is not motivated by anything at all. For example, the authors of [82] postulate a somewhat strange
law of gravitation on S2 for which the potential of interaction of bodies is inversely proportional

3)Which means the potential of an isotropic oscillator.
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to the length of the arc joining them. It is interesting that, after numerically constructing several
projections of the system trajectories, the authors assert that there are chaotic ones among them.
Yet in order to assert this, one has obviously to construct a Poincaré section of the reduced system,
which they fail to do.

The discussion of gravitation laws on an imaginary Lobachevsky space (given by a one-sheet
hyperboloid) goes back to C.Grosche [57]. This was preceded by the works [11, 56, 61], which
developed the method of quantization of the Kepler problem on a sphere and a pseudo-sphere (given
by a two-sheet hyperboloid) by using the Feynman integral along paths. In all above-mentioned
works, an analog of the Newtonian potential arises from the Poisson equation.

The Keplers laws on an imaginary Lobachevsky space (considered together with L3 and S3) are
dealt with in [77, 78, 97]. Similar analyses can be found in [34] (for different SCCs), where the
imaginary Lobachevsky space is called a de Sitter space.

One of the criticisms made against the above studies is their actual uselessness to mechanics due
to the fact that the metric represented by the kinetic energy is indefinite (pseudo-Riemannian).
Even in Euclidean space the dynamical systems with a pseudo-Riemannian metric are usually
not dealt with in classical mechanics. In addition, the systems considered in these studies do not
exhibit any new effects and, as a rule, reduce to well-known systems with insignificant modifications.
These results are appropriate for a book of problems in theoretical physics rather than for scientific
journals with high citation rates.

Comment. The contribution of Lobachevsky and Bolyai to the discovery of the law of gravitation in the
Lobachevsky space has been grossly overestimated (as for Bolyai, the credit is simply undeserved). However,
they are cited almost in all papers on SCCs.

When Bolyai is mentioned, a frequently used reference is [112], which is inaccurate and can mislead
the reader, since, in fact, the page indicated in [106] contains only an interpretation of Bolyai’s notes
on the work of Lobachevsky [85]. What is really meant is the edition of F. Engel and P. Stäckel on the
history of non-Euclidean geometry, the second volume of which is devoted to the life and the scientific
heritage of W. Bolyai and J. Bolyai [112]. According to P. Stäckel, who together with K.Kürschak inspected
the numerable hand-written drafts of Bolyai and translated them into German, the commentary on the
publication of Lobachevsky was very personal and was not meant for publication [112, p. 138]. As a matter
of fact, P. Stäckel only attempted to trace the development of thought of János Bolyai using extracts from
his many “deciphered” drafts left in the period 1848–1851.

But even apart from that, the text on the frequently mentioned page 156 [112] is rather vague. Its meaning
is by no means unambiguous, however, it is obvious that this text is concerned with geodesics, (astronomical)
measurements, the validity of Euclidean geometry and with the standard (Euclidean) Newton law, and
presents no generalization of this law to curved spaces. Thus, Bolyai — almost ten years after the work of
Lobachevsky — only tried to critically comprehend the results of the Russian scientist, and these notes can
be regarded only as attempts at verifying the Lobachevsky geometry. In any case, Bolyai’s contribution to
the discovery of the law of gravitation for the Lobachevsky space is merely a myth.

Moreover, the discovery of an analog of the Newtonian law for L3 should not be attributed to Lobachevsky
either. It can only be regarded as a hypothesis, which he set up by using a formula found by him for the area
of the sphere in L3 and by using analogy with Euclidean space, in which the area of the sphere increases
and, accordingly, the gravity force decreases in proportion to r2. In fact, Lobachevsky himself wrote in [85,
p. 159] that “this is a pure conjecture which should be confirmed by other, more convincing, arguments”.

Generalizations of the Bertrand theorem. In the case of the sphere S2, Darboux [40, 41]
obtained a generalization of the Bertrand theorem and found an analog of the Hookean and
Newtonian centers4).

Remark. Generally speaking, Bertrand formulated two theorems: the first concerns potentials
for which all bounded trajectories of the particle are closed, and the second concerns the central
(not necessarily potential) forces for which the particle trajectories are conical sections (conics).
Bertrand proved only the first theorem, the other was proved by Darboux. Here and in Table 1 we
mean the first theorem of Bertrand.

4)By the way, Darboux also formulated the general Bertrand theorem on the plane R
2 for the case when the

conditions of potentiality of forces are omitted.
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Darboux also solved a more general problem of closed trajectories of a point moving on the
surface of revolution under the action of potential forces. Darboux’s studies on closed trajectories
of a point in a potential field on the surface of revolution were continued in [99, 119]. However,
the closedness conditions formulated in them have a form that is too general, and do not lead to
finding a concrete potential or form of the surface of revolution.

The Laplace – Runge – Lenz vector. We mention the works of P. Higgs [59] (1979) and
N. Katayama [64] (1990), in which the Laplace – Runge –Lenz vector is presented for the Kepler
problem on S3 and L3, respectively. In addition, there are many, mainly physical, works which are
concerned with a generalization of the Laplace – Runge –Lenz vector to SCCs (see, e.g., [10, 34]).

In [65], an analog of the Laplace –Runge – Lenz vector on S3 and L3 for the MICZ-system
(McIntosh – Cisneros –Zwanziger) is presented which describes the motion of a particle in the
asymptotic field of a self-modular monopole (the physical meaning of this system is described,
for example, in [51]). This result was independently rediscovered in [16, 27] and [55], respectively,
for S3 and L3. In [55], a more general case on L3 in which a generalization of the Laplace –Runge –
Lenz vector is possible is presented.

The problem of two centers. In the planar case the (spatial) problem of two Newtonian
centers was considered by Euler, who mentioned it in his correspondence with Lagrange (see [3] for
details). The integrability of the problem of two centers in SCCs was pointed out by W.Killing [68]
in 1885. However, we note that already Liouville [83] found (without relation to celestial mechanics)
a more general potential on S2, which admits separation of variables in sphero-conical coordinates.
More recently, the integrability of the problem of two centers on S2 was independently rediscovered
in [73] and that on S3, L3 in [21]. In addition, in [73] V.V. Kozlov and A.O.Kharin show that on
the sphere S2 this problem remains integrable if elastic attraction (repulsion) is added to the point
that is the middle of the segment between the centers.

It is well known that in the planar case the problem of two fixed centers has an integrable
limiting case when one of the centers tends to infinity, resulting in the problem of particle motion
in a constant homogeneous field and in the field of a Newtonian center. This problem was first
considered by Lagrange, and its analysis is presented in the book [31] in relation to the classical
model of motion of an electron in an atom placed in a homogeneous electric field.

On the sphere, such a limiting case is impossible due to its compactness, and an analog of the
Lagrange problem for the Lobachevsky space was presented in the thesis of I. S.Mamaev [88] and in
the book [21]. In addition, in [87] (see also [21]) a separation of variables was obtained in the spatial
problem of two centers on S3 and L3. It turned out that the elimination of a cyclic variable results
in an additive term equivalent to the Hookean center (which was pointed out by V. V.Kozlov and
A. O.Kharin [73]) with an intensity proportional to the constant of a cyclic integral. These results
were republished in the English language in [115]5).

Another well-known generalization of the planar problem of two centers, which has found
application in the dynamics of satellites [74], was presented by G. Darboux [42]. In this case, two
more imaginary centers are added to two Newtonian centers in a perpendicular direction. An analog
of this problem for the space of constant curvature was found in [24].

A qualitative and topological analysis of the problem of 2 centers on S2 is presented in [115, 117],
in particular, a global regularization of this system is contained in [117]. These and many other
results are presented in the book [116], though, as a rule, without references to original sources.

Central projection. The remarkable ideas of Serret, Darboux and Halphen were developed by
Appell [7], who, by means of the central projection (which was independently used by Higgs and
called by him the gnomonic projection) reduced the problem of the central field on a sphere to the
planar case. This result allows one in a natural way to extend the Bertrand theorem from the planar
case to SCCs. Afterwards Appell generalized the idea of the central projection and introduced a
homographic transformation [7, 8].

5)We note that the main results in [115] (including formulation of the problem and separation of variables), were
obtained by the author not on her own, but were communicated to her during her period of probation at the
Udmurt State University under the guidance of A.V.Borisov.
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The general idea of Appell was developed by A. Albouy and led to the creation of projective
dynamics, which is applicable to a wide class of dynamical systems possessing quadratic first
integrals (see [1, 2]) and to establishing a trajectory isomorphism between the problems of two
centers on a plane and a sphere. A more explicit approach containing various generalizations of the
problem of two centers was presented in [27].

Superintegrable systems with a high-degree integral. We first note that, due to the
existence of a trajectory isomorphism given by the central projection (and its generalizations),
integrable and superintegrable systems of flat spaces R

n and spaces of constant curvature turn out
to be equivalent. Therefore, they should be considered jointly.

In [95], the most general conditions for superintegrability of a natural system on R
2 are presented

using methods due to Bertrand [12] and examples of specific superintegrable potentials are given.
Afterwards these Onofri – Pauri potentials were rediscovered in [19, 20, 111]. Interestingly, in the
physical literature one can find references only to the paper [111] (published in the same year
as [19, 20]), and these systems are called TTW systems.

In [20], a general procedure of reduction to the system in Sn−1 is proposed in R
n for a special

kind of potential (the Jacobi potential). This reduction is different from the central projection and
can also be used to construct integrable and superintegrable systems in SCCs. We note that the
relation between the Onofri – Pauri potential and the potential of some set of oscillators on the
sphere is also shown in [20] (see also [32]).

In [63], examples of superintegrable systems in R
3 are presented which are carried over to S3

using the central projection, see [14].

An extensive list of references concerned with superintegrable systems is given in the review [89].
We note that it becomes increasingly more difficult in this area to find relations of newly published
results to the well-known ones (since, as a rule, neither the authors nor the editors of journals
trouble themselves with it). As an example, we refer to the papers [98, 110], which anounce the
discovery of new superintegrable systems, but mention nowhere the fact that the metric generated
by kinetic energy has a zero curvature and that hence there is a natural relation with the Onofri –
Pauri systems.

The n-body problem and stationary configurations. In the n-body problem, due to
compactness of the sphere, static (equilibrium) configurations can arise. In this case, a great number
of existence results can be obtained by the simplest generalization (adaptation) of the known
results, which have been obtained either in the Thomson problem of equilibrium configurations
of charges on the sphere [4] or in the problem of equilibrium configurations of vortices on the
sphere [5, 30, 75] (although the addition of the “antipode” in the case of Newtonian potential
imparts some specificity). Nevertheless, the stability of these configurations requires a separate
study [48].

Stationary configurations (relative equilibria) in the two-body problem on S2 were explored
in [29], their linear stability was analyzed in [66], and the existence and stability of these
configurations in L2 was investigated in [54]. The libration points in the bounded three-body
problem on S2 and L2 are explored in [66], and the results of this paper imply, in particular, that
Moulton’s theorem on the number of collinear stationary configurations does not hold in curved
space. For more complex stationary configurations there are a great many unsolved problems in
the flat space too, see, e.g., [102], and those in SCCs have almost not been investigated.

Relative choreographies in the two-body problem on S2 are explored in [29]. Generalizations of
the well-known flat choreographies in the three-body problem to the case S2 and L2 have been
obtained in [90, 91].

The generalized Sitnikov problem in curved space, where the effect of stability interchanges is
observed, is studied in [52].

In [47], for the case of n equal masses, a partial solution is presented for which, during motion,
the bodies form a regular whose lateral lengths change with time.
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2. THE TWO-BODY PROBLEM IN SPACES OF CONSTANT CURVATURE

In this paper we consider the problem of the motion of two material points on the two-
dimensional S2 and three-dimensional S3 spheres whose interaction potential depends only on
the distance between them. As is well known, in Euclidean space the two-body problem reduces to
the problem of the motion of a point in the central field, which is due to Galilean invariance and the
existence of integrals leading to a uniform and rectilinear motion of the center of mass. In curved
space such a relationship is absent, and the two-body problem is one of the central problems in the
celestial mechanics of SCCs. Its role in this area is analogous to that of the three-body problem in
the celestial mechanics of Euclidean space and the Euler – Poisson equations in rigid body dynamics.

The system under consideration is invariant under the action of the groups SO(3) for S2 and
SO(4) for S3, respectively; due to this fact it can, as is well known, be reduced in both cases to a
Hamiltonian system with two degrees of freedom. On the other hand, an explicit application of the
reduction procedure involves considerable difficulties, since the symmetry group is noncommutative
and hence it is impossible to use the classic Routh approach. In Euclidean celestial mechanics, where
difficulties arise only for n > 2 bodies, the corresponding reduction mechanisms were developed by
Lagrange, Jacobi and others (relevant references can be found in [28], and a systematic exposition
of these approaches can be found in the Russian-language review [114]).

Since analysis of the general two-body problem is difficult, many dynamical effects caused by
the curvature of space can be explored by using the bounded two-body problem. For the case S2 it
was originally considered in [21, 39] and examined in more detail in [26]. The results of computer
experiments that are presented in these studies point to the fact that in the general case this
system has no additional analytic integral. The results of meromorphic nonintegrability (according
to Ziglin – Morales –Ramis [92]) — both for an analog of the Newtonian center and for that of
the Hookean center — were obtained in [86, 121]. An extension of these results to the unbounded
two-body problem on S2, L2 was performed by A. V. Shchepetilov [105].

We note that the bounded three-body problem in SCCs turns out to be much more difficult as
compared to the planar case. An analog of the libration points in the bounded three-body problem
on S2 and partially on L2 was investigated by A.A. Kilin [66], where, in particular, it was shown
that the equilibrium points of these systems undergo bifurcations that are not encountered in
Euclidean space.

The problem of explicit reduction of the two-body problem in SCCs was first considered
by A. V. Shchepetilov [107, 109]. In these papers, to obtain a reduced system, he uses the
method of restricting the symplectic form, as proposed in the Marsden –Weinstein procedure. The
Hamiltonians of reduced systems presented in these papers have an unduly complex form. Moreover,
for the sake of greater generality, the author considers the quantum mechanical two-body problem
in SCCs, which makes calculations even more cumbersome. We also note that, in addition to the
above difficulties, the reduction method based on the restriction of the symplectic form has an
irreparable drawback, namely, it does not allow one to solve the problem of reconstructing the
dynamics of the complete system.

Remark. The papers [107, 109] and all subsequent publications of the author [105, 106, etc.]
which are concerned with the problem of reduction contain an extremely scanty description of the
calculations performed by the author. The author excludes key steps from the operations performed,
and, as a result, it is almost impossible to verify the results obtained. It turns out that it is easier
to perform reduction without recourse to these papers.

The above-mentioned difficulties were completely eliminated in [29], where the two-body problem
on S2 was reduced to a natural Hamiltonian system with two degrees of freedom. This was done
by using the classical approach developed by Bour in the planar three-body problem (see [114]),
who used the well-known methods of rigid body dynamics. This, in particular, allowed a numerical
analysis of the system, which demonstrated the absence, in the general case, of an additional analytic
first integral. For a development of these classical ideas, see [105], where the author presented a
simple form of the Hamiltonians of a reduced system on S2 and L2 which generalizes in a natural
way the reduced Hamiltonian of [29]; this allowed the author of [105] to extend the results on
meromorphic nonintegrability from the bounded two-body problem to the general one.
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In this paper, we perform reduction of the two-body problem on S2 and S3 using methods of
Poisson geometry (going back to S. Lie) and some techniques of rigid body dynamics (in particular,
the dynamics of multidimensional tops). One of the classical key steps in the proposed procedure
is the representation of the reduced system in noncanonical Hamiltonian form with a degenerate
Poisson bracket. Although redundant variables arise in this case, the equations of motion, the
Hamiltonian and the first integrals have a much simpler form than those in canonical variables.

The numerical analysis of the Poincaré section of the reduced system, as performed in Section 5,
allows a conclusion about its real-analytic nonintegrability and the presence of chaotic trajectories.
Note that the case S2 examined in [29] holds for zero value of one of the integrals.

To conclude this section, we outline possible avenues for further development of the results
obtained in this paper.

1. One of the important problems is the investigation of relative equilibria of the system, in
particular, the analysis of stability and bifurcations. In this case there can exist configurations in
which the distance between the points remains constant, but their motion in absolute space can be
fairly complex.

2. Another outstanding problem is that of meromorphic nonintegrability (according to Ziglin –
Morales –Ramis) of the two-body problem on S3. In this case, unlike the two-body problem on
S2, the (reduced) Hamiltonian has an additional parameter related to a Casimir function. If one
does not introduce (symplectic) canonical coordinates, which render the form of the Hamiltonian
much more complicated, the issue of an additional meromorphic integral makes sense. As reference
solutions one can probably choose here collisional solutions, as is done in [105].

3. It is of natural interest to generalize the reduction described above to the case of the
Lobachevsky space. Since the reduction has been performed in algebraic form, such an extension
should not present any difficulties in this case. Moreover, by changing the structure of the algebra,
one can obtain a reduced Hamiltonian that depends on the curvature of space as a parameter. It is
of interest to find out how the stationary configurations will bifurcate depending on the curvature
of space and to study the chaotic behavior in phase space.

3. THE n-BODY PROBLEM ON S2

3.1. Parameterization by the Group SO(3)

Fig. 1. Euler angles.

Consider the problem of n bodies on a two-dimensional sphere
S2 ⊂ R

3. Let OXY Z be a fixed coordinate system and let Rα =
(Xα, Yα, Zα) be the Cartesian coordinates of the point mass μα,
α = 1, . . . , N .

Let us choose a pair of particles μ1, μ2 and suppose that a
moving orthogonal coordinate system Oxyz is attached to them
in such a way that the axis Ox passes through the point μ1

and the plane Oxy contains both masses μ1, μ2 (see Fig. 1). In
this case, the radius vectors of the point masses rα = (xα, yα, zα)
in the moving axes Oxyz characterize the relative position of
the particles (i. e., the configuration of the bodies irrelative to
its position on the sphere S2). Let q = (q1, . . . , qn) denote the
corresponding generalized (local) coordinates which completely
parameterize the relative position (configuration) of the particles
in the case of material points n = 2N − 3. We will describe the orientation of the moving axes
relative to the fixed axes by the Euler angles θ, ϕ, ψ so that the position of the particles in the
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fixed axes is described by

Rα(θ, ϕ, ψ,q) = Q(θ, ϕ, ψ) · rα(q),

Q=QψQθQϕ =

⎛
⎜⎜⎜⎝

cosϕ cosψ− cos θ sinψ sin ϕ − sinϕ cosψ− cos θ sinψ cosϕ sin θ sin ψ

cosϕ sin ψ+cos θ cosψ sin ϕ − sinϕ sin ψ+cos θ cosψ cosϕ − sin θ cosψ

sin θ sinϕ sin θ cosϕ cos θ

⎞
⎟⎟⎟⎠,

Qθ =

⎛
⎜⎜⎜⎝

1 0 0

0 cos θ −sin θ

0 sin θ cos θ

⎞
⎟⎟⎟⎠ , Qϕ =

⎛
⎜⎜⎜⎝

cos ϕ − sinϕ 0

sin ϕ cos ϕ 0

0 0 1

⎞
⎟⎟⎟⎠ , Qψ =

⎛
⎜⎜⎜⎝

cos ψ − sinψ 0

sin ψ cos ψ 0

0 0 1

⎞
⎟⎟⎟⎠,

(3.1)

where Q is the matrix of the direction cosines.
Assuming that the forces of interaction are potential, we construct the Lagrangian of the system

L = T − U,

where T and U are the kinetic and potential energy, respectively. We use a relation that is well
known in rigid body dynamics:

Q−1Q̇ =

⎛
⎜⎜⎜⎝

0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎞
⎟⎟⎟⎠ =

=

⎛
⎜⎜⎜⎝

0 −ψ̇ cos θ − ϕ̇ ψ̇ sin θ cos ϕ − θ̇ sin ϕ

ψ̇ cos θ + ϕ̇ 0 −ψ̇ sin θ sin ϕ − θ̇ cos ϕ

−ψ̇ sin θ cos ϕ + θ̇ sin ϕ ψ̇ sin θ sin ϕ + θ̇ cos ϕ 0

⎞
⎟⎟⎟⎠,

where ω = (ωx, ωy, ωz) are the projections of the angular velocity of the moving frame onto the
moving axes Oxyz, and we represent the kinetic energy of the system as

T =
∑
α

μα

(
Ṙα, Ṙα

)
=

1
2
(
ω, I(q)ω

)
+

(
ω, ξ(q, q̇)

)
+

1
2

∑
i,j

Gij(q)q̇iq̇j,

I(q) =
∑
α

μα

(
r2

αE − rα ⊗ rα

)
, ξ =

∑
α

μαrα × ṙα =
∑
α,i

μαrα × ∂rα

∂qi
q̇i,

Gij =
∑
α

μα

(
∂rα

∂qi
,
∂rα

∂qj

)
,

where q = (q1, . . . , qn), the symbols (·, ·), × and ⊗ correspond, respectively, to the scalar, vector
and tensor products in R

3, and E is the identity matrix. Since the particles interact only with each
other, the potential energy of the system does not depend on the Euler angles:

U = U(q).

3.2. Integrals of Motion and Reduction

As is well known, due to the invariance of the Lagrangian under rotations (i.e., under the
change of fixed axes) the projections of the angular momentum of the system onto the fixed axes
are preserved:

M =
∑
α

μαRα × Ṙα = Q
(
I(q)ω + ξ

)
= const.
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Using the Noether theorem, we obtain the corresponding expressions for the components of this
vector in the Euler angles:

MX =cos ψ
∂L

∂θ̇
+

sin ψ

sin θ

(
∂L

∂ϕ̇
− cos θ

∂L

∂ψ̇

)
, MY =sinψ

∂L

∂θ̇
− cos ψ

sin θ

(
∂L

∂ϕ̇
− cos θ

∂L

∂ψ̇

)
,

MZ =
∂L

∂ψ̇
.

(3.2)

We define the generalized momenta of the system in a standard way:

Pθ =
∂L

∂θ̇
, Pϕ =

∂L

∂ϕ̇
, Pψ =

∂L

∂ψ̇
,

pi =
∂L

∂q̇i
, i = 1, . . . , n.

Then the equations of motion can be represented in the canonical Hamiltonian form

θ̇ =
∂H

∂Pθ
, Ṗθ = −∂H

∂θ
, ϕ̇ =

∂H

∂Pϕ
, Ṗϕ = −∂H

∂ϕ
, ψ̇ =

∂H

∂Pψ
, Ṗψ = −∂H

∂ψ
,

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
.

The Hamiltonian function is expressed in a natural way in terms of the projections of the angular
momentum vector onto the moving axes m = (mx,my,mz):

H =
1
2

(
m,A(q)m

)
+

(
m,k(q,p)

)
+

1
2

∑
i,j

Cij(q)pipj + U(q),

mx =
∂L

∂ωx
=

sin ϕ

sin θ
(Pψ − Pϕ cos θ) + Pθ cos ϕ,

my =
∂L

∂ωy
=

cos ϕ

sin θ
(Pψ − Pϕ cos θ) − Pθ sinϕ,

mz =
∂L

∂ωz
= Pϕ, k = B(q)p,

(3.3)

where A(q), B(q), C(q) are the 3 × 3, 3 × n and n × n matrices which are the blocks of the
(3 + n)× (3 + n) matrix, which arises when the quadratic form corresponding to the kinetic energy
is inverted:

⎛
⎜⎜⎝

A B

BT C

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

I
∥∥∥ ∂ξi

∂q̇j

∥∥∥

∥∥∥ ∂ξi
∂q̇j

∥∥∥
T

G

⎞
⎟⎟⎟⎠

−1

.

In order to obtain a reduced system, we pass from the canonical momenta Pθ, Pϕ, Pψ to the
variables mx, my, mz. It turns out that the set of variables m, q, p is closed relative to the Poisson
bracket:

{mi,mj} = −εijkmk, {qi, pj} = δij .

This Poisson bracket is degenerate and possesses the Casimir function

C1 = m2
x + m2

y + m2
z. (3.4)

Since the Hamiltonian (3.3) is expressed only in terms of these variables, we obtain the closed
system of equations

ṁ = m × ∂H

∂m
, q̇i =

∂H

∂pi
, ṗi = −∂H

∂qi
, (3.5)
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which defines the reduced system for this problem (since the variables m, q, p are invariant under
the left group action SO(3), i. e., under the change of the fixed axes).

In order to obtain a reduced system in canonical variables, it is necessary to define on the level
set of the integral (3.4) C1 = M2

0 the cylindrical coordinates (Andoyer variables [23])

mx =
√

M2
0 − p2

0 sin q0, my =
√

M2
0 − p2

0 cos q0, mz = p0,

q0 ∈ [0, 2π), p0 ∈ [−M0,M0],
(3.6)

which commute canonically:
{q0, p0} = 1.

3.3. Reconstruction

Let us assume that we are given a solution to the system (3.5):

m = m(0)(t), q = q(0)(t), p = p(0)(t).
We need to determine the time dependence for the Euler angles.

1. As a first step, we define the fixed axes OXY Z in such a way that M‖OZ, so the following
relations hold:

MX = 0, MY = 0, MZ = Pψ = M0.

Using them, we find from (3.2)

Pθ = 0, Pϕ − Pψ cos θ = m(0)
z (t) − M0 cos θ = 0.

Finally, taking (3.3) into account, we find

Pθ = 0, Pϕ = m(0)
z (t), Pψ = Mo = const,

cos θ =
m

(0)
z (t)
M0

, tg ϕ =
m

(0)
x (t)

m
(0)
y (t)

.

2. Using these relations, we find the quadrature for the angle ψ:

ψ̇ =
sin ϕωx + cos ϕωy

sin θ
=

M0

(
m

(0)
x (t)ω(0)

x (t) + m
(0)
y (t)ω(0)

y (t)
)

M2
0 − m

(0)
z (t)

,

ωx =
∂H

∂mx
, ωy =

∂H

∂my
.

3.4. Example — the 2-body Problem on S2

In this case, the system has only one mutual variable, which is the angle between the radius
vectors of the points (see Fig. 1)

ϕ12 = q1 ∈ (0, π).

Let us denote the radius of the sphere by a. Then the radius vectors of particles in the moving
coordinate system Oxyz are

r1 = (a, 0, 0), r2 = (a cos q1, a sin q1, 0).

Performing the above operations, we obtain the Hamiltonian of the system (3.3) in the form

H =
1

2a2

((
m,A(q1)m

)
− 2

μ1
m3p1 +

μ1 + μ2

μ1μ2
p2
1

)
+ U(q1),

A(q1) =

⎛
⎜⎜⎜⎝

μ1+μ2 cos2 q1

μ1μ2 sin2 q1

cos q1

μ1 sin q1
0

cos q1

μ1 sin q1

1
μ1

0

0 0 1
μ1

⎞
⎟⎟⎟⎠.
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In the canonical variables (3.6) the Hamiltonian becomes

H =
1

2a2μ1

(
p2
0 +

(
1 +

μ1

μ2

)
p2
1 +

μ1 + μ2 sin2(q0 + q1)
μ2 sin2q1

(
M2

0 − p2
0

)
− 2p0p1

)
+ U(q1).

Remark. In [29] a different procedure, based on the Lagrangian representation, is proposed for
reducing the 2-body problem on S2. We recast it here in “Hamiltonian terms”. First of all, we
eliminate the cyclic variable ψ, on which the Hamiltonian

(
∂H
∂ψ = 0

)
does not depend. To do this,

it suffices to set

Pψ = M0 = const

in the Hamiltonian (3.3).
Then, using the freedom of choice of the fixed axes OXY Z, we define them so that the axis OZ

is directed along the total angular momentum M . Consequently, the system admits two invariant
relations

MX = 0, MY = 0.

From (3.2) we conclude that in the canonical variables these relations can be represented as

F1 = Pθ = 0, F2 = Pϕ − cos θPψ = Pϕ − M0 cos θ = 0.

The submanifold M0 = {F1 = 0, F2 = 0}, which corresponds to these relations, is not Poisson, but

{F1, F2} = −M0 sin θ �= 0.

Hence, in this case, the Dirac reduction [21] is possible and the Dirac bracket of the variables
ϕ, Pϕ, q, p turns out to be canonical:

{ϕ,Pϕ}D = {ϕ,Pϕ} +
{ϕ,F1}{Pϕ, F2} − {ϕ,F2}{Pϕ, F1}

{F1, F2}
= 1,

{qi, pj}D = {qi, pj} +
{qi, F1}{pj , F2} − {qi, F2}{pj , F1}

{F1, F2}
= δij .

When restricted to M0, the Hamiltonian (3.3) takes the form

H =
1

2R2
0

(
(Pϕ − p1)2

μ1
+

p2
1

μ2
+

(
M2

0 − P 2
ϕ

) μ1 sin2 ϕ + μ2 sin2(ϕ + q1)
μ1μ2 sin2 q1

)
+ U(q1),

which, after the canonical transformation, coincides with the Hamiltonian of [29].

4. THE 2-BODY PROBLEM IN S3

Above we have considered the situation where the configuration space of the system, N , can
almost everywhere be parameterized by the product

G ×Nq. (4.1)

In this case, the potential energy depends only on the variables on Nq and the (noncommutative)
Lie group G is such that the kinetic energy of the system is invariant under left translations on it
(more precisely, under the lift of this action to the phase space). In this case, a system reduced by
the group action G can be represented naturally (almost everywhere) in Hamiltonian form on the
Poisson manifold

Mred = g∗ × T ∗Nq, (4.2)

where g∗ is the coalgebra of the Lie algebra of the group G and T ∗Nq is the tangent bundle of Nq.

For example, in the 2-body problem on S2, Nq is an interval that parameterizes the distance
between particles and G ≈ SO(3). In the problem of 3 and more bodies in S3, this method admits a
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natural generalization (i.e., three noncoplanar radius vectors in R
4 uniquely define some orthogonal

frame), so we shall not consider this case here.
In the 2-body problem in S3 the representation (4.1) is impossible, since the symmetry group

is six-parametric G ≈ SO(4) and Nq is also one-dimensional, so that dimG + dimNq = 7, whereas
the configuration space is only six-dimensional. This occurs due to the fact that the pair of straight
lines in R

4 that emanate from the origin of coordinates does not allow one to uniquely define the
orientation of the entire moving frame in R

4, since the rotation in the plane of the orthogonal plane
of the particles remains undefined.

In view of this, we use the following algorithm to perform reduction.

1. Choose an extended configuration space Ñ that contains redundant variables and has the
form

Ñ = G ×Nq,

where G is the symmetry group of the system. In this case, the Lagrangian function turns
out to be degenerate in velocities. As a result, in Hamiltonian representation the phase space
of the system has an invariant submanifold (on which the Legendre transformation can be
reversed for all generalized velocities except for the redundant ones).

2. Perform reduction by the group action G and obtain a Hamiltonian system on the invariant
submanifold of the Poisson manifold (4.2).

3. Perform reduction of the resulting system by symmetries corresponding to the redundant
variables.

4.1. A Particle in the Central Field

Z

Y

R

Fig. 2

To illustrate the proposed algorithm, we first consider a
simpler example, a particle in R

3 under the action of the
central field. Let us choose a fixed orthogonal coordinate system
OXY Z with origin O at the center of the force field.

To apply methods of rigid body dynamics, we need to choose
a moving orthogonal coordinate system Oxyz attached to the
particle, such that the axis Oz is directed along the radius
vector of the particle R (see Fig. 2). It can be seen that the
orientation of the axes in the plane Oxy is undefined. Hence,
the configuration space thus defined

Ñ = SO(3) ×Nq,

where Nq = {q1 = |R| ∈ (0,∞)} ≈ R
1, contains a redundant

variable, the angle of proper rotation ϕ. Indeed, writing the
coordinates of the particle in the fixed coordinate system as

R = Qr,

where Q is the orthogonal matrix (3.1), r = (0, 0, q1), and differentiating with respect to time, we
obtain a Lagrangian function that is independent of ϕ and ϕ̇:

L =
1
2
μ(Ṙ, Ṙ) − U(|R|) =

1
2
μq2

1

(
θ̇ + sin2 θψ̇2

)
+

1
2
μq̇2

1 − U(q1),

here, μ is the mass of the particle and U is its potential energy. Thus, the resulting system turns
out to be invariant not only under the change of the fixed axes, but also under rotations about the
moving axis Oz.

After a Legendre transformation which is defined on the invariant submanifold

Pϕ =
∂L

∂ϕ̇
= 0,
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passing to the left-invariant functions in the coalgebra so∗(3), we obtain a Hamiltonian system on
M̃red = so∗(3) ⊕ T ∗Nq:

ṁ = m × ∂H

∂m
, q̇1 =

∂H

∂p1
, ṗ1 = −∂H

∂q1
,

H =
1

2μq2
1

(m2
x + m2

y) +
1
2μ

p2
1 + U(q1),

where m = (mx,my,mz), on the fixed level set

mz = Pϕ = 0.

Since the angle ϕ is redundant, this system is invariant under the rotation group action generated
by the Hamiltonian

Hϕ = mz.
The invariants under this action are

q1, p1, M2
0 = m2

1 + m2
2,

and the function M2
0 is an integral of motion (since on the level set m3 = 0 it coincides with the

Casimir function m2). Finally, we obtain a reduced system with one degree of freedom

H =
1
2μ

p2
1 + Ur(q1), Ur = U(q1) +

M2
0

2μq2
1

.

4.2. The 2-body Problem in S3

As above, we assume the sphere S3 to be embedded into the four-dimensional Euclidian space
R

4. We choose two orthogonal coordinate systems in R
4 with origin at the center of the sphere:

a fixed coordinate system, OX1X2X3X4, and a moving coordinate system, Ox1x2x3x4, where the
axis Ox1 is directed along the radius vector of the first body and the second body lies in the plane
Ox1x2. As in the previous case, the rotation angle of the axes Ox3 and Ox4 in the plane Ox3x4 is
not defined and is a redundant variable.

Let Q be an orthogonal 4 × 4 matrix defining a transformation from the moving axes to the
fixed ones so that

Rα = Qrα, α = 1, 2,
r1 = (a, 0, 0, 0), r2 = (a cos q1, a sin q1, 0, 0),

(4.3)

where a is the radius of the sphere S3.
The kinetic energy of the system can be written as

T =
1
2

∑
α

μα Ṙ
2
α = −1

2
Tr ω̂Jω̂ − μ2a

2ω12q̇1 +
1
2
μ2a

2q̇2
1,

ω̂ = QT Q̇, J =
∑
α

μαrα ⊗ rα =

⎛
⎜⎜⎜⎜⎜⎜⎝

a2(μ1 + μ2 cos2q1) μ2a
2 sin q1 cos q1 0 0

μ2a
2 sin q1 cos q1 μ2q

2 sin2q1 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

where ω̂ is the skew-symmetric 4 × 4 matrix of the angular velocity of the moving frame and μ1,
μ2 are the masses of the bodies. Finally, we obtain a Lagrangian function in the form

L =
a2

2

[
(μ1 + μ2)ω2

12 + (μ1 + μ2 cos2q1)(ω2
13 + ω2

14) + μ2 sin2q1(ω2
23 + ω2

24)

+ 2μ2 sin q1 cos q1(ω13ω23 + ω14ω24) − 2μ2ω12q̇1 + μ2q̇
2
1

]
− U(q1).

The redundancy of the configuration space leads to the degeneration
∂L

∂ω34
= 0.
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After the Legendre transformation

mij =
∂L

∂ωij
,

which is defined on the level set m34 = 0, we obtain a Hamiltonian system on the manifold so∗(4)×
T ∗Nq = {(m̂, q1, p1)}, where m̂ ∈ so∗(4) is the skew-symmetric matrix of angular momentum. The
Hamiltonian is given by

H =
∑
i<j

mijωij + q̇1p1 − L
∣∣
ωij→mij

=
1

2a2

[
m2

12

μ1
+

m2
13 + m2

14

μ1
+

μ1 + μ2 cos2q1

μ1μ2 sin2q1
(m2

23 + m2
24)

− 2
cos q1

μ1 sin q1
(m13m23 + m14m24) +

2
μ1

m12p1 +
μ1 + μ2

μ1μ2
p2
1

]
+ U(q1).

(4.4)

The Poisson brackets on so∗(4) are given for the elements of the momentum matrix by

{mij ,mkl} = δikmjl + δjlmik − δilmjk − δjkmil, (4.5)

while q1 and p1 remain canonical:

{q1, p1} = 1.

The Casimir functions of this Poisson structure are

C1 =
∑
i<j

m2
ij, C2 = m12m34 − m13m24 + m14m23. (4.6)

As is well known, in this case the integrals of motion corresponding to the group action SO(4)
are the projections of angular momentum onto the fixed axes, which are given by the elements of
the skew-symmetric matrix

M̂ = Qm̂QT = ‖Mab‖ =
∥∥∥

∑
i,j

QaiQbjmij

∥∥∥, (4.7)

where Q is the orthogonal matrix defined above (4.3) and the indices i, j, k relate here (and in the
sequel) to the projections onto the moving axes Ox1x2x3x4, whereas the indices a, b relate to the
projections onto the fixed axes OX1X2X3X4.

The symmetry group corresponding to the redundant variable is generated by the Hamiltonian

Hϕ = m34. (4.8)

The invariants of this action which form a set closed relative to the Poisson bracket (4.5) have the
form

Z0 = m12, Z1 = m2
13 + m2

14, Z2 = m2
23 + m2

24, Z3 = 2(m13m23 + m14m24),

and, when restricted to m34 = 0, their commutation relations q1 and p1 are represented as

{Z0, Z1} = Z3, {Z0, Z2} = −Z3, {Z0, Z3} = 2(Z2 − Z1),
{Z1, Z2} = 2Z0Z3, {Z1, Z3} = 4Z0Z1, {Z2, Z3} = −4Z0Z2,

{q1, p1} = 1.

This bracket is degenerate, and its Casimir functions are obtained using the functions (4.6) as
follows:

C̃1 = C1

∣∣
m34=0

= Z2
0 + Z1 + Z2, C̃2 = C2

2

∣∣
m34=0

= 4Z1Z2 − Z2
3

The Hamiltonian (4.4) is also expressed in terms of the variables Z, q1 and p1:

H =
1

2a2μ1

(
Z2

0 + Z1 + A(q1)Z2 − B(q1)Z3 + 2Z0p1 +
(
1 +

μ1

μ2

)
p2
1

)
+ U(q1),

A(q1) =
μ1 + μ2 cos2q1

μ2 sin2q1
, B(q1) =

cos q1

sin q1
.
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Thus, we obtain a reduced system of the 2-body problem on S3 in algebraic form (for a part of
variables).

To represent the system in canonical form, we supplement the variables q1, p1 with a pair of
canonically conjugate variables q0, p0 which parameterize the fixed level set of the Casimir functions

C̃1 = M2
0 , C̃2 = Δ2.

We use a parameterization which is a natural generalization of (3.6):

Z0 = p0, Z3 = ρ sin 2q0,

Z1 =
1
2
(
M2

0 − p2
0 + ρ cos 2q0

)
, Z2 =

1
2
(
M2

0 − p2
0 − ρ cos 2q0

)
,

ρ2 =
(
M2

0 − p2
0

)2 − Δ2, {q0, p0} = 1.

We see that for Δ = 0 these relations lead to a system coinciding with the reduced system on S2.
In the general case, when Δ �= 0, in canonical variables the Hamiltonian of the reduced system does
not correspond to any natural mechanical system.

To reconstruct the solutions of the complete system, we supplement the brackets (4.5) with
the commutation relations of the momenta m̂ with elements of the orthogonal matrix Q ∈ SO(4)
defined above (4.2):

{mij , Qak} = δikQaj − δjkQai. (4.9)

According to (4.9), the columns of the matrix Q are projections of the unit vectors of the moving
frame onto the fixed axes. We denote them as

Ei = (Q1i, Q2i, Q3i, Q4i).

In this case, the radius vectors of the particles are given by

R1 = aE1, R2 = a cos q1E1 + a sin q1E2.

Consequently, to reconstruct the motion of the bodies for the given values of the first integrals (4.7)
and the known solutions of the reduced system Z(t), q1(t), p1(t), we need to have equations
governing the evolution of the unit vectors E1(t), E2(t).

First of all, we note that, as a consequence of this definition of Q, the components of the vectors
E1, E2 do not depend on the redundant variable, i.e., they are invariant under the action given by
the Hamiltonian (4.8):

{m34, E1a} = {m34, E2a} = 0, a = 1, . . . , 4.

Moreover, their commutation relations with the variables of the reduced system Z0, . . . , Z3 (on
the level set m34 = 0) can be represented as

{Z0, E1a} = E2a, {Z0, E2a} = −E1a,

{Z1, E1a} = {Z3, E2a} = −2
( ∑

b

MabE1b + Z0E2a

)
,

{Z2, E2a} = {Z3, E1a} = −2
( ∑

b

MabE2b − Z0E1a

)
,

{Z1, E2a} = {Z2, E1a} = 0, a, b = 1, . . . , 4,

where Mab are the elements of the matrix of the projections of momentum onto the fixed axes (i.e.,
the integrals of motion).

Remark. The derivation of these relations is based on the equations
∑

b

QbiMba =
∑

j

Qaimij,

which are derived immediately from the definition (4.7).
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Commuting the vectors E1 and E2 with the Hamiltonian (4.2), we obtain equations governing
their evolution:

a2μ1Ė1 = M̂
(
E1 − B(q1)E2

)
+ B(q1)Z0E1 − p1E2,

a2μ1Ė2 = M̂
(
A(q1)E2 − B(q1)E1

)
+

(
Z0

(
1 − A(q1)

)
+ p1

)
E1 − B(q1)Z0E2.

5. NUMERICAL ANALYSIS OF THE 2-BODY PROBLEM

Consider the problem of the motion of two particles on S3 which interact with each other with
the (Newtonian) potential

U = γ cot q1,

where γ is the constant of gravitation.
As variables of the reduced system we choose(Y , q1, p̃1):

Z0 = 2Y0, Z1 =
Y1 + Y2

2
, Z2 =

Y1 − Y2

2
, Z3 = Y3, p1 =

p̃1

sin q1
.

In this case, the equations of motion can be represented as

sin2 q1Ẏ0 =
Y2 sin 2q1 − Y3 cos 2q1

4a2μ1
− Y3

4a2μ2
,

sin2 q1Ẏ1 = 2Y0
Y3 cos 2q1 − Y2 sin 2q1

a2μ1
+

2Y0Y3

a2μ2
,

sin2 q1Ẏ2 = 2Y0
Y3 cos 2q1 − Y1 sin 2q1

a2μ1
+

2Y0Y3

a2μ2
− 2Y2p̃1

a2μ1
, (5.1)

sin2 q1Ẏ3 =
2Y2p̃1

a2μ1
sin q1 +

2Y0(Y1 − Y2)
a2μ1μ2

(μ1 + μ2 cos 2q1),

sin2 q1
˙̃p1 =

(μ1 + μ2)(2p̃2
1 + Y1 − Y2)

2a2μ1μ2
cos q1 −

Y3

2a2μ1
sin q1 +

p̃1Y0

a2μ1
sin 2q1 + γ sin q1,

sin q1q̇1 =
(μ1 + μ2)p̃1

a2μ1μ2
sin q1 +

2Y0

a2μ1
Y0.

The Casimir functions have the form

C̃1 = 4Y 2
0 + Y1, C̃2 = Y 2

1 − Y 2
2 − Y 2

3 .

The values q1 = 0 and q1 = π correspond to collision of particles, in this case Eqs. (5.1) have a
singularity. To regularize the system (5.1), we make the change of variables

dt = sin2 q1dτ.

To illustrate the behavior of the trajectories of the regularized system, we take a Poincaré map
and restrict the system to the four-dimensional manifold of the level set of the first integrals

M4 = {(Y , q1, p̃1) | C̃1 = M2
0 ,H = h}

whence we obtain a four-dimensional flow with the integral C̃2|M4 . We parameterize it by the
variables (Y0, Y2, q1, p̃1).

Then we fix C̃2 = Δ2 and thus obtain a family of three-dimensional flows. As the secant for this
flow we choose

Y0 = 0.

Numerically integrating and finding intersections of the trajectories with the above section, we
finally obtain a family of point two-dimensional maps, which we parameterize by (q1, p̃1).

A Poincaré section for different fixed parameters is presented in Figs. 3 and 4.
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Fig. 3. Poincaré section (secant Y0 = 1) for the fixed parameters μ1 = 1, μ2 = 2, a = 1, h = 60, M2
0 = 200,

Δ2 = 150: a) γ = 0.004, b) γ = 0.05 (the Poincaré section in the shaded area is undefined for these parameters).

Fig. 4. Poincaré section (secant Y0 = 0) for the fixed parameters μ1 = 1, μ2 = 2, a = 1, γ = 5, h = 80,

M2
0 = 200, Δ2 = 0 (the Poincaré section in the shaded area is undefined for these parameters).
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Stability of Relative Equilibria for the Two-Body Problem in the Hyperbolic Space of Dimension 2,
J. Differential Equations, 2016, vol. 260, no. 7, pp. 6375–6404.

REGULAR AND CHAOTIC DYNAMICS Vol. 21 No. 5 2016



578 BORISOV et al.

55. Gibbons, G. W. and Warnick, C. M., Hidden Symmetry of Hyperbolic Monopole Motion, J. Geom.
Phys., 2007, vol. 57, no. 11, pp. 2286–2315.

56. Grosche, C., The Path Integral for the Kepler Problem on the Pseudosphere, Ann. Physics, 1990,
vol. 204, no. 1, pp. 208–222.

57. Grosche, C., On the Path Integral in Imaginary Lobachevsky Space, J. Phys. A, 1994, vol. 27, no. 10,
pp. 3475–3489.

58. Heath, R. S., On the Dynamics of a Rigid Body in Elliptic Space, Phil. Trans. R. Soc. Lond., 1884,
vol. 175, pp. 281–324.

59. Higgs, P.W., Dynamical Symmetries in a Spherical Geometry: 1, J. Phys. A, 1979, vol. 12, no. 3,
pp. 309–323.

60. Ikeda, M. and Katayama, N., On Generalization of Bertrand’s Theorem to Spaces of Constant
Curvature, Tensor (N. S.), 1982, vol. 38, pp. 37–40.

61. Infeld, L. and Schild, A., A Note on the Kepler Problem in a Space of Constant Negtive Curvature,
Phys. Rev., 1945, vol. 67, nos. 3–4, pp. 121–123.
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82. Lindner, J. F., Roseberry, M. I., Shai, D. E., Harmon, N. J., and Olaksen, K. D., Precession and Chaos

in the Classical Two-Body Problem in a Spherical Universe, Internat. J. Bifur. Chaos Appl. Sci. Engrg.,
2008, vol. 18, no. 2, pp. 455–464.
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