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Abstract—The classical question whether nonholonomic dynamics is realized as limit of
friction forces was first posed by Carathéodory. It is known that, indeed, when friction forces
are scaled to infinity, then nonholonomic dynamics is obtained as a singular limit.
Our results are twofold. First, we formulate the problem in a differential geometric context.
Using modern geometric singular perturbation theory in our proof, we then obtain a sharp
statement on the convergence of solutions on infinite time intervals. Secondly, we set up
an explicit scheme to approximate systems with large friction by a perturbation of the
nonholonomic dynamics. The theory is illustrated in detail by studying analytically and
numerically the Chaplygin sleigh as an example. This approximation scheme offers a reduction
in dimension and has potential use in applications.
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1. INTRODUCTION

Nonholonomic dynamics is a classical subject in mechanics that has seen an increase of activity in
the last decades with people studying conserved quantities, symmetries and integrability, numerical
integrators, as well as various toy problems with intricate behavior — the rattleback and tippe top
being the most famous ones — and has many applications in engineering sciences such as robotics,
see, e.g., [4, 13].

We consider the fundamental question whether nonholonomic dynamics is realized as the
idealization, or limit, of large friction forces. Our main results are twofold. First, we reprove
previous results by Brendelev [8] and Karapetian [20] that answer the question in the affirmative,
but we treat the problem in a differential geometric setting, see Theorem 1. Our use of geometric
singular perturbation theory provides an improved statement on the convergence of solution curves
on infinite time intervals. The examples in Section 3 show that our result in general is sharp.
Secondly, we obtain an approximation scheme for the large friction dynamics by an expansion in
the singular perturbation parameter. This allows modeling this nonideal, large friction dynamics
on the reduced nonholonomic phase space with a modification term added to the nonholonomic
system. This has potential applications for simplified modeling of systems where some slippage
occurs, e.g., in explaining tippe top inversion [9] as well as in engineering sciences, such as control
of robots or submerged vehicles where slipping/drift may become important, see, e.g., [17, 33].
As an example, we apply this approximation scheme to the Chaplygin sleigh, see Section 7.1 and
Figs. 7 and 8.
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1.1. Realizing Constraints as Idealizations

Constraints in mechanical dynamical systems should often be seen as simplifying idealizations
of more intricate underlying models. Examples are ubiquitous. A pendulum can be modeled as a
point mass moving on a circle — or a sphere in 3D — under gravity, but in physical reality, the
constraint of staying on the circle is only approximately realized by a very stiff rod that connects
the mass to the point of suspension. A rigid body can be considered an approximation of a large
number of atoms, or as a continuous medium with a strong interaction potential that keeps the body
rigid. Finally, a smooth, convex body rolling on a surface without slipping, or a figure skater sliding
without sideways movement are examples of the idealization of friction forces, and are modeled by
nonholonomic mechanics.

The examples above show how both holonomically and nonholonomically constrained systems
can be considered idealizations of larger, unconstrained systems under strong potentials or friction
forces. On the other hand, the dynamics for constrained systems is conventionally postulated
to be given by Lagrange’s variational principle (which is equivalent to Newton’s laws in the
unconstrained case) together with d’Alembert’s principle that reaction forces do no work along
virtual displacements that satisfy the constraints. Thus, a natural question is whether these two
different viewpoints yield corresponding and experimentally correct equations of motion for a given
system.

In this paper we revisit the question whether friction forces can realize nonholonomically1)

constrained systems. That is, when we consider a mechanical system with friction forces acting
in only some of the directions and then scale this friction to infinity, do we recover nonholonomic
dynamics in an appropriate limiting sense? This question dates back at least to Carathéodory, who
considered it for the Chaplygin sleigh [10], see Section 1.2 below for a brief history.

A second, related question is whether indeed the Lagrange – d’Alembert principle for nonholo-
nomic dynamics is “correct”. The relevance of this question is indicated by the confusion in the
late 19th century about the correct formulation of nonholonomic dynamics, see [11, pp. 46–47]
and [29, Section 3.2.3] for a discussion. An alternative method to obtain equations of motion for
nonholonomically constrained systems, called “vakonomic mechanics”, was proposed by Kozlov [25].
This method produces different dynamics2), and hence raises the question which method is
“correct”. The quotes are used since such questions ultimately have to be decided by physical
experiment, and the answer may depend on the kind of system studied. For rolling mechanical
systems the general consensus seems to be that the d’Alembert principle is correct. Indeed, Lewis
and Murray verified experimentally that for a ball rolling on a turntable, nonholonomic dynamics
gives a better description than vakonomic mechanics [28]. On the other hand, vakonomic dynamics,
satisfying a variational principle, is applicable in control theory and the motion of rigid bodies
in fluids [23, 24] as cited in [17]. Alternative methods to realize nonholonomic dynamics besides
friction have been proposed too. Bloch and Rojo [7] (see also [5]) used coupling to an external
field to obtain nonholonomic dynamics3), while Ruina [32] shows that mechanical systems with
intermittent contact, i.e., with piecewise holonomic constraints, can be viewed as nonholonomic
systems in the limit as the contact switches more frequently.

Although these “correctness” questions should be decided by experiment, the idea of trying to
realize constraint dynamics from the unconstrained system using an underlying principle can offer
theoretical insights. For example, whereas nonholonomic dynamics based on d’Alembert’s principle
can be viewed as a limit of friction forces, vakonomic mechanics can be viewed as letting the
mass in the mechanical metric go to infinity along constrained directions [25]. See also [26] for a
discussion of various methods to realize constraints in dynamics and [3, Section 0.3] for a review of
the applicability of nonholonomic dynamics to sliding and rolling bodies.

1)The realization of holonomic constraints by strong potentials has been studied in [22, 31, 34] and other papers. In
that case the limit is somewhat subtle, and depends on the energy in oscillatory modes normal to the constrained
manifold.

2)Vershik and Gershkovich showed that in a generic system with nonholonomic constraints the vakonomic and
Lagrange – d’Alembert solutions are incompatible [36, Section 4.3].

3)Although the nonholonomic system appears as a slow manifold of this infinite-dimensional coupled system, the
third line in [7, Eq. (9)] seems to indicate that the fast dynamics of θ around α(x, t) is oscillatory, i.e., the normal
directions are elliptic. Thus, convergence of the limit dynamics is not clear to me.
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Showing that a fundamental principle such as friction — or large mass terms in the vakonomic
principle — can realize the constrained system provides a fundamental justification for the
constrained equations of motion as an idealized limit. But conversely, given constrained equations of
motion, it also allows one to study under precisely which conditions the underlying principle leads
to this realization. For example, in the case of friction realizing nonholonomic dynamics: instead of
linear (viscous) friction forces, do Coulomb-like forces also realize nonholonomic dynamics? In [27]
this is considered for the specific case of a homogeneous rolling ball. Finally, when the limit is
sufficiently well-behaved, e.g., in the case of linear friction, one can moreover calculate correction
terms to the idealized dynamics. For the friction limit, these represent the effect of large, but finite
friction forces, see Section 7.

1.2. A Brief Historic Overview

To our knowledge, Carathéodory [10] first explicitly addressed the question whether friction
forces can realize nonholonomic dynamics, although his starting sentence that “nonholonomic
motion in mechanics is known to be caused by friction forces” indicates that the idea is older.
His study of the Chaplygin sleigh (without attributing it to Chaplygin [12]) includes a complete
solution in quadratures and finally addresses the question whether the dynamics can be realized
by a viscous friction force. Carathéodory’s conclusion is negative, but this is due to an error in his
reasoning as discussed thoroughly in [18] (see also [30, pp. 233–237]). That is, Carathéodory fixes
initial conditions for the velocity perpendicular to the skate blade, but these are not on the slow
manifold associated to the nonholonomic dynamics. See also the exposition in Section 4, but note
that compared to [10, 18] we retain v, the velocity perpendicular to the sleigh’s skate blade, instead
of rewriting it into a second-order equation for ω, the angular velocity of the sleigh.

The realization of nonholonomic constraints by friction forces was independently shown by
Brendelev [8] and Karapetian [20]. They proved that indeed an unconstrained system with viscous
friction forces added to it will in the limit converge to the nonholonomic system whose constraint
distribution is defined by the friction forces being zero on it. The limit is understood in the sense
that solution curves of the unconstrained system converge to solutions of the nonholonomically
constrained system, uniformly on each bounded time interval [t1, T ] with 0 < t1 < T , as the friction
is scaled to infinity. Both authors used Tikhonov’s theorem [35] for singularly perturbed systems
to obtain this result in a local coordinate setting. Kozlov combined this friction limit into a larger
framework including both friction and inertial terms, obtaining both nonholonomic and vakonomic
dynamics as limits in special cases [26].

1.3. Outline and Contributions of the Paper

After the introduction, we first briefly review nonholonomic dynamics according to the
Lagrange – d’Alembert principle. In Section 3 we show how different approaches using potentials or
friction to realize the same constrained system yield qualitatively different solutions, arbitrarily close
to their respective limits. Then we start with the main part of the paper and present how friction
forces realize nonholonomic dynamics. First with the Chaplygin sleigh as an example. In Section 4
we derive its equations of motion as a nonholonomic system and in Section 5 as an unconstrained
system, but with friction added. Secondly we treat the general theory in Section 6. We show
how the Lagrange – d’Alembert equations are recovered as a limit, using modern geometric singular
perturbation theory. In keeping the exposition clear, we shall not try to attain the utmost generality.
That is, we restrict to Lagrangian systems of mechanical type and consider only time-independent,
linear friction forces. This means that we only recover linear nonholonomic constraints4). Instead,
we shall present various simple examples to illustrate some of the issues discussed above.

The first aim of this paper is to provide an accessible exposition of the problem of realizing
nonholonomically constrained systems as a limit of infinite friction forces, using the Chaplygin
sleigh as a canonical example. Secondly, we present the problem in a more geometric setting

4)Affine constraints do appear naturally, for example, for a ball rolling on a turntable. However, fully nonlinear
constraints in mechanical systems seem scarce: according to [30, pp. 213, 223–233] all known examples are
variations of the one due to Appell [1]. See also [29] for a discussion of nonholonomic constraint principles,
including nonlinear constraints.
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than [8, 20]. That is, we express the problem in a differential geometric formulation and use
geometric singular perturbation theory, as developed by Fenichel [16] and based on the theory of
normally hyperbolic invariant manifolds (abbreviated as nhim), see, e. g., [14, 15, 19]. This allows
us to phrase the results independently of coordinate charts and provide improvements on the
results obtained in [8, 20]; in particular, we can describe more precisely in what sense the solution
curves converge on positively unbounded time intervals. Moreover, persistence of the nhim allows
us to rigorously study a perturbation expansion of the nonholonomic system away from the infinite
friction limit and obtain corrections to the nonholonomic dynamics as an expansion for small ε > 0,
where 1/ε is the scale factor multiplying the friction forces. This can be used to describe systems
with large, but finite friction forces as nonholonomic systems with small correction terms. We derive
general formulas for this expansion and illustrate their use with an analytical and numerical study
of the approximation of the Chaplygin sleigh with large friction in Section 7.1. Efforts towards
obtaining such a general expansion were made in [37], which studies “creep dynamics” for a few
example systems. For the Chaplygin sleigh they find the same first-order correction term (our h(1))
to the invariant manifold Dε, but their modified equations of motion are not specified.

2. NONHOLONOMIC DYNAMICS

Let us here briefly recall the Lagrange – d’Alembert formalism for nonholonomic dynamics and
establish notation. A Lagrangian system is given by a Lagrangian function L : TQ → R, where Q
is an n-dimensional smooth manifold. We shall assume that the Lagrangian is of mechanical type,
i. e., of the form

L(q, q̇) =
1
2
κq(q̇, q̇) − V (q), (q, q̇) ∈ TQ, (2.1)

where 1
2κq(q̇, q̇) is the kinetic energy, which is given by a Riemannian metric κ on Q, and V : Q → R

is the potential energy. This implies that L is hyperregular and that the Euler –Lagrange equations
of motion have unique solutions. Let q be local coordinates on Q and let (q, q̇) denote induced
coordinates on TQ. Then the Euler – Lagrange equations are given by5)

[L]i :=
d
dt

∂L

∂q̇i
− ∂L

∂qi
= 0. (2.2)

A linear nonholonomic constraint is imposed on this system by specifying a regular distribution,
i. e., a smooth, constant rank k vector subbundle, D ⊂ TQ. Kinematically, this constraint specifies
the allowed velocities of the system, that is, a velocity vector q̇ ∈ TqQ is allowed precisely if q̇ ∈ Dq.

To specify the nonholonomic dynamics with this constraint, an extra principle has to be imposed,
as solutions of (2.2) would generally violate the kinematic constraint imposed by D. To guarantee
that the solutions satisfy the constraint, we add a constraint reaction force Fc to the right-hand
side of (2.2) according to d’Alembert’s principle, see, e. g., [11, pp. 4–6].

Hypothesis 1 (d’Alembert’s principle). The constraint forces Fc do no work along movements
that are compatible with the constraints. That is, for any (q, q̇) ∈ D we have that Fc(q, q̇) · q̇ = 0.

From now on we shall implicitly assume this principle for nonholonomically constrained systems.
This leads to the Lagrange – d’Alembert equations, which again have unique solutions. Abstractly,
these state that a smooth curve c : (t0, t1) → Q is a solution of the equations if for all t ∈ (t0, t1)

[L]
(
c̈(t)

)
∈ D0 and ċ(t) ∈ D. (2.3)

Here D0 ⊂ T∗Q denotes the annihilator of D, that is, all covectors α ∈ T∗Q such that α(q̇) = 0 for
any q̇ ∈ Dπ(α).

5)Note that [L] := [L]i dqi can intrinsically be viewed as a map from J2
0 (R; Q), the space of second-order jets of

curves in Q, to T∗Q, covering the identity map on Q.
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Let D locally be given by a set of n − k independent constraint one-forms ζa = Ca
i (q) dqi,

i.e., D = {(q, q̇) ∈ TQ|∀a ∈ [1, n−k] : ζa
q (q̇) = 0}. Then the Lagrange – d’Alembert equations in local

coordinates are of the form
d
dt

∂L

∂q̇i
− ∂L

∂qi
= λa Ca

i (q) and ζa
q (q̇) = 0, (2.4)

where λa are Lagrange multipliers that have to be solved for, and the constraint force is given by
Fc = λa ζa.

3. AN EXAMPLE OF DIFFERENT CONSTRAINT REALIZATIONS

The following toy example illustrates how different choices for realizing the same constrained
system lead to qualitatively different dynamics close to the limit. These qualitative differences are
essentially due to the fact that the limits of sending time to infinity or a singular perturbation
parameter to zero do not commute. A nice illustration of this simple fact is given by Arnold [2,
p. 65]. Consider a bucket of water with a hole of size ε in the bottom. After any fixed, finite time
t the water level remains unchanged as ε → 0, but for any ε > 0 the bucket becomes empty as
t → ∞.

We consider the mathematical pendulum in the vertical plane. We view it as a system constrained
to the circle in a holonomic, nonholonomic and vakonomic sense. That is, we view the constraint as
generated by a strong potential, strong friction forces and large inertia, and compare the dynamics
when the respective constraining terms are large but finite.

The unconstrained system is given by the Lagrangian

L(x, y, ẋ, ẏ) =
1
2
(ẋ2 + ẏ2) − g y

on TR
2, where g is the gravitational acceleration and a unit mass has been chosen.

Viewing the pendulum as a mass attached to the origin by a perfectly stiff rod, we can choose
as constraining potential

Vε(x, y) =
1
2ε

(
√

x2 + y2 − 1)2,

that is, the square distance from the constrained submanifold S1 ⊂ R
2, modeling a perfectly stiff

rod as ε → 0. We can now easily apply the results from [34] as S1 is a codimension one manifold
and the constraining potential has a constant second derivative in the normal direction. It follows
that the limit motion is precisely given by the standard pendulum on S1. Energy conservation also
makes it immediately clear that for small ε, solutions stay close to the constraint manifold S1. See
the top image in Fig. 1.

Secondly, the constrained system can be obtained from a “nonholonomic” limit of adding friction
forces in the radial direction. This can be thought of as a model for a leaf falling or “swirling down”
under gravity where the leaf surface is tangential to circles around the origin and there is a large
air resistance against perpendicular movement. We model this air resistance by the friction force
defined by the Rayleigh function

Rε(x, y, ẋ, ẏ) =
1
2ε

(
xẋ + yẏ

√
x2 + y2

)2

,

or Rε = ṙ2/(2ε) in polar coordinates. The friction force is given by F = −∂R
∂q̇ . In the limit of ε → 0

this gives rise to a nonholonomic system whose constraint distribution is actually integrable; the
associated foliation consists of concentric circles. Although the limit dynamics is the same as with
the constraining potential, the dynamics for any finite ε > 0 is qualitatively different: the leaf will
not stay close to the original submanifold S1, but slowly drift down. This can most easily be seen
for a leaf with initial conditions x = ẋ = 0. Under the combined forces of gravity and friction, it
will settle to a vertical speed of ẏ = −ε g. Hence, over long times the constraint manifold S1 is not
even approximately preserved. See the middle image in Fig. 1.
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Finally, we consider the system as a limit of adding a large inertia term in the radial direction.
That is, we add to the Lagrangian a term

I =
1
2ε

(
xẋ + yẏ

√
x2 + y2

)2

,

or in polar coordinates I = ṙ2/(2ε). In the limit of ε → 0 this realizes vakonomic dynamics,
see [25]. Since the constraint distribution is integrable, the resulting limit dynamics is equal to
the nonholonomic limit with friction and the holonomic limit with potential forces on S1. The
dynamics for finite ε resembles most closely that of the friction model, but there is a difference that
can most clearly be observed by considering again the initial conditions x = ẋ = 0. In this case the
equation for y takes the form

(
1 +

1
ε

)
ÿ = −g.

Thus, instead of settling on a slow descend, the particle accelerates downward, but with a slowed
acceleration due to the added inertial term. See the bottom image in Fig. 1.

The conclusion is that even though for all three constraint realization methods, solutions
converge on a fixed time interval to the solutions of the constraint system — which in this case is
identical for the three methods — this does not hold true on unbounded time intervals. Indeed, for
these three different methods, we see three different behaviors when t → ∞ for fixed ε > 0. With
the constraining potential the system stays uniformly6) close to the initial leaf S1 of the constraint
distribution D = {ṙ = 0}. With the friction force, this is not true anymore, but the solution does
stay close to D as a submanifold of TR

2. This is intuitively clear in the current example as friction
prevents ṙ from growing large, and can be proven in general under reasonable conditions, see
Section 6. Finally, with the inertial term, the pendulum example shows that solutions can even
diverge arbitrarily far from D.

4. THE CHAPLYGIN SLEIGH

The Chaplygin sleigh [12] is a simple, yet interesting example of a mechanical nonholonomic
system. The sleigh is a body that can move on the plane, but one of its contact points is a skate,
see Fig. 2. Alternatively, one can think of the contact point as a wheel that is fixed to the body. The
contact point can only move in the direction along the skate blade/wheel, not in the perpendicular
direction. The other two ground contacts can move freely without constraint. The center of mass
is located a distance a away from the skate contact point along the line of the blade7).

An interesting feature of this nonholonomic system is that it exhibits center-stable and center-
unstable relative equilibria, something that cannot occur in purely symplectic8) Hamiltonian
systems, where eigenvalues must always occur in pairs or quadruples symmetric about the real
and imaginary axes.

We shall explicitly recover the equations of motion for this system in the Lagrangian setting9)

and then illustrate in detail its realization through friction.
We describe the system with coordinates (x, y) ∈ R

2 for the skate contact point and ϕ ∈ S1 for
the angle of the skate blade with the x axis. Assume that the sleigh has total mass m and moment

6)However, solutions do not uniformly in time converge to the constrained solutions. Consider as a counterexample
the pendulum without gravity and an initial velocity along S1: in the case of a finite potential, the particle will
oscillate slightly away from S1, hence trade some of its kinetic for potential energy and thus have on average a
lower angular velocity than the perfectly constrained particle. This builds up over time to arbitrary large errors
in position.

7)An offset of the center of mass perpendicular to the skate blade does not intrinsically change the system, since a
shift of the contact point perpendicular to the skate blade does not alter the constraint.

8)This does not hold anymore on Poisson manifolds; the Chaplygin sleigh can actually be realized with an adapted
Poisson bracket {u, ω} = aω

I+ma2 with respect to the moving frame coordinates introduced below.
9)See [11, Chapter 5] for a thorough account how to derive the equations in various different settings, and the end

of the chapter for some interesting notes.
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Fig. 1. Top to bottom: numerical simulations of potential, frictional and inertial constraint approximations.
The particle initially starts on S1 at 45◦ angle and with zero velocity. Its trajectory is shown for 10 seconds
with g = 9.81 and values ε = 0.01 in blue and ε = 0.001 in red.

Fig. 2. A Chaplygin sleigh: the left red dot is the point of contact of the skate, the right red dot is the center
of mass.
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of inertia I about the center of mass. To construct the Lagrangian, we first express the center of
mass point as

(xc, yc) = (x, y) + a
(
cos(ϕ), sin(ϕ)

)
.

Then the Lagrangian is given by

L =
1
2
m

(
ẋ2

c + ẏ2
c

)
+

1
2
Iϕ̇2

=
1
2
m

(
ẋ2 + ẏ2

)
+

1
2
(
I + ma2

)
ϕ̇2 + maϕ̇

(
−ẋ sin(ϕ) + ẏ cos(ϕ)

)
.

(4.1)

We now switch to moving frame coordinates (u, v, ω), where u and v are the velocities parallel
and perpendicular to the skate, respectively, and ω is the angular velocity. They are given by

u = ẋ cos(ϕ) + ẏ sin(ϕ),
v = −ẋ sin(ϕ) + ẏ cos(ϕ),
ω = ϕ̇.

(4.2)

This moving frame is aligned with the constraint distribution D in the sense that the constraint is
described by the function

ζq(q̇) := v = −ẋ sin(ϕ) + ẏ cos(ϕ),

i. e., the constraint v = 0 precisely expresses that the skate cannot move sideways.
It is now a straightforward exercise to calculate the Lagrange – d’Alembert equations (2.4). We

find for each of the coordinates x, y, ϕ and their associated velocities:
d
dt

∂L

∂ẋ
− ∂L

∂x
= mẍ + ma

(
−ϕ̈ sin(ϕ) − ϕ̇2 cos(ϕ)

)
= −λ sin(ϕ),

d
dt

∂L

∂ẏ
− ∂L

∂y
= mÿ + ma

(
ϕ̈ cos(ϕ) − ϕ̇2 sin(ϕ)

)
= λ cos(ϕ),

d
dt

∂L

∂ϕ̇
− ∂L

∂ϕ
= (I + ma2)ϕ̈ + ma

d
dt

[
−ẋ sin(ϕ) + ẏ cos(ϕ)

]

+ maϕ̇
(
ẋ cos(ϕ) + ẏ sin(ϕ)

)
= 0.

(4.3)

Next, we switch to moving frame coordinates by substituting in (4.2) and taking linear combinations
of the first two equations with factors cos(ϕ) and sin(ϕ). This yields

m(u̇ − vω − aω2) = 0,
m(v̇ + uω + aω̇) = λ,

(I + ma2)ω̇ + ma(v̇ + uω) = 0.

(4.4)

Finally, we use the constraint v = 0, which implies that v̇ = 0. Inserting this, we obtain the usual
Chaplygin sleigh equations

u̇ = aω2, ω̇ = − mauω

I + ma2
, (4.5)

with the Lagrange multiplier λ = m(uω + aω̇) giving rise to the constraint force

Fc = m(uω + aω̇)

⎛

⎝− sin(ϕ)

cos(ϕ)

⎞

⎠ .

These equations give rise to the phase plot in Fig. 3. A typical trajectory of the skate point of
contact is shown in Fig. 4. We see that the solutions are half-ellipses in the (u, ω)-plane starting
from the negative u axis and converging onto the positive u axis. When u is positive and ω = 0,
then the sleigh is moving in a straight line with the center of mass forward of the skate. This turns
out to be the stable solution, while the opposite direction where u < 0 is unstable.
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Fig. 3. Phase plot of the (u, ω) coordinates
with m = I = 1 and a = 1/5.

Fig. 4. Trajectory plot associated to the orbit
in Fig. 3. The sleigh approaches from the right.

5. THE SLEIGH WITH SLIDING FRICTION

Now we shall obtain the Chaplygin sleigh equations (4.5) in a different way. Instead of enforcing
the no-slip constraint v = 0 with the constraint reaction force Fc, we consider the same Lagrangian
without constraint, but now we add a friction force Ff . Then we scale the friction force to infinity
and obtain the nonholonomic Chaplygin sleigh equations in the limit. Note that the friction force
Ff is defined also outside the constraint distribution D — and actually zero on it — while the
reaction force Fc is only defined on D!

This idea can be physically motivated in the following way. A nonholonomic system with a no-
slip constraint is a mathematical idealization of a physical system where there is a (very) strong
force that prevents the system from going into slip. In this case, we assume that a strong friction
force prevents the skate from slipping sideways. By showing that scaling the friction force to infinity
leads to nonholonomic dynamics, we provide a fundamental physics argument for the d’Alembert
principle of nonholonomic dynamics. We shall first argue heuristically how this limit is obtained,
and then make it rigorous using geometric singular perturbation theory. Secondly, we can consider
what happens when the skate is turning too quickly at high speed and the friction may not be able to
generate the force necessary to (nearly) keep the sleigh from slipping. Singular perturbation theory
also provides us with modifications to the nonholonomic dynamics through a series expansion in
the scaling parameter.

We start with the same Lagrangian (4.1), but now insert a friction force Ff on the right-hand
side. The friction force is supposed to suppress sideways sliding of the skate blade, which is given
by the velocity v = −ẋ sin(ϕ) + ẏ cos(ϕ). We take the friction force linear in this slipping velocity
and pointing in the opposite direction to dampen it. Thus we have10)

Ff = −v

⎛

⎝− sin(ϕ)

cos(ϕ)

⎞

⎠ .

Note that this force acts at the point of contact of the skate, so there is no associated torque around
that point, i.e., the ω-component of the force is zero. Secondly, Ff is zero when v = 0 (as opposed
to Fc), so this finite force does not enforce the nonholonomic constraint. We insert Ff/ε into the

10)We could have obtained this friction force more geometrically from a Rayleigh dissipation function R(q, q̇) =
1
2
νq(q̇, q̇), where ν is a family of quadratic forms on TQ with kernel D. Then Ff is given by minus the fiber

derivative of R, that is, Ff = − ∂R
∂q̇

: TQ/D → D0 ⊂ T∗Q. Using the moving frame coordinate v to coordinatize

TQ/D, we find R = 1
2
ν̄(q) v2. In our example we choose the friction coefficient ν̄(q) = 1.
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right-hand side of (4.3), so that we can scale the friction force to infinity by taking the limit ε → 0.
This yields

mẍ + ma
(
−ϕ̈ sin(ϕ) − ϕ̇2 cos(ϕ)

)
=

v

ε
sin(ϕ),

mÿ + ma
(

ϕ̈ cos(ϕ) − ϕ̇2 sin(ϕ)
)

= −v

ε
cos(ϕ),

(I + ma2)ϕ̈ + ma
d
dt

[
−ẋ sin(ϕ) + ẏ cos(ϕ)

]

+ maϕ̇
(
ẋ cos(ϕ) + ẏ sin(ϕ)

)
= 0.

As in the previous section, we transform these equations to moving frame coordinates, cf. (4.4),
and obtain

u̇ − vω − aω2 = 0,

v̇ + uω + aω̇ = − v

mε
,

(I + ma2)ω̇ + ma(v̇ + uω) = 0,

(5.1)

but now we cannot insert the constraint condition v = 0. Instead, we shall analyze the dynamics
and see that when ε > 0 is small, then v(t) will quickly converge to near zero. This will imply that
the other two equations effectively behave as if the constraint v = 0 is active. In other words, there
is a slow manifold described by the variables (u, ω) and on that manifold the fast variable v is
small and slaved to (u, ω). Secondly, the friction force naturally takes values in D0, the annihilator
of D. This is preserved in the limit to realize a constraint reaction force according to d’Alembert’s
principle 1. All of this indicates that we can expect to recover nonholonomic dynamics.

To obtain a differential equation for v̇, we subtract a
I+ma2 times the third equation from the

second to make the term with ω̇ cancel. This gives

I

I + ma2
(v̇ + uω) = − v

mε
. (5.2)

When ε is small, this gives fast exponential decay of v. We shall now assume that the typical rate
at which v(t) changes is much faster than that of u(t) and ω(t). That is, we consider v as a fast
variable and u, ω as slow variables. Further conclusions based on this can be made rigorous using
singular perturbation theory, but we postpone these arguments to the general theory in Section 6
and focus on obtaining the result.

Thus, we assume in (5.2) that u, ω are approximately constant and obtain as solution

v(t) =
(
v(0) +

uω

ρ

)
e−ρt − uω

ρ
with ρ =

I + ma2

Imε
.

This quickly settles to v = −uω
ρ , so for the slow dynamics of u, ω we insert this relation, which gives

u̇ = aω2 + ε
Im

I + ma2
uω2, ω̇ = − mauω

I + ma2
+ εIm2a

d
dt

[
uω

]
.

In these differential equations ε only appears in the numerator and the ε multiplying the time
derivative of (uω) does not lead to singular equations, so we can sensibly take the limit: we simply
insert ε = 0 to arrive at the original Eqs. (4.5) for the nonholonomically constrained Chaplygin
sleigh. This is also confirmed by numerical integration of this system: with decreasing values of ε,
the trajectories converge to the trajectory of the nonholonomic system, see Fig. 5. It is clearly
visible though that the convergence is not uniform in time, as already illustrated in Section 3.
In Section 7.1 we will analyze the perturbation to the slow system in more detail.
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Fig. 5. The red orbits are trajectories of the sleigh with friction with indicated parameter values of ε. These
clearly converge to the nonholonomic trajectory in blue.

6. THE GENERAL THEORY

We shall finally prove the statement that linear friction forces realize nonholonomic dynamics in
a more general setting. This rephrases the results in [8, 20] in a more geometric formulation, and
specifies in what sense the solution curves converge, also on positively unbounded time intervals.

Recall that we consider Lagrangian systems of mechanical type,

L(q, q̇) =
1
2
κq(q̇, q̇) − V (q), (q, q̇) ∈ TQ. (2.1)

Furthermore, to state our result, we need the concept of a pseudo-solution (or pseudo-orbit) of a
dynamical system.

Definition 1 (Pseudo-solution). Let (M,g) be a smooth Riemannian manifold and let X ∈
X(M) be a C1 vector field on it. We say that a C1 curve x(t) ∈ M is a δ-pseudo-solution of X
when

‖ẋ(t) − X(x(t))‖ � δ for all t.

Furthermore, we consider linear friction forces F that are specified by a Rayleigh function R. That
is, given a smooth family of positive semidefinite bilinear forms νq : TqQ ×TqQ → R, we define the
Rayleigh function R(q, q̇) = 1

2νq(q̇, q̇) and the friction force as its negative fiber derivative,

F : TQ → T∗Q, F (q, q̇) = −∂R

∂q̇
(q, q̇) = −ν�

q(q̇).

Then we have the following result.11)

Theorem 1. Let Q be a compact manifold, let L be a Lagrangian of mechanical type (2.1), and
let F be a linear friction force with kernel ker(F ) = D a regular distribution. Let Xε ∈ X(TQ)
denote the vector field of the Lagrangian system with Rayleigh friction force F/ε as above, and let
XNH ∈ X(D) denote the vector field of the Lagrange – d’Alembert nonholonomic system (Q,L,D).

Then solution curves of Xε converge to solutions of XNH as ε → 0 in the following sense. Fix
an energy level Ē > inf V and consider initial conditions x0 ∈ TQ with energy less than Ē. Then
for all ε > 0 sufficiently small we have the following results.

11)We shall assume that everything has sufficient smoothness, say, Cr for a large r. Note that the perturbed manifolds
Dε will generally only have a finite degree of smoothness, see, e.g., [14, Section 1.2.1].
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i. All solution curves xε(t) of Xε converge at a uniform exponential rate to an invariant
manifold12) Dε that is C1-close and diffeomorphic to D. The manifold Dε depends smoothly
on ε near zero, with D0 = D.

ii. There exists a family of curves x̄ε(t) ∈ D that are O(ε)-pseudo-solution curves of XNH, such
that13)

∀t1 > 0 sup
t∈[t1,∞)

d
(
xε(t), x̄ε(t)

)
→ 0

as ε → 0, uniformly in x0.

The compactness condition of Q can be replaced by uniformity assumptions on all of Q,L,F,D.
One crucial assumption that has to be added is that V is bounded from below. Moreover, one should
require (Q,κ) to have bounded geometry and dV , F , and D to be uniformly C1 bounded and F
also bounded away from zero. This is needed if one wants to apply normal hyperbolicity theory in
a noncompact context, see [14, Theorem 3.1]. In the Chaplygin sleigh example Q = R

2 × S1 is not
compact, but this generalization does apply: the system is symmetric under the Euclidean group
SE(R2) acting transitively on Q, hence (Q,κ) has bounded geometry (see [14, Example 2.3]) and
the remaining uniformity conditions are fulfilled as well. Another viewpoint is to compactify R

2 to
the two-torus, or to consider the closely related Suslov problem of a nonholonomically constrained
rigid body, so that Theorem 1 does apply.

Alternatively, one can consider the convergence of solution curves only on finite time intervals,
which effectively allows one to restrict to a compact set covering the nonholonomic solution curve.
This is essentially the setting of the results in [8, 20], which are given in local coordinates. It does
not automatically yield uniformity of convergence of solution curves (even on finite time intervals)
when Q is noncompact though, as illustrated by the following example.

Let Q = R
2 with the Euclidean metric and consider a particle of unit mass under the potential

V (x, y) = −x2. Let the constraint distribution be

D = spanχ(x − y)∂x +
(
1 − χ(x − y)

)
∂y,

where χ ∈ C∞(R; [0, 1]) such that χ(x) = 0 for x � 0 and χ(x) = 1 for x � 1. Finally, let the
friction force F be arbitrary, but with kernel D and uniformly bounded. Now consider the
unconstrained system with friction and initial conditions x(0) > 0 small, y(0) � 1 arbitrarily large
and ẋ(0) = ẏ(0) = 0. Then the particle will first accelerate in the positive x direction due to the
potential; once it hits the line x = y, the friction force kicks in to make the particle follow the
changing constraint direction of D. However, for any fixed ε > 0, the particle’s velocity component ẋ
will overshoot the constraint D = span ∂y in the region x � y + 1 by an arbitrary amount as the
initial condition y(0) is made large, since ẋ then is arbitrary large at “impact” with the changing
constraint. Even worse, since the potential force increases with x, even in the region x � y + 1, the
velocity component ẋ will diverge away from zero, that is, from D.

Proof (of Theorem 1). The system with friction described by Xε is given by the second-order
equations

κ�(∇q̇ q̇) = −dV (q) +
1
ε
F (q, q̇), (6.1)

or, in explicit local coordinates, it is expressed as

q̇i = vi, v̇i = −Γi
jkv

jvk + κij
(
−∂V

∂qj
+

1
ε
Fj

)
. (6.2)

12)The manifold Dε is unique up to the choice of a cutoff function at the boundary of the energy Ē in TQ. Different
choices lead to differences of order ε that decay exponentially away from the boundary. However, the limit to the
reduced vector field XNH will not depend on this choice.

13)Here d is some appropriate distance on TQ, for example, the distance induced by the Sasaki metric coming from
(Q, κ).
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The limit of the vector field Xε is singular, so we switch to a rescaled version Yε = εXε. This can
be viewed as changing to a fast time variable τ = t/ε (whose derivative we denote by a prime) for
any ε > 0, but the vector field Y0 is also well-defined and given in local coordinates as

q′i = 0, v′i = κijFj = −κij νjk vk.

Both κij and νjk are (semi)positive definite matrices with ker(νq) = Dq. This shows that the smooth
manifold D ⊂ TQ is the fixed point set of Y0 and that Y0 is linear in the normal direction, and the
linear term given by

−κ	 ◦ ν�
∣∣
TQ/D

has strictly negative eigenvalues when we identify TQ/D ∼= D⊥. Thus, D is a normally hyperbolic
invariant manifold (nhim) for Y0 and it is globally exponentially attractive.

We now restrict attention to the compact subset

E = {(q, v) ∈ TQ | E(q, v) � Ē}

below the energy level Ē, which is nonempty when Ē > inf V . The dynamics of Xε (and thus also
of Yε) is dissipative, and hence leaves E forward invariant. This implies that we can use a cutoff
argument14) outside E which will not affect forward solutions with initial conditions inside E . Using
the persistence of nhims (see [14, 15, 19]), we find that for ε > 0 sufficiently small there is a unique
perturbed manifold Dε that is C1-close and diffeomorphic to D and invariant under Yε. Moreover, Dε
depends smoothly on ε and is a nhim again with perturbed stable fibration. In particular, Dε is
locally exponentially attractive, while the exponential attraction globally inside E follows from the
uniform smooth dependence of flows on parameters over compact domains and time intervals, see,
e. g., [14, Theorem A.6]. Hence the solution curves x̃ε(τ) of Yε converge at a uniform exponential
rate to Dε, and thus the solution curves xε(t) = x̃ε(t/ε) of Xε do so too, and at increasing rates as
ε → 0. This proves the first part of the claims.

To prove the remaining claims, we need to analyze the dynamics of Yε restricted to the invariant
manifold Dε. Let us denote by

pr: TQ → D (6.3)

the projection along D⊥, that is, orthogonal according to the kinetic energy metric κ. Note that (6.3)
can be viewed as a vector bundle where we forget about the linear structure on D. The Lagrange –
d’Alembert equations (2.3) can then be expressed as

pr ◦ [L](q̈(t)) = 0 with q̇(t) ∈ D.

Furthermore, let f : U × R
n → TQ be a frame on an open set U ⊂ Q, such that the first k

components span D and the remaining n−k span D⊥. Let ω ∈ Ω1
(
Q; End(Rn)

)
denote the

connection one-form with respect to the frame f and let (ξ, η) ∈ R
n denote coordinates associated

to this frame, where ξ ∈ R
k and η ∈ R

n−k, respectively, coordinatize the fibers of D and D⊥. In
these frame coordinates, the projection pr simply maps (ξ, η) to (ξ, 0). Let prξ : R

n → R
k denote

this projection, prη : R
n → R

n−k its complementary projection. See Appendix for a brief overview
of using a connection one-form to express equations of motion in a moving frame and its relation
to using structure functions.

In frame coordinates the Lagrange – d’Alembert equations are then

XNH ⇐⇒
{

q̇ = fq · (ξ, 0),

ξ̇ = prξ
[
−ω(q̇) · (ξ, 0) − f−1

q · κ	
q · dV

]
,

(6.4)

since q̇ ∈ Dq is equivalent to η = 0. This is the vector field XNH on D.

14)Without going into full details, we modify Yε at the boundary of E such that D ∩ E is an overflowing invariant
(see [15]) for the modified vector field.
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Next, we show that there is a well-defined limit of the family of vector fields

Xε|Dε ∈ X(Dε)

and that the limit is precisely XNH. To make sense of this limit, however, we first have to re-
express these vector fields on a fixed manifold, D. We do this using the projection pr: TQ → D.
The invariant manifolds are C1-close and diffeomorphic to D, so they can be written as the graphs
of functions hε : D → D⊥ covering the identity in Q or, in other words, as graphs of sections
hε ∈ Γ(pr : TQ → D). That is, in frame coordinates we have

Dε = { η = hε(q, ξ) }.
Since Dε depends smoothly on ε, we can consider a Taylor expansion of hε. We denote this as

hε(q, ξ) =
r∑

i=0

εi

i!
h(i)(q, ξ) + O(εr+1). (6.5)

Note that h(0)(q, ξ) = h0(q, ξ) = 0 since D0 = D. We now consider Yε in frame coordinates, cf. (6.1)
and (6.4). Let us denote by

(
κ	

q ν�
q

)
f

the linear operator κ	
q ν�

q : D⊥
q → D⊥

q with respect to the frame f ,
then

Yε ⇐⇒

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q′ = ε fq · (ξ, η),

ξ′ = εprξ

[
−ω

(
fq · (ξ, η)

)
· (ξ, η) − f−1

q · κ	
q · dV

]
,

η′ = εprη

[
−ω

(
fq · (ξ, η)

)
· (ξ, η) − f−1

q · κ	
q · dV

]
−

(
κ	

q ν�
q

)
f
· η.

Note that ω(fq· ) are the connection coefficients as defined in Appendix, but written without indices.
Since Yε leaves Dε invariant, we can consider the restriction Yε|Dε . Secondly, pr : Dε → D is a
diffeomorphism (its inverse is the map IdD + hε), so we can push forward the vector field Yε|Dε

along pr to

Ỹε := pr∗
(
Yε|Dε

)
∈ X(D).

In frame coordinates this amounts to projecting the vector field onto the coordinates (q, ξ), while
inserting η = hε(q, ξ), see Fig. 6. That is, in frame coordinates we have

Ỹε ⇐⇒

⎧
⎨

⎩

q′ = ε fq · (ξ, hε(q, ξ)),

ξ′ = εprξ

[
−ω

(
fq · (ξ, hε(q, ξ))

)
· (ξ, hε(q, ξ)) − f−1

q · κ	
q · dV

]
.

(6.6)

Fig. 6. The invariant manifolds Dε and vector fields living on them in frame coordinates (q, ξ, η). The dashed
lines indicate stable fibers.
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Now we note that Ỹε is of order ε, so this vector field can be rescaled back to the original slow
time t = ε τ , which we denote as X̃ε = 1

ε Ỹε. Then we can consider its limit

X̃0 := lim
ε→0

X̃ε ∈ X(D)

and we find X̃0 = XNH, that is, the Lagrange – d’Alembert equations: we have hε(q, ξ) =
ε h(1)(q, ξ) +O(ε2), so after dividing (6.6) by ε and inserting η = hε(q, ξ), the only terms remaining
in the limit are those with η = 0. This yields exactly the nonholonomic vector field XNH as in (6.4).

Using this limit, we can finally prove the last dynamical statement that solution curves xε(t)
of Xε converge to curves x̄ε(t) ∈ D that are uniformly O(ε)-pseudo-solutions of XNH. Using
the persistence of normal hyperbolicity, we have already proved that xε(t) converges to the
invariant manifold Dε uniformly in x0. Moreover, Dε has a stable fibration whose projection
commutes with the flow of Xε. That is, there exists a (nonlinear) fibration π : TQ → Dε such
that π(Φt

ε(x0)) = Φt
ε(π(x0)). Each single fiber π−1(x) is not invariant, but the flow does map fibers

onto fibers and is exponentially contracting along them. Hence, xε(t) projects to a solution curve
π(xε(t)) ∈ Dε to which it converges as t → ∞. Now define x̄ε(t) := pr(π(xε(t))) ∈ D, which is by
construction a solution of X̃ε. Since X̃ε −XNH ∈ O(ε) and ‖hε‖sup ∈ O(ε) uniformly on the compact
set E , it follows that x̄ε(t) is a O(ε)-pseudo-solution of XNH and that π(xε) and x̄ε are O(ε)-close
uniformly in time. Finally, since the fast-time-τ solutions x̃ε(τ) already converge to Dε at a fixed
exponential rate uniformly in x0 ∈ E , there exists a τ1 > 0 such that d

(
x̃ε(τ), π(x̃ε(τ))

)
< ε for

all τ � τ1. Now consider t1 > 0 arbitrary. Since xε(t) = x̃ε(t/ε), we see that when ε � t1/τ1, also
d
(
xε(t), π(xε(t))

)
< ε for all t � t1, and finally

d(xε(t), x̄ε(t)) � d
(
xε(t), π(xε(t))

)
+ d

(
π(xε(t)), x̄ε(t)

)
∈ O(ε).

This completes the proof of the second claim. �

7. BEYOND THE LIMIT OF NONHOLONOMIC DYNAMICS
The Lagrange – d’Alembert equations were obtained as zeroth-order term in the expansion of

X̃ε in ε. However, one can continue and inductively find higher-order terms in the expansion of X̃ε.
These terms correspond to effects of large, but finite friction forces and will, for example, contribute
to drift normal to the nonholonomic constraint and energy dissipation. The advantage of studying
large, but finite friction in this context is that X̃ε is still a vector field on the lower-dimensional
nonholonomic phase space D as compared to the full Euler – Lagrange equations on TQ, while
normal hyperbolicity guarantees that this is a proper Taylor expansion of a truly invariant and
attractive subsystem. We shall here show how these higher terms can be obtained and calculate
the first-order correction term.

The “master equation” for obtaining the expansion is derived from the coordinate expression for
the invariant manifold Dε, given by η = hε(q, x). Let fε(q, ξ, η) denote the “horizontal” components
of Yε for (q′, ξ′) and let gε(q, ξ, η) describe the “vertical” component for η′. Taking a fast-time-τ
derivative of the invariant manifold equations, we find

η′ = Dhε(q, ξ) · (q′, ξ′)
⇐⇒ gε(q, ξ, hε(q, ξ)) = Dhε(q, ξ) · fε(q, ξ, hε(q, ξ)). (7.1)

Now we can expand this equation in powers of ε to obtain inductively the functions h(i)(q, ξ). Before
starting this, let us note the following: using the same expansion as in (6.5) for fε and gε, we have
for all (q, ξ, η) that

f (0)(q, ξ, η) = 0, h(0)(q, ξ) = 0,

g(0)(q, ξ, 0) = 0, D3g
(0)(q, ξ, 0) = −

(
κ	

q ν�
q

)
f

and D3g
(0)(q, ξ, 0) is invertible as a linear map on R

n−k. Expanding (7.1) up to first order in ε then
leads to

g(0)(q, ξ, h(0)(q, ξ)) = Dh(0)(q, ξ) · f (0)(q, ξ, h(0)(q, ξ))
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at zeroth order, and is trivially satisfied as it reduces to 0 = 0. At first order we find

g(1)(q, ξ, h(0)(q, ξ)) + D3g
(0)(q, ξ, h(0)(q, ξ)) · h(1)(q, ξ)

= Dh(1)(q, ξ) · f (0)(q, ξ, h(0)(q, ξ))

+ Dh(0)(q, ξ) ·
[
f (1)(q, ξ, h(0)(q, ξ)) + D3f

(0)(q, ξ, h(0)(q, ξ)) · h(1)(q, ξ)
]
,

which greatly simplifies to

g(1)(q, ξ, 0) + D3g
(0)(q, ξ, 0) · h(1)(q, ξ) = 0.

Using the invertibility of D3g
(0), this can be solved for h(1) and gives

h(1)(q, ξ) = −
[
D3g

(0)(q, ξ, 0)
]−1 · g(1)(q, ξ, 0)

= (ν	
q κ�

q)f · prη ·
[
−ω(fq · ξ) · ξ − f−1

q · κ	
q · dV

]
,

(7.2)

where we consider ν restricted to D. The term (κ�
q)f · prη ·

[
−ω(fq · ξ) · ξ − f−1

q · κ	
q · dV

]
can be

identified as minus the reaction force Fc : D → D0 in the nonholonomic constraint picture, while
η = h(1)(q, ξ) is the drift velocity violating the nonholonomic constraint that is necessary to generate
the same force as Fc, but now due to the linear friction Ff and up to order ε.

To finally obtain the first-order expansion of X̃ε, we have to expand fε(q, ξ, hε(q, ξ)) up to order
two. Here we find

1
2

(
d
dε

)2
∣∣
∣∣
∣
ε=0

fε(q, ξ, hε(q, ξ)) =
1
2
f (2)(q, ξ, 0) + D3f

(1)(q, ξ, 0) · h(1)(q, ξ)

+
1
2
D3f

(0)(q, ξ, 0) · h(2)(q, ξ) +
1
2
D2

3f
(0)(q, ξ, 0) · h(1)(q, ξ)2

= D3f
(1)(q, ξ, 0) · h(1)(q, ξ),

(7.3)

noting that also f (2) ≡ 0. From (6.6) we read off that

D3f
(1)(q, ξ, 0) · η =

(
fq · η , −prξ

[
ω(fq · η) · ξ + ω(fq · ξ) · η

])
.

Putting everything together, we obtain X̃ε = XNH + ε X̃(1) + O(ε2) with

X̃(1) ⇐⇒

⎧
⎨

⎩

q̇ = fq · h(1)(q, ξ)

ξ̇ = −prξ
[
ω(fq · h(1)(q, ξ)) · ξ + ω(fq · ξ) · h(1)(q, ξ)

]
.

(7.4)

Note that with this correction term, X̃ε is not a second-order vector field on D anymore since the
drift velocity h(1)(q, ξ) violates the nonholonomic constraint D.

7.1. The Chaplygin Sleigh

We shall now follow this recipe to obtain a first-order perturbation for the nonholonomic
dynamics of the Chaplygin sleigh, based on the friction model used in Section 5. We cannot apply
the theory right away since the coordinates u, v, ω do not correspond to an orthogonal frame. This
can be seen from the Lagrangian

L =
1
2
m(u2 + v2) +

1
2
(I + ma2)ω2 + maωv

with respect to these coordinates: it is purely kinetic, but the metric is not diagonal with respect
to u, v, ω. We replace ω by a new coordinate ψ = ω + ma

I+ma2 v which diagonalizes the metric. That
is, the coordinates u, v, ψ correspond to an orthogonal frame and we have

L =
1
2
mu2 +

1
2

Im

I + ma2
v2 +

1
2
(I + ma2)ψ2.
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With respect to these coordinates the equations of motion (5.1) become

u̇ +
ma2 − I

I + ma2
vψ +

maI

(I + ma2)2
v2 − aψ2 = 0,

v̇ + uψ − ma

I + ma2
uv = −I + ma2

εmI
v,

ψ̇ +
ma

I + ma2
uψ − m2a2

(I + ma2)2
uv = 0.

(7.5)

Note that the terms without time derivatives on the left-hand side are exactly those arising from
the connection coefficients, see Appendix. The friction force only appears in the equation for v since
the frame component associated to v spans D⊥, while Ff takes values in D0 and hence the term
κ	 · Ff , see (6.2), takes values in D⊥.

To obtain the first-order vector field (7.4), we first have to recover h(1)(x, y, ϕ, u, ψ) = h(1)(u, ψ)
from (7.2). We note that ξ = (u, 0, ψ), η = (0, v, 0), V ≡ 0, that ω(fq · ) are precisely the connection
coefficients, and finally that (ν	

q k�
q)f acting on η is given by

(ν	
q k�

q)f = 1 · Im

I + ma2
.

This yields

h(1)(u, ψ) = − Im

I + ma2
uψ

since uψ is the only term in the v-component of the connection one-form in (7.5) that survives
when we insert ξ, i.e., v = 0. Then we recover for X̃(1):

(ẋ, ẏ) = − Im

I + ma2
uψ(− sin(ϕ), cos(ϕ)), ϕ̇ = − Im2a

(I + ma2)2
uψ,

u̇ =
Im(ma2 − I)
(I + ma2)2

uψ2, ψ̇ = − Im3a2

(I + ma2)3
u2 ψ.

Here we used that ϕ̇ = ω = ψ − ma
I+ma2 v and that ψ = ω on D.

Now we can numerically integrate the vector field XNH + εX̃(1). This should, on D, be a first-
order approximation of the singularly perturbed vector field Xε with friction. Indeed, the phase
and trajectory plots in Figs. 7 and 8 clearly show that the green curves of the first-order expansion
XNH + εX̃(1) converge more than linearly in ε to the red curves of the singularly perturbed
system Xε.

APPENDIX. CONNECTION FORM VS. STRUCTURE FUNCTIONS

In this appendix we briefly recall the connection one-form as a method to express (geodesic)
equations of motion with respect to a moving frame. We also relate this to the formulation using
the structure functions associated to the frame in terms of the Lie brackets of the vector fields
spanning the moving frame. The latter formulation is more common in nonholonomic dynamics
and known as Hamel’s formalism, see, e. g., [6].

Let f : Q × R
n → TQ be a (local) moving frame, where fα ∈ X(Q) denote the individual vector

fields spanning the frame and fα = f i
α ∂i their decomposition with respect to a basis induced by local

coordinates qi. Let λ : TQ → Q × R
n denote the inverse of f , that is, a (local) trivialization of TQ.

Roman indices are used for induced coordinates; Greek ones to index moving frame coordinates.
Now a connection ∇ on Q can be expressed with respect to the frame f as

∇fγfβ = ω(fγ)αβ fα = ωα
βγ fα,
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Fig. 7. Phase plot of the (u, ω) coordinates
with the nonholonomic system in blue, the
system with friction in red and the first-order
approximation in green.

Fig. 8. Trajectory plots associated to the
orbits in Fig. 7.

where ω ∈ Ω1(Q; End(Rn)) is the connection one-form and ωα
βγ are its coefficients. On the other

hand, the structure functions Cα
βγ encode the Lie brackets relative to a frame as follows:

[fβ, fγ ] = Cα
βγ fα.

Let ∇ be the Levi-Civita connection associated to a metric κ on Q. According to [21,
Proposition 2.3] we have

2κ(∇XY,Z) = X · κ(Y,Z) + Y · κ(X,Z) − Z · κ(X,Y )
+ κ([X,Y ], Z) + κ([Z,X], Y ) + κ([Z, Y ],X)

for any vector fields X,Y,Z ∈ X(Q). When we decompose the vector fields with respect to the
frame f , i. e., write X = Xαfα, this yields the following relation between the connection coefficients,
the metric, and the structure functions:

ωη
γδ =

1
2
κηβ

(
fδ(κγβ) + fγ(κδβ) − fβ(κδγ)

)
+

1
2
(
Cη

δγ + καγκηβCα
βδ − καδκ

ηβCα
βγ

)
. (A.1)

Note that when f is a holonomic, coordinate-induced frame, then the structure constants are zero
and the first terms reduce to the usual Christoffel symbols. Conversely, the torsion-freeness of ∇,
i.e., [X,Y ] = ∇XY −∇Y X for any X,Y ∈ X(Q), implies that

Cα
βγ = ωα

γβ − ωα
βγ .

We return to the formulation of Lagrangian mechanics. For simplicity we consider a purely
kinetic15) Lagrangian L(q, q̇) = 1

2κq(q̇, q̇), so its Euler – Lagrange equations correspond to the
geodesic equations ∇q̇ q̇ = 0, or in induced coordinates, q̈i = −Γi

jkq̇
j q̇k, where Γ are the Christoffel

symbols of the metric κ. Denoting the frame coordinates by vα (these are also called quasi-
velocities), we have

v̇α = −ωα
βγvβvγ . (A.2)

The coefficients ωα
βγ play the same role as the Christoffel symbols Γi

jk, but with respect to the
moving frame f . They are related by

ωα
βγ = λα

i Γi
jkf

j
βfk

γ + λα
i (∂kf

i
β)fk

γ (A.3)

15)A potential term would add a force field that transforms covariantly, and hence is trivial to add afterwards.
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since Γ represents the connection with respect to the local coordinate frame and (A.3) expresses
the change to the frame f .

On the other hand, the Euler – Lagrange equations with respect to a moving frame are given by
(see, e. g., [11, Proposition 1.4.6], [6, Eq. (2.5)])

d
dt

∂L
∂vα

− ∂L
∂qi

f i
α − ∂L

∂vγ
Cγ

βαvβ = 0

with L = L ◦ f : Q× R
n → R the Lagrangian with respect to the frame. In our case this boils down

to

0 =
d
dt

∂L
∂vα

− ∂L
∂qi

f i
α − ∂L

∂vγ
Cγ

βαvβ

=
d
dt

[
καβvβ

]
− 1

2
fα · κβγ vβvγ − κδγCδ

βαvβvγ

= καβ v̇β + fγ · καβ vβvγ − 1
2
fα · κβγ vβvγ − κδγCδ

βαvβvγ

⇔ v̇α = −καδ
[
fγ · κδβ − 1

2
fδ · κβγ + κηγCη

βα

]
vβvγ . (A.4)

Note that by equating (A.2) and (A.4) we also find an explicit relation between the connection
one-form ω, the metric κ and the structure functions C. It differs from (A.1) only by terms that
are antisymmetric in the two lower indices, since these cancel in the geodesic equation.
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