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INTRODUCTION
In this review we shall try to describe the most important aspects of development of the theory

of nonholonomic systems. We note that the introduction of new geometric and topological methods,
as well as methods of qualitative analysis and high-performance computer calculations, has given a
great impetus to nonholonomic mechanics lately. Some basic avenues of research in nonholonomic
mechanics have already been outlined in the previous review [15].

In this paper we do not claim to present a comprehensive survey of the literature, as is done, for
example, in the recent book [121]. Instead, we undertake a critical review of the most important
and interesting studies in this area. Such an approach is of particular importance in view of an
increase in the number of new journals and an avalanche-like increase in the number of publications
on the dynamics of nonholonomic systems. In our opinion, an uncritical citation of the literature
does not allow one to distinguish major results from minor and even erroneous results1). We shall
pay particular attention to works that are of interest from the viewpoint of our understanding of
the concept of constructive approach to analysis of dynamical systems, as presented in [5].

This review was motivated, among others, by the sketch [74], which is concerned less with
analyzing the historical development of nonholonomic mechanics than with advocating an approach
that is mainly developed in Journal of Geometric Mechanics. This branch of geometric mechanics
(the general principles of which are laid down in [57]) is a more abstract continuation of the ideas
of J.Marsden’s school, which are set forth in [11]. A synthesis of both approaches is presented in
the book [84].

In our view, at the initial stage of its development geometric mechanics made it possible to
describe some theorems of dynamics in a geometrically clearer form (as is well known, in his
Mécanique Analytique [72] Lagrange completely ignored drawings and figures). But later the focus
was not on the solution of complicated and interesting problems (although there are some exceptions
here), but on the development of a peculiar geometric language, mainly using the old problems that
had already been solved in classic works2).

The approach of geometric mechanics is illustrated in the paper by Duistermaat [42], in which
the well-known work of Chaplygin [35] about the rolling motion of a ball is presented in terms
of geometric mechanics. Although the volume of the paper [42] is several times larger than that
of [35] (101 pages and 31 pages, respectively), the problems that had not been solved by Chaplygin
remained unresolved in [42]. Another example is the global geometric approach to the reduction of
dynamical systems, which is criticized in [17]. It turns out that constructively such a global view
mostly does not lead to any new results, and the proposed generalizations of the classical results
usually do not work in practice. In our view, such a formal approach considerably increases the gap
between mechanics and practical applications.

We note that both the abstract approach and the constructive approach have their adherents.
The open problems of the 20th century mathematics as formulated by D. Hilbert and H.Poincaré
are an illustrative example. Afterwards, the former point of view was backed up by bourbakists
and partially by A. Einstein and P.Dirac, who linked the value of a physical theory with its beauty.
In its extreme form it leads to a widening of the gap between mathematics and applications and
real problems and transforms it into a branch of linguistics or scholasticism. Unfortunately, the
number of adherents of this point of view has considerably increased lately, since the activities of
the scientific community are evaluated not by the quality of scientific results, but by the number of
published and cited works. Indeed, “linguistic” texts are much faster to write and publish than really
profound studies (and even than those which are not erroneous). In spite of many criticisms, the
formal approach in mathematics continues to develop. Many publications have appeared recently
in which the well-known classical results, recast in new terms, are passed off as new ones.

The latter point of view (held by H. Poincaré) is that the development of science, including
mathematics, is stimulated primarily by the solution of concrete problems and not by the creation
of abstract theories. We make here several quotations which give an exhaustive estimate of this
approach in mathematics.

1)The existing citation databases do not even distinguish erroneous studies from really valuable ones.
2)Despite the fact that J.Marsden was for many years involved in our efforts to promote the journal Regular

and Chaotic Dynamics, our views on scientific issues were essentially different, and our approach in [15] was
characterized as “somewhat anti-reductionist” in [46].
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Jacobi [59](see also [67]) about Euler’s work:
“Euler’s work has the great merit that it presents, wherever possible, all cases in which problems can

be solved completely using given methods and means. . . Therefore, his examples always show a complete
content of his method according to the state of science of that time and, as a rule, when it is possible to
add a new example to Euler’s examples, it is an enrichment of science, for it rarely happened that a case
solvable by his methods escaped his attention. . . ”

P. Halmos [52]:
“The heart of mathematics consists of concrete examples and concrete problems. Big general theories

are usually afterthoughts based on small but profound insights; the insights themselves come from concrete
special cases. . . ”

E. Zehnder [85] about J.Moser:
“These notes owe much to Jürgen Moser’s deep insight into dynamical systems and his broad view

of mathematics. They also reflect his specific approach to mathematics by singling out inspiring typical
phenomena rather than designing abstract theories. . . ”

We note that, unlike Hamiltonian mechanics, the dynamics of nonholonomic systems possesses
much more diverse properties, which manifests itself in unusual motions (such as those of a
rattleback etc.), many of which can be observed experimentally. These unusual and, at first glance,
enigmatic properties stimulate the further process of study of nonholonomic systems.

Nowadays, nonholonomic problems are solved by using many branches of mathematics: the
theory of groups and Lie algebras, topology, qualitative methods, the theory of conditionally
periodic functions, the theory of general Poisson structures and methods of effective computer
analysis. In addition, nontrivial intuition and a good ability to perform analytic calculations are
required. These qualities were inherent in S.A. Chaplygin, who after the work of Hertz brought
nonholonomic mechanics to an entirely new level. Most of the modern methods for analyzing
nonholonomic systems (methods of integration, Hamiltonization etc.) go back to his work. The
abstract level of the mathematical language often involves many additional obstacles in solving more
complicated problems of nonholonomic mechanics. This is why the authors of “general theories”
rarely achieve real progress in solving new problems, and their works either use the same elementary
systems, for which everything is clear as it is, or introduce new abstract systems which are absolutely
useless. For example, the introduction of Weinstein’s groupoids and algebroids into the range of
problems of nonholonomic mechanics, as is done in [74], will hardly fill engineers and physicists
with optimism.

Remark. By the way, the recent remarkable book [73] on Poisson structures gives almost no
examples, and the exposition is focused on the proof of general results. Moreover, the authors
of [73] do not point out the deeper properties of Poisson manifolds which are associated with a
chaotic embedding of symplectic leaves. Various examples of such sort have been found recently in
nonholonomic mechanics [9].

This work is only the first part of the review presented by us. The second part will address
the recent results (from 1985 until now) and formulate a number of unsolved problems. In
order not to encumber the main historical material with formulae, they have been presented in
the Appendix, which discusses various forms of equations of nonholonomic systems and their
fundamental differences from Hamiltonian equations (in particular, the impossibility of obtaining
them from the variational principle).

1. THE FIRST PERIOD: UNTIL THE APPEARANCE OF THE WORK OF HERTZ
IN 1894 AND THE GENERAL CONCEPT OF NONHOLONOMIC SYSTEMS

In that period, various versions of the problem of a rigid body rolling without slipping (going back
to L.Euler and S.Poisson) were considered. As an example, we mention the treatise of S. Earnshaw
(1844) [43], concerned with the motion of a homogeneous ball on a rotating plane (which still
attracts the attention of researchers [19]).
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Fig. 1. Samuel Earnshaw (1805–1888) Fig. 2. Edward John Routh (1831–1907)

The equations of motion of a rigid body (disk, hoop or coin) rolling on a plane were obtained
by G. Slesser (1861) [104] from the general principles of dynamics by an explicit elimination of
constraint reaction forces 3).

N. Ferrers (1872) [48] explicitly showed that the equations of motion of a system with constraints
given in differential form cannot be represented in the form of Lagrange equations. However, subject
to certain conditions, such a representation turns out to be possible for some variables. As an
example, Ferrers used the problem of a rolling hoop in which the angle between the normal to
the plane of the disk and the vertical (nutation angle) evolves according to the standard Lagrange
equations (of genus 2)4). We note that the works [48, 104] still contained no hint of the general
formalism of the dynamics of nonholonomic systems.

E. Routh (1884) [99] considered the problem of a homogeneous ball rolling on a rotating
axisymmetric surface. It was Routh who pointed out the possibility of using the Lagrange equations
with undetermined multipliers (of genus 1) to describe the motion of nonholonomic systems.

In a more general form which is particularly suitable to describe rigid body dynamics, the
equations of motion were obtained by A.Vierkandt (1892) [112]. In this work the author is already
well aware of the specificity of nonholonomic constraints and of the fact that these constraints
arise in the case of rolling. All of his results are in good agreement with the modern analysis of the
problem (see, e.g., [20]). In [112], special attention was paid to the motion of a homogeneous (round)
disk, for which Vierkandt noted that the motion of the reduced system is, as a rule, periodic. He
gave a general description of the motion and dynamics of the point of contact, in particular, he
pointed out steady motions in which the point of contact moves in a circle.

2. THE SECOND PERIOD: 1894–1912 (INTENSIVE DEVELOPMENT,
THE WORK OF CHAPLYGIN)

The general understanding of the inapplicability of the Lagrange equations and variational
principles in nonholonomic mechanics is due to H. Hertz (1894), who discussed these issues in his
fundamental work “Die Prinzipien der Mechanik in neuem Zusammenhange dargestellt” [56]. We
note that this work is mainly devoted to the concept of hidden cyclic parameters (coordinates,
masses), which Hertz contrasted to the usual concept of interaction as a result of the action of
forces. To better understand his views, we present some fragments from this work.

“The application of Hamilton’s principle to a material system does not exclude the existence of
fixed connections between the chosen coordinates. But at any rate it requires that these connections be
mathematically expressible by finite equations between the coordinates: it does not permit the occurrence
of connections which can only be represented by differential equations. But nature itself does not appear
to entirely exclude connections of this kind. They arise, for example, when bodies of three dimensions roll

3)Nowadays most mechanical engineers proceed in this way.
4)Afterwards this was reflected in problems of the Hamiltonization of a reduced system, as described in [14].

It should also be noted that the solution of the overwhelming majority of specific problems does not require a
theoretical development of nonholonomic mechanics, and all equations can be obtained using the general principles
of dynamics.
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on one another without slipping. By such a connection, examples of which frequently occur, the position of
the two bodies with respect to each other is only limited by the condition that they must always have one
point of their surfaces common; but the freedom of motion of the bodies is further diminished by a degree.
From the connection, then, there can be deduced more equations between the changes of the coordinates
than between the coordinates themselves; hence there must amongst these equations be at least one non-
integrable differential equation. Now Hamilton’s principle cannot be applied to such a case; or, to speak more
correctly, the application, which is mathematically possible, leads to results which are physically false. Let
us restrict our consideration to the case of a sphere rolling without slipping upon a horizontal plane under
the influence of its inertia alone. It is not difficult to see, without calculation, what motions the sphere can
actually execute. We can also see what motions would correspond to Hamilton’s principle; these would have
to take place in such a way that with constant vis viva the sphere would attain given positions in the shortest
possible time. We can thus convince ourselves, without calculation, that the two kinds of motions exhibit
very different characteristics. If we choose any initial and final positions of the sphere, it is clear that there
is always one definite motion from the one to the other for which the time of motion, i.e. the Hamilton’s
integral, is a minimum. But, as a matter of fact, a natural motion from every position to every other is not
possible without the co-operation of forces, even if the choice of the initial velocity is perfectly free. And
even if we choose the initial and final positions so that a natural free motion between the two is possible,
this will nevertheless not be the one which corresponds to a minimum of time. For certain initial and final
positions the difference can be very striking. In this case a sphere moving in accordance with the principle
would decidedly have the appearance of a living thing, steering its course consciously towards a given goal,
while a sphere following the law of nature would give the impression of an inanimate mass spinning steadily
towards it. . .

This defence is not quite convincing. For rolling without slipping does not contradict either the principle
of energy or any other generally accepted law of physics. . . ”

These somewhat obscure and philosophical arguments of Hertz obviously point to the inapplica-
bility of Hamilton’s principle for nonholonomic systems. Moreover, they point to the possibility of
realizing nonholonomic constraints by rolling rigid bodies without slipping on each other and to the
validity of the law of conservation of energy for such systems (in contrast to systems with friction).
Even the figurative observations of Hertz in which he compared the sphere with a living thing can be
interpreted as arguments in favor of the absence of determinacy when systems with nonholonomic
constraints5) are described using Hamilton’s principle. The observations of Hertz were developed
by H. Poincaré (1897) [92] in his popular work “Les idées de Hertz sur la Mécanique”. In particular,
he gave an elementary proof of the nonholonomicity of constraints in the problem of rolling of a
sphere on a plane and noted that Hamilton’s priciple (principle of least action) cannot be applied
to the description of nonholonomic systems.

Remark. We note that Hertz and Poincaré drew a correct conclusion that Hamilton’s principle
cannot be applied to general nonholonomic systems. However, their example of a homogeneous
sphere rolling on a plane is not quite correct (since it admits a representation in Hamiltonian
form), which was pointed out later by Capon in [30].

We briefly recall what the difference is between nonholonomic and holonomic constraints. Let
q = (q1, . . . , qn) be the generalized coordinates on the configuration space of the system. The
constraints dealt with in nonholonomic mechanics are, as a rule, linear and homogeneous in
generalized velocities and do not explicitly depend on time:

fi(q, q̇) =
n∑

j=1

aij(q)
dqj

dt
= 0, i = 1, . . . ,m < n. (2.1)

Nonholonomic constraints, as opposed to holonomic constraints, cannot be represented in the finite
integral form

Fi(q, t) = 0, i = 1, . . . , m̃ < n. (2.2)

Analysis of the reducibility of the constraints (2.1) to the form (2.2) is closely related to the
integrability of the system of Pfaffian equations. Indeed, after multiplication by dt the constraint
equations (2.1) can be represented in the form of Pfaffian equations.

5)Much later, this was pointed out within the framework of vakonomic mechanics [5] (which cannot be applied to
systems with rolling and which suggests realizing nonintegrable constraints in a hydrodynamical way).
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Consequently, the criterion for verification of the nonholonomicity of constraints can be obtained
using the Frobenius theorem [49] (1877) (see, e.g., [16]).

Remark. We refer the reader to an interesting review paper by T.Hawkins [55], in which the
Frobenius theorem is considered from various points of view and is linked to the studies by Darboux,
Cartan and Clebsch. From the modern point of view these problems were characterized by Arnold
as contact geometry (see, e.g., [4]). We note that although the review paper [55] is complete, it
does not mention, for example, the fundamental books by S. Lie [75–77], in which the Frobenius
theorem is formulated and its transparent proof is given. However, it is interesting that Lie [77] did
not mention Frobenius at all when discussing the contribution of various mathematicians to the
creation of group theories and, in particular, the Pfaff problem, although many mathematicians of
that time were mentioned by him, even though critically.

Of special mention is the work of J.Hadamard (1895) [51] (written under the supervision of
Appel) who studied in detail the reducibility of constraints (2.1) to the form (2.2). We note that
he formulated a model of rolling in which a nonholonomic constraint is realized between the rigid
body and the surface, which is given by the condition that the velocity of the point of contact and
the projection of the angular velocity of the rigid body onto the normal to the fixed surface be zero.
Afterwards this model was also developed by H.Beghin (1929) [6]. Lately, it has been widely used
in robotics. In [51], considerable attention is paid to various issues of the dynamics of nonholonomic
systems. A further refinement to the above model was made in [18].

On the other hand, the non-Hamiltonian property in the general case of equations of non-
holonomic mechanics follows from qualitative considerations (unfortunately, this was understood
only much later [68]). For example, the stability analysis of various particular solutions (as a rule,
steady or permanent rotations) for specific nonholonomic systems has shown that they may exhibit
asymptotic stability, which is impossible for Hamiltonian systems.

The most interesting studies are those concerned with the stability of rotations about the vertical
axis, the so-called rattleback, which displays a striking dependence of stability on the direction of
rotation (reversal). In 1895 Walker was the first to establish this dependence, which is not typical
of Hamiltonian systems [116]. As is well known, a characteristic feature of the rattleback is that
the dynamical and geometrical axes at the point of contact do not coincide 6).

We mention the works of E. Carvallo (1899) [33], J. Boussinesq (1899) [25, 26], R. Routh (1899)
[98], and C.Bourlet (1899) [24] on bicycle theory, which provided some description of bicycle motion
and an explanation of its unique stability7).

Of special note is an error that was made by Lindelöf in [78] (1895) in the problem of a
rolling body of revolution and that was related to the application of the Lagrange equations in
the presence of nonintegrable constraints and to the substitution of nonholonomic constraints in
the kinetic energy. Later the erroneous result obtained by Lindelöf due to this error was included
in the first edition of the treatise by P. Appel (1896) [2]. We also note that an error (related to the
application of Hamilton’s principle) was made by C.Neumann (1886) [88], which was corrected by
him later (1899) [87].

The errors made served as an impetus for finding them and contributed to the develop-
ment of nonholonomic mechanics, which became a separate branch of dynamics. For example,
S.A. Chaplygin (1897) [34], after analyzing Lindelöf’s error in detail, obtained a correct form for
the equations of motion and examined in detail the motion of a body of revolution (in particular, the
motion of a disk) on a plane. As a result, he showed the integrability by quadratures of an arbitrary
body of revolution and pointed out the possibility of adding a balanced and uniformly rotating
rotor along the axis of revolution (without loss of integrability). In addition, Chaplygin obtained
the first general form of nonholonomic mechanics equations in which undetermined multipliers are
eliminated and terms of nonholonomicity are singled out explicitly.

6)We note that a number of new nonholonomic systems with reversal have been found in recent years (see,
e.g., [8, 12]).

7)Nowadays the stability of a bicycle was analyzed by A.Ruina [62, 82] et al., who corrected some misprints and
errors in the above-mentioned works. As a result, they obtained opposite conclusions and thus “shook” the
classical bicycle theory, which linked stability with the gyroscopic effect. An explanation was found in nontrivial
effects of nonholonomic systems, for example, asymptotic stability in rattleback dynamics.
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An error similar to that of Lindelöf was also made by E.Crescini (1889) [39] when he integrated
the equations for a heavy body of revolution rolling on a horizontal plane8) using the Hamilton –
Jacobi method.

Slightly later, the erroneous results (including those of Lindelöf) obtained in the description of
a body of revolution rolling on a plane were analyzed in detail by D. Korteweg (1899) [64], who
illustrated the impossibility of eliminating nonholonomic constraints in a free Lagrangian using a
model example (among erroneous works he also mentioned the work of P.Molenbrock (1890) [83]
and G. Schouten (1899) [102]). Korteweg attached particular importance to the work of
A. Vierkandt [112], in which a correct method for obtaining the equations of motion is used.
Korteweg himself [63] reduced the problem of a circular heavy disk on the plane to a hypergeometric
equation and noted9) that in the case of a homogeneous disk the problem had been solved by
Vierkandt10).

P. Appel corrected the above-mentioned error contained in his treatise in the later editions. In
doing so, he obtained a compact (and universal) form of equations, for both holonomic and nonholo-
nomic mechanics, which contain the energy of accelerations (prior to Appel, this form of equations
was investigated by Gibbs [50], but without explicit consideration of nonholonomic constraints).
As regards the Appel equations, one should agree with the opinion of G. Hamel (1904) [53]:

“The second attempt of Appel, when he replaces the living force T with a new acceleration function S, is
methodically not very good either, despite its aesthetic merits. First one has to perform a transformation of
the second derivatives of coordinates, because of this the living force T completely loses its central role, so
that a deep abyss separates systems with nonholonomic and holonomic conditional equations, and this does
absolutely not correspond to the difference between both problems. In fact, holonomic conditional equations
are only a special case of nonholonomic ones. . . ”

We note that when writing equations of motion for specific problems (involving, for example,
the rolling motion), one usually uses equations with undetermined multipliers or in quasi-velocities,
which in the general form were obtained by Hamel (1904) [53] (who continued the studies carried
out by L.Boltzmann). Hamel himself suggested that the resulting form of equations be called the
Euler – Lagrange equations, and this name is often used in various textbooks.

As an interesting historical fact we note that when writing the extensive work [53], Hamel studied
the Lie theory quite well and mastered the technique of obtaining the equations of motion in a form
that was very modern at that time. In particular, in the above-mentioned work Hamel presented
the general form of dynamical equations for nonholonomic systems, which in the case of integrable
constraints turns into Poincaré equations on the Lie group, which can be applied only to holonomic
systems and were obtained by Poincaré (1901) [91] (only three years before publication of Hamel’s
work, which contains no reference to Poincaré).

Various forms of equations, which differ in the method of eliminating undetermined multipliers,
were obtained by V.Volterra (1897) [113] and P. V.Voronets (1901) [114] (in contrast to Hamel,
they did not use the formalism of Lie theory and were not well familiar with its tools). Moreover,
it turned out that the Volterra equations contain some errors (analogous to those of Lindelöf)
which arose due to the substitution of constraint equations into the kinetic energy and therefore
apply only to holonomic systems (for more on such a substitution in nonholonomic mechanics,
see [13]). In the literature one can also find equations in the form due to G. Maggi (1901) [80],
I. Tzénoff (1920) [58], Tatarinov and others, which are also used periodically depending on the
problems under consideration and the preferences of researchers.

8)By the way, the work of Crescini was communicated by V.Volterra, who also made errors in deriving nonholonomic
mechanics equations.

9)From the modern point of view, the qualitative analysis made by Vierkandt is much more important than the
reduction to a hypergeometric equation.

10)Here we are confronted with a really interesting historical fact that the studies of the rolling motion of a disk
appeared one after another within a period of 11 years in Germany (Vierkandt), Holland (Korteweg), Russia
(Chaplygin), France (Appel), and England (Gallop). The studies by Vierkandt were published in a popular
journal, the studies by Lindelöf and Chaplygin were published in little-known journals, but, in spite of the
above-mentioned virtues, the work of Vierkandt remained almost unnoticed.
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Fig. 3. Georg Karl Wilhelm Hamel (1877–1954) Fig. 4. Sergey Alexeyevich Chaplygin (1869–1942)

Remark. Later, in his textbook on theoretical mechanics G.Hamel (1940) [54] compared various
forms of the equations of motion due to Voronets, Tzénoff and Volterra and showed that all of them
can be obtained from his general approach.

The development of nonholonomic mechanics was stimulated already in that period mainly by
a successful solution of appropriate problems elucidating (qualitative) differences of the motion of
nonholonomic systems from the motion of holonomic systems. The most important studies in this
vein were, of course, those of S.A. Chaplygin (1903 and 1912) [35, 36], which deal with specific
nonholonomic constraints often encountered in applications, namely, the Chaplygin constraints:

ẋi =
k∑

j=1

aij(q)q̇j , i = 1, . . . ,m

where q = (q1, . . . , qk) and x = (x1, . . . , xm) are the generalized coordinates on configuration space
(of dimension n = k + m).

In the case where the problem reduces to a system with two degrees of freedom (i.e., k = 2)
and the Lagrangian of the free system does not explicitly depend on the coordinates x, Chaplygin
devised the reducing multiplier method, which after rescaling time makes it possible to represent
the equations of motion in Hamiltonian form. We note that Chaplygin considered the motion of a
Chaplygin sleigh11) as an example illustrating the reducing multiplier method.

Remark. It turned out that the reducing multiplier method allows one to represent the equations
of motion in Hamiltonian form after rescaling time [16] in another well-known Chaplygin problem
of a dynamically asymmetric ball rolling on a horizontal plane.

Remark. As a historical remark we note that, although the Chaplygin sleigh is tradionally linked
to the work of Chaplygin (1912) [36] and Carathéodory (1933) [31], it was considered somewhat
earlier by A.Brill (1909) [29] as an example of the mechanism of a nonholonomic planimeter.

As an interesting fact, we note that in writing the equations of motion for specific nonholo-
nomic problems Chaplygin used the principles of dynamics rather than various general forms of
nonholonomic mechanics equations.

A distinctive feature of the work of Chaplygin is that he analyzed the equations by applying
various geometric methods that existed at that time and by elucidating the geometric nature of
motion (his work on the motion of a dynamically asymmetric ball is an illustrative example).

We also point out the Suslov problem (1900) [108] of the motion of a rigid body about a
fixed point subject to a nonholonomic constraint, which was considered in his well-known treatise
on theoretical mechanics, which was republished several times and still enjoys popularity among
Russian specialists in mechanics. P.V. Voronets, a Ukrainian mathematician and scientist in the

11)In his reasoning, applied to the sleigh, he essentially used the quasi-coordinate introduced by him, which gave
rise to a debate concerning the correctness of the method [45]
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Fig. 5. Gavriil Konstantinovich Suslov (1857–1935) Fig. 6. Pyotr Vasilyevich Voronets (1871–1923)

area of mechanics found (when he was a student of Suslov) not only a new form of nonholonomic
mechanics equations, but also considered a number of examples, in particular, the problem of a
body with a flat base rolling on a sphere (1911) [119] and the problem of a body of an arbitrary
form rolling on the surface of a sphere.

In addition, Voronets must undoubtedly be credited with having applied the considerations of
nonholonomic mechanics (including a nonholonomic basis) to Hamiltonian systems. This made
it possible to considerably advance in the issues of reduction and in finding partial solutions in
the n-body problem on a plane with various potentials [120]. We note that some historical issues
concerning reduction, both in nonholonomic mechanics and in various dynamical systems, are
addressed in the review paper [17].

Much of the research at that time was aimed at studying problems concerning the representation
of general nonholonomic systems in Hamiltonian form, but this research did not lead to any signifi-
cant advances. Dautheville (1909) [40] and Quanjel (1906) [95] used the Legendre transformation for
a free system. As a result of this transformation, additional (nonholonomic) terms12) are obtained
in the equations of motion after passage to the momenta.

3. THE THIRD PERIOD: 1913–1966 (PRINCIPLES OF NONHOLONOMIC GEOMETRY)

Unfortunately, in that period, when quantum mechanics and general relativity theory were
created, the classical mechanics was pushed to the sidelines. The main focus was on the development
of nonholonomic geometry. The most significant works in this direction were those of J.A. Schouten
(1928) [103], G. Vránceanu (1936) [115], E.Cartan (1940) [32], and V.Vagner (1941) [109]. We note
that to date the methods of nonholonomic geometry have found no application in nonholonomic
mechanics 13).

We note that the development of geometric methods has contributed to the creation
of the Rashevsky –Chow theorem, which was independently formulated in the works of
P. K.Rashevsky (1938) [96] and W. L. Chow (1939) [38] and was of great importance for control
theory.

Apparently, among the theoretical works on nonholonomic geometry only the work of V. Vagner
is of interest for the study of dynamics. His work presents a correct realization of constraints in the
Suslov problem, as opposed to the erroneous realization presented by Suslov himself [107].

12)Regarding the work of Pöschl [94], submitted to Comp. Rend. Acad. Sci. by Appel, we note that it is concerned
not with nonholonomic systems, but with the nonholonomic basis in Hamiltonian systems (i.e., these equations
are the Poincaré equations [91] transformed to Hamiltonian form; as is well known, this transformation was
performed by N.G. Chetaev). In contrast to Poincaré and Chetaev, Pöschl [94] was not well familiar with Lie’s
group formalism and, like Volterra [114], obtained similar equations, which in the general case are also inapplicable
to nonholonomic constraints, by using, as Hamel put it, a forbidden operation of substituting constraints into
the Lagrangian of the free system.

13)Nevertheless, there exist modern works (see, e.g., Koiller [61]) whose authors believe in the possibility of its
further application.

REGULAR AND CHAOTIC DYNAMICS Vol. 21 No. 4 2016



464 BORISOV et al.

A. D. Billimovich (1914) [7] considered nonstationary constraints. We note that, generally
speaking, by increasing the dimension of the phase space one can reduce nonstationary constraints
to stationary constraints, but they can be considered separately. The nonholonomic Billimovich
pendulum is a valuable example, which is still encountered in the literature.

Formally the issue of the existence of an invariant measure was investigated by C.Blackall
(1941) [10]. In particular, he gave the simplest model example of a nonholonomic system in which
there is no smooth invariant measure.

We note that in that period the correctness of the variational principle and Hamilton’s principle
was discussed and the principles of Hölder, Suslov and Foss (see, e.g., the work of Capon [30])14)
were considered. However, all these attempts lead only to a formal representation of Hamiltonian
analogs of the equations of motion, but such a representation has no dynamical content. In this
connection, we mention the work of Eden (1951) [44], communicated by Dirac (before he created
general Hamiltonian mechanics), which is erroneous, although it is fairly difficult to explicitly verify
the calculations in [44].

Remark. Among formalistic works of later periods in which a fruitless generalization of the
Hamiltonian methods in nonholonomic mechanics was performed are [47, 90, 110, 117]. What all
these works have in common is that they contain no examples. Just as in the case with the classical
problem of a coin rolling on a plane, the result of the study of a particular problem, as carried out
in [110], is that the use of the Hamilton – Jacobi method allows one to find only steady motions. A
similar point of view is expressed in [101].

In spite of a large number of formal works, we note that in that period various versions of the
problem of the dynamics of a wheeled vehicle began to be considered. For example, B. Stückler (1952
and 1955) [105, 106] considered two models of a motor-car with a fixed rear axle. In one of these
models, the front axle rotates freely about the normal to the plane, and in the other model, due to
the trapezium mechanism (Jeantaud’s mechanism), the wheels are always parallel to each other,
but are not normal to the axis of the axle. A special feature of these works is analysis of reactions
and the application of the Hamel equations.

A stability analysis of the simplest wheeled vehicle consisting of two two-wheelers (later called
roller-racer) was performed by I.Rocard (1959) in his well-known book [97]. By the way, he
found out that the rectilinear motion exhibits asymptotic instability, which is characteristic of
nonholonomic systems. In 1964, O.Bottema [23] analyzed the trajectories of a vehicle with a fixed
rear axle and presented particularly remarkable solutions.

Remark. Recent studies on the dynamics of wheeled vehicles were initiated mainly by robotic
developments (see, e.g., [21, 27]).

Remark. We consider in more detail constraints nonlinear in velocities. The best-known example
was given by Appel (1911) [3]; afterwards it was considered by Hamel (1978) [54]. However, this
example, due to Appel and Hamel, is not quite convincing, since it arises as a result of a passage
to the limit from linear constraints. The realization of nonlinear constraints is discussed in detail
in the paper by E.Delassus (1911) [41], in which he drew a not quite convincing conclusion that
nonlinear constraints can always be realized using linear constraints.

Later, N.G. Chetaev (1932) [37] posed the problem of agreement between the Gauss principle
and the general formalism of nonholonomic mechanics for systems with nonlinear constraints. The
point is that in this case the d’Alembert – Lagrange principle and the Gauss principle lead to
different results. For this reason, Chetaev introduced the notion of possible displacement so as to
simultaneously match both principles.

We note that the constraints nonlinear in velocities arise in a formal way, in postulating the
Gauss principle in the Nosé –Hoover mechanics (see, e.g., [93]), which is one of the branches of
molecular dynamics.

14)We note that attempts are still being made to generalize various facts of Hamiltonian mechanics to nonholonomic
systems (Hamilton – Jacobi theory) [89]
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4. THE FOURTH PERIOD: 1967–1984 (THE BOOK OF YU. I.NEIMARK
AND N.A. FUFAEV)

The next stage in the development of the theories of nonholonomic systems is closely related to
the book of Yu. I.Neimark and N. A.Fufaev (1967) [86], which was initiated by various applications
in nonholonomic mechanics (for example, by the phenomenon of shimmy wheels in airplanes). For
several years the authors of the above-mentioned book held seminars on nonholonomic systems in
Nizhny Novgorod, at the well-known school of the Academician Andronov School for Nonlinear
Oscillations and Bifurcation Theory. The qualitative analysis methods (which were devised there)
were collected in this book, which gained popularity almost immediately (it was published in Russia
and in the USA). The book [86], in addition to analysis of elementary problems, outlines new avenues
of research and raises questions concerning the correctness of permutation relations, the realization
of constraints (analysis of Carathéodory’s error concerning the impossibility of realizing constraints
using forces of viscous friction), and raises the question of specific equilibria of nonholonomic
systems (of genus 2 according to Bottema).

Fig. 7. Yuri Isaakovich Neimark (1920–2011) Fig. 8. Nikolai Alexeyevich Fufaev (1920–1996)

Perhaps the only shortcoming of the book [86] is that its authors were experts primarily in
mechanics, so that from the viewpoint of mathematical formalism some of the problems discussed
by the authors are related to the inaccuracy of mathematical definitions. In particular, they discuss
the issue of permutation relations, which is simply due to the absence of rigorous definitions. In
this sense, their criticism of the work of Volterra is incorrect; although the work of Volterra is
erroneous (his equations are inapplicable to nonholonomic systems), but it is erroneous in quite
other respects. The Volterra equations hold for Hamiltonian systems written in quasi-velocities,
but in the presence of nonholonomic constraints.

The approach of the authors to permutation relations is set forth in detail in Section A.2 in
the Appendix. This approach is actually a more modern exposition of the viewpoint of Neimark
and Fufaev. On the other hand, we mention the studies [28, 79, 81], in which the representation of
permutation relations is too complicated by a redundant formalism.

Remark. We note that the author of the review [74] singles out the paper by A.M. Vershik and
L.D. Fadeev (1972) [111] as particularly important. In our opinion, this is not justified, since the
paper [111] contains nothing new. In particular, the remark that in the case of homogeneous
constraints the energy integral is preserved is well known from classical works and is due, for
example, to Hertz. The paper was of importance most probably for the development of formal
works rather than for the methods of nonholonomic mechanics.

Historical Comments on the Stability in Nonholonomic Systems

It is well known that the critical points of potential energy are equilibrium positions of both
holonomic and nonholonomic systems. They are called equilibrium positions of genus 1. In this
case, Korteweg (1899) [64] showed that the analysis of the linear stability of nonholonomic systems
actually reduces to the investigation of the stability of holonomic systems obtained by linearizing
the constraints. As an illustration, he considered the Kerkhoven –Wythoff problem, in which the
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convex side of one hemisphere lies on a plane, and the other hemisphere rests on the upper half-plane
of the first hemisphere. Afterwards this example was used in the textbook by E.T.Whittaker [118].

V. V.Rumyantsev [60, 100] and his students developed Chetaev’s idea about the creation of a
theory of stability of nonholonomic systems for equilibrium positions of genus 1. They obtained
general results concerning generalizations of the Lyapunov and Routh theorems to nonholonomic
systems. However, such studies do not grasp the essential specificity of nonholonomic systems. In
this connection, we mention the work of V.V. Kozlov [70], in which the main results concerning
inversions of the Legendre –Dirichlet theorem are formulated and the role of the positions of
equilibrium of genus 2 in nonholonomic mechanics is pointed out.

We note that the positions of equilibrium of genus 1 are, as a rule, isolated and characteristic
of Hamiltonian systems. The specificity of nonholonomic systems manifests itself in positions of
equilibrium of genus 2, which were first found by Bottema [22]. They are not related to the minimum
of potential energies, and their origin is closely related to the nonintegrability of constraints. We
note that the positions of equilibrium of genus 2 are, as a rule, asymptotically stable (or unstable).

The positions of equilibrium of genus 2 were analyzed by Kozlov [69], but without examples.
Nevertheless, even nowadays the geometry of these positions of equilibrium is still poorly
understood, both from the theoretical point of view and from the point of view of applications.

APPENDIX.
THE D’ALEMBERT – LAGRANGE PRINCIPLE AND PERMUTATION RELATIONS

In the literature devoted to nonholonomic mechanics, considerable attention is given to various
“theoretical justifications” of the equations of motion. As a rule, all arguments are based on the
d’Alembert –Lagrange principle (i.e., the condition of ideal constraints). In this connection, we
briefly recall how this principle arises in systems with nonholonomic constraints, namely, that it is
a natural generalization (axiomatization) of the model of undeformed bodies rolling on each other
without slipping.

In addition, we also discuss the so-called problem of a “correct choice” of permutation relations
in nonholonomic mechanics, which seems to play a central role in some publications. It turns out
that in this case the problem is not to find out what permutation relations are correct, but to
correctly treat the notation appearing in them. The way one interprets the notation determines the
meaning and the area of application of permutation relations themselves. We give here a modern
description of the historically first interpretation, which was presented by G. Hamel (for other
discussions, see [86]).

A.1. Replacement of Constraints with Reaction Forces in the Case of Rolling without Slipping

1. First of all, we recall how the influence of some geometric constraint is taken into account in
the dynamics of a material point whose position is given by the radius vector r = (x1, x2, x3):

f(r) = 0. (A.1)

As is well known, in this case, instead of motion with a constraint, one considers the problem of a
free particle acted upon by the reaction force N orthogonal to the surface (A.1). In this case, the
Newton equation is written as

mr̈ = F + N , (A.2)

where m is the mass of the point and F are the given external forces.
The acceleration of the particle r̈ and the value of the reaction force |N | are found from Eq. (A.2)

and the second derivative of the constraint

f̈(r) =
(

r̈,
∂f

∂r

)
+

∑

i,j

∂f

∂xi∂xj
ẋiẋj = 0. (A.3)

This approach implies that the reaction N depends only on r, ṙ and the constraint (A.1) acts as
an invariant relation of the resulting equations of motion.
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In the presence of external forces the choice of the direction of the constraint reaction is, generally
speaking, ambiguous. For example, the author of [1] uses a definition of the reaction forces directed
along a straight line connected with some projective center. The requirement of orthogonality
of the reaction is a natural generalization of the situation where the particle is fastened on a
nonstretchable thread (spherical pendulum) so that in this case the reaction is directed along the
thread. Generally speaking, the choice of reaction forces can essentially depend on the realization
of the constraints [65, 66, 71].

In the form (A.2), (A.3) it is extremely inconvenient to derive equations of motion for many-
particle systems and in the presence of many constraints. In this case, to write the equations of
motion, one uses, as a rule, the d’Alembert – Lagrange principle. For example, in the case of one
particle, Eqs. (A.2) can be represented as

(mr̈ − F , τ ) = 0,

where τ is an arbitrary vector tangent to (A.1). This implies, in particular, that the work of the
reaction forces along possible displacements is zero.

In the general case, when the motion of N points in the presence of geometric constraints is
considered, possible configurations are defined by some manifold M (configuration space) embedded
in the space of positions of the free system R

3N .
We denote the local coordinates on M in a standard way as q = (q1, . . . , qn), so that the radius

vectors of points are defined by them uniquely as ri(q), i = 1, . . . , N , and their velocities are given
by

ṙi =
n∑

i=1

∂ri

∂qk
q̇k.

The kinetic energy is defined as a function on TM by the relation

T (q, q̇) =
1
2

N∑

i=1

mi(ṙi, ṙi).

The generalized forces Q = (Q1, . . . , Qn) are found from the relation
N∑

i=1

(Fi, dri) =
n∑

k=1

Qkdqk,

where Fi is the force acting on the i-the mass. Then the condition that the work of the reaction
forces for possible displacements be equal to zero leads to the equations

(
∂T

∂q̇i

)·
− ∂T

∂qi
− Qi = 0, i = 1 . . . n.

2. We now pass to the case where one imposes restrictions on the velocity components which
cannot be reduced to a set of geometric constraints (i.e., the constraints are nonholonomic). An
example on which all possible generalizations are based is the rolling of one body on another. In
this case the axiom of replacement of nonholonomic constraints with reaction forces is based on the
model of rolling of a rigid body on the surface, under the assumption that the contact occurs at
one point (the contact area is equal to zero). At this point the body is acted upon by the reaction
force, which in the general case is not orthogonal to the supporting surface.

Consider the problem of a heavy rigid body rolling on a horizontal plane without slipping. The
corresponding nonintegrable (nonholonomic) constraint implies that the velocity of the point of
contact of the body with the plane is zero. This condition can be written as

v + ω × r = 0, (A.4)

where r is the vector joining the center of mass G and the point of contact P , and v and ω are
the velocity of the center of mass and the angular velocity of the body, respectively (see Fig. 9).
In what follows, all vectors are assumed to be projected onto the axes rigidly attached to the rigid
body.
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Let us write the equations to change the body’s linear momentum and angular momentum
relative to the center of mass G (Fig. 9) in the coordinate system attached to the body as follows:

d

dt
(mv) − mv × ω + mgγ = N ,

d

dt
(Iω) − Iω × ω = r × N ,

(A.5)

where N is the reaction force at the point of contact P , m is the mass of the body, g is the free fall
acceleration, I is the tensor of the moments of inertia of the body relative to the center of mass,
and γ is the normal to the plane.

Fig. 9. A rigid body on a plane.

The problem is that when writing the equations of motion (A.5) describing the rolling motion
of a rigid body on an absolutely rough surface, one simultaneously uses two independent ideas.

1. Representation of the equations of motion in quasi-velocities, which are the components of
the system’s velocity in the nonholonomic basis of the vector fields (the fact that the basis
is nonholonomic has no direct bearing on the nonholonomicity of constraints, in particular,
such a basis is widely used in Hamiltonian mechanics).

2. Replacement of constraints with reaction forces in such a way that the (local) d’Alembert –
Lagrange principle is realized, i.e., the work of the reaction forces vanishes.

Consider in detail each of these ideas separately. To do this, we first derive the equations of
motion of the rigid body in quasi-velocities without taking constraints into account and then, using
them, we find out how the reaction forces can be obtained in the case of rolling.

Remark. We note that the axiom of replacement of constraints with reaction forces is not the
only possible axiom. For example, in control theory, the exclusion of constraints gives rise to
undetermined multipliers, which are not forces, but momenta (or, in this case, the reaction forces
can be said to depend on accelerations).

A.2. Equations of Motion in Quasi-velocities and Permutation Relations

As is well known, for a mechanical system on which only geometric constraints are imposed,
the equations of motion can be represented as an equality in which the variational (Lagrangian)
derivative of the Lagrangian function is equal to zero:

(
∂L(q, q̇)

∂q̇i

)·
− ∂L(q, q̇)

∂qi
= 0, i = 1, . . . , n,

where q = (q1 . . . qn) are the generalized coordinates of the system which uniquely parameterize all
possible configurations of the system (taking into account all constraints), and q̇ = (q̇1, . . . , q̇n) are
the corresponding generalized velocities. That is, q are the local coordinates of configuration
space M.
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This form of equations implies that the trajectories of the mechanical system q(t) coincide with
the extremals of the variational problem

δ

t2∫

t1

L(q, q̇)dt = 0.

We now find out how the variational derivative of the Lagrangian function is written if we
parameterize the generalized velocities of the system by quasi-velocities Ω = (Ω1 . . . Ωn), which are
related to the initial velocities by the linear transformation:

q̇i =
∑

α

ΩαEαi(q).

Note that in the general case the vector fields Eα(q) =
(
Eα1(q), . . . , Eαn(q)

)
do not commute

relative to the Lie bracket:

[Eα,Eβ] =
∑

σ

cσ
αβ(q)Eσ.

In this case, they are called the nonholonomic basis of the tangent bundle TM.
Suppose that for some curve q0(t), t ∈ [t1, t2] we are given a (one-parameter) smooth family of

variations qε(t), ε ∈ [−ε0, ε0] with the fixed ends

qε(t1) = q0(t1), qε(t2) = q0(t2)

for all ε ∈ [−ε0, ε0]. We denote the vector field corresponding to differentiation along the parameter
t as v and the vector field corresponding to differentiation along ε as u (it is also called the vector
field of variation):

v
(
f
(
qε(t)

))
=

d

dt
f
(
qε(t)

)
, u

(
f
(
qε(t)

))
=

d

dε
f
(
qε(t)

)
.

By construction, these vector fields commute (due to the permutability of differentiations with
respect to t and ε):

[u,v] = 0. (A.6)

If these vector fields are written in the coordinate basis

v =
∑

i

vi(q)
∂

∂qi
, u =

∑

i

ui(q)
∂

∂qi
,

then from (A.6) we obtain

u(vi) − v(ui) = 0, i = 1, . . . , n. (A.7)

At the same time, in standard physical and mechanical terminology the components of these fields
are denoted as

dqi = vidt, δqi = uidε.

Therefore, Eqs. (A.7) can be represented as

δdqi − dδqi = 0, i = 1 . . . n. (A.8)

If we now write the same fields in the nonholonomic basis

v =
∑

α

Ωα(q)Eα, u =
∑

α

uα(q)Eα,

then relation (A.6) leads to the equalities

u(Ωα) − v(uα) +
∑

β,γ

uβΩγcα
βγ = 0, α = 1 . . . n. (A.9)
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In mechanics, one uses the notation used by Hamel in [53] for the corresponding components of the
vector fields:

dθα = Ωαdt, δθα = uαdε.

In this case, we obtain the well-known permutation relations in standard form

dδθα − δdθα =
∑

β,γ

cα
βγδθβdθγ . (A.10)

It should be kept in mind that the quantities qi in (A.8) have a physical meaning of their own (as
generalized coordinates), therefore, d and δ can be regarded as operations of differentiation and
variation. In Eqs. (A.10) the symbols θα cannot be regarded as functions in the general sense, only
the quantities dθα and δθα have a meaning, therefore, one cannot speak to the full extent of the
permutability of differentiation and variation operations. We now express the Lagrangian function
in terms of the generalized coordinates q and quasi-velocities:

L̂(q,Ω) = L(q, q̇)
∣∣∣
q̇=
�

ΩαEα

.

For the corresponding partial derivatives the following relations hold:

∂L̂

∂qi
=

∂L

∂qi
+

∑

k,α

∂L

∂q̇k
Ωα

∂Eαk

∂qi
,

∂L̂

∂Ωα
=

∑

k

∂L

∂q̇k
Eαk.

Using them, we find the formula for variation of the Lagrangian:

δL̂ = ε

⎡

⎣
∑

α

⎛

⎝Eα(L̂) +
∑

β,γ

cγ
βαΩβ ∂L̂

∂Ωγ
−

(
∂L̂

∂Ωα

)·
⎞

⎠ uα +

(
∂L̂

∂Ωα
uα

)·
⎤

⎦ ,

Eα(L̂) =
∑

k

∂L̂

∂qk
Eαk.

This yields the equations of motion in nonholonomic (i.e., coordinate-free) basis:
(

∂L̂

∂Ωα

)·

− Eα(L̂) =
∑

β,γ

cγ
βα

∂L̂

∂Ωγ
. (A.11)

Thus, it can be seen that the permutation relations (A.9) and (A.10) do not have a direct bearing
on nonholonomic constraints, but arise when the variational derivative of the Lagrangian is written
in the coordinate-free basis of vector fields.

For example, for the motion of a rigid body in a potential field (without constraints) we choose
as generalized coordinates the Cartesian coordinates of the center of mass of the body relative to
the fixed axes (x1, x2, x3) and the Euler angles (θ, ϕ, ψ) defining the rotation of the body relative to
the center of mass. As quasi-velocities in Eqs. (A.5) we have chosen the projections of the velocity
of the center of mass and the angular velocity onto the axes attached to the body v = (v1, v2, v3),
ω = (ω1, ω2, ω3); they are related to the generalized velocities by

ẋi =
∑

j

Qijvj,

θ̇ = ω1 cos ϕ − ω2 sinϕ, ψ̇ = ω1
sin ϕ

sin θ
+ ω2

cos ϕ

sin θ
,

ϕ̇ = −ω1
cos θ sin ϕ

sin θ
− ω2

cos θ cos ϕ

sin θ
+ ω3,

||Qij || =

⎛

⎜⎜⎜⎝

cos ϕ cos ψ−cos θ sin ψ sin ϕ cos ϕ sin ψ+cos θ cos ψ sin ϕ sin ϕ sin θ

−sinϕ cos ψ−cos θ sin ψ cos ϕ −sinϕ sin ψ+cos θ cos ψ cos ϕ cos ϕ sin θ

sin θ sin ψ − sin θ cos ψ cos θ

⎞

⎟⎟⎟⎠ .
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The kinetic energy is represented in quasi-velocities as follows:

T =
1
2
m(v,v) +

1
2
(ω, Iω),

where I is the tensor of inertia of the body relative to the center of mass. In addition, we restrict
ourselves to the case where the potential of external forces depends only on x3, θ, ϕ (i.e., it possesses
axial symmetry about the space-fixed axis Ox3). In this case, using the vector

γ = (sin ϕ sin θ, cos ϕ sin θ, cos θ),

we can represent the equations of motion (A.11) as
(

∂L̂

∂v

)·

− ∂L̂

∂x3
γ =

∂L̂

∂v
× ω,

(
∂L̂

∂ω

)·

− ∂L̂

∂γ
× γ =

∂L̂

∂ω
× ω +

∂L̂

∂v
× v,

L̂ = T − U(x3,γ).

(A.12)

These equations are the same as Eqs. (A.5) for N = 0 and the potential

U = mgx3. (A.13)

A.3. The d’Alembert –Lagrange Principle for Systems with Nonholonomic Constraints

The vector constraint equation (A.4) is equavalent to three scalar equations

fμ(q,v,ω) = 0, i = 1, 2, 3,

where fμ are the components of the vector f = v + ω × r and q = (x1, x2, x3, θ, ϕ, ψ) are the
generalized system’s coordinates in terms of which the vector r is expressed. Using the results
of the previous section, we can rewrite Eqs. (A.5) in the form

(
∂L̂

∂v

)·

− ∂L̂

∂v
× ω − ∂L̂

∂x3
γ =

3∑

μ=1

Nμ
∂fμ

∂v
,

(
∂L̂

∂ω

)·

− ∂L̂

∂ω
× ω − ∂L̂

∂v
× v + γ × ∂L̂

∂γ
=

3∑

μ=1

Nμ
∂fμ

∂ω
,

where L̂ is defined by (A.12) with the potential (A.13).
This allows us to draw the following conclusion:

for the model describing the rolling motion of a rigid body without slipping on an undeformable
surface, a natural generalization to the case of arbitrary constraints of the form

fμ(q,Ω) = 0, μ = 1, . . . ,m < n

is provided by general equations of motion (in the case of potential forces) in the form
(

∂L̂

∂Ωα

)·

− Eα(L̂) =
n∑

β,γ=1

cγ
βα

∂L̂

∂Ωγ
+

m∑

μ=1

Nμ
∂fμ

∂Ωα
, (A.14)

q̇i =
n∑

α=1

ΩαEαi(q).

We use the notation proposed in [5] for the variational (Lagrangian) derivative of the function L:

[L̂]α =

(
∂L̂

∂Ωα

)·

− Eα(L̂) −
∑

cγ
βαΩβ ∂L̂

∂Ωγ
, α = 1 . . . n.

REGULAR AND CHAOTIC DYNAMICS Vol. 21 No. 4 2016



472 BORISOV et al.

Remark. In the coordinate basis, i.e., when Ωα = q̇α, we obtain accordingly

[L]α =
(

∂L

∂q̇α

)·
− ∂L

∂qα
.

For constraints linear in the velocities∑

α

âμα(q)Ωα = 0, μ = 1 . . . m,

the equations of motion (A.14) can be obtained from the d’Alembert –Lagrange principle:

the variational derivative of the Lagrangian function vanishes along the vector field of
variations u =

∑
α

uαEα satisfying the constraint equation:

∑

α

[L̂]αuα = 0,
∑

α

âμα(q)uα = 0, μ = 1 . . . m. (A.15)

In solving the system (A.15) by the method of undetermined multipliers we obtain Eq. (A.14),
where the reaction forces Nμ, μ = 1 . . . m coincide with the undetermined multipliers.

If in Eqs. (A.15) we pass to the coordinate basis and assume that u =
∑
i
(δqi) ∂

∂qi
, then we obtain

nonholonomic constraints and the d’Alembert – Lagrange principle in standard form
∑

i

aμi(q)q̇i = 0,

∑

i

[(
∂L

∂q̇i

)·
− ∂L

∂qi

]
δqi = 0,

∑

i

aμi(q)δqi = 0,

where aμi =
∑
α

âμαE−1
αi .

Remark. In mechanics the vector δq = (δq1, . . . , δqn) is assumed to be (infinitely) small and is
called the virtual displacement of the system. Then the expression

δA =
∑

i

[(
∂L

∂q̇i

)·
− ∂L

∂qi

]
δqi

has the meaning of work along this displacement. Therefore, the d’Alembert – Lagrange principle
is often formulated as follows:

the work of reaction forces along virtual displacements satisfying the conditions
∑
i

aμiδqi = 0

vanishes.

As is well known, the system of equations (A.14) or (A.15) (under certain natural conditions of
nondegeneracy of the Lagrangian function and the constraints) is consistent and defines the vector
field on the submanifold

Mn−m = {(q,Ω)|fμ(q,Ω) = 0, μ = 1 . . . m} ⊂ TM.

It should also be borne in mind that if no additional restrictions are imposed, then for the
variations of the path q0(t) the “deformed” path

qε(t) = q0(t) + εu(t) + . . .

does not satisfy the constraint equations. Hence, in the general case the solutions of the sys-
tem (A.14) or (A.15) are no extremals of the functional

t2∫

t1

Ldt.
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inneren Kräften, Math. Ann., 1907, vol. 63, no. 3, pp. 387–412.

121. Zegzhda, S. A., Soltakhanov Sh. Kh., and Yushkov, M. P., The Equations of Motion of Nonholonomic
Systems and Variational Principles of Mechanics. The New Class of Control Problems, Moscow:
Fizmatlit, 2005 (Russian).

REGULAR AND CHAOTIC DYNAMICS Vol. 21 No. 4 2016


		2016-07-26T15:15:01+0300
	Preflight Ticket Signature




