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Abstract—In the smooth (C∞) category, a completely integrable system near a nondegenerate
singularity is geometrically linearizable if the action generated by the vector fields is weakly
hyperbolic. This proves partially a conjecture of Nguyen Tien Zung [11]. The main tool used
in the proof is a theorem of Marc Chaperon [3] and the slight hypothesis of weak hyperbolicity
is generic when all the eigenvalues of the differentials of the vector fields at the non-degenerate
singularity are real.
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1. INTRODUCTION

The notion of integrability in the not necessarily Hamiltonian sense has been propounded
explicitly during the last fifteen years, see [1], although its history can be traced back to a century
ago. In order to study these more general systems, a method is to find their normal forms, as in the
case of integrable Hamiltonian systems [5, 7, 8]. For more background on those general integrable
systems, one can refer to the excellent survey [10].

In his recent paper [11], Nguyen Tien Zung introduced two important notions for non-
Hamiltonian integrable systems: that of a nondegenerate equilibrium point and the notion of
geometric linearization of the system around an equilibrium point. He proved that an integrable
non-Hamiltonian system is geometrically linearizable near a nondegenerate singularity in the (real
or complex) analytic category. He also conjectured that this remains true in the smooth category
and treated some special cases (type (m, 0) in [11] and type (1, q) in [9]).

In the present paper, we prove the conjecture when all the eigenvalues of the differentials at
the fixed point of the vector fields are real, under a slightly more restrictive hypothesis (weak
hyperbolicity is assumed in addition to nondegeneracy). We provide normal forms as well.

Remark 1. In the hyperbolic Hamiltonian case, integrability does not imply conjugacy to the
Birkhoff normal form. This is because the level set of the first integrals may be nonconnected
and one can construct a Hamiltonian function whose values are different in different connected
components (see [4, 6]).

Remark 2. In [10], Zung gave some ideas for a proof of his conjecture. He claimed that the problem
can be reduced to the pure hyperbolic case. The result in this paper could be helpful.
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2. HYPOTHESES AND STATEMENT OF THE THEOREM

2.1. Integrability, Nondegeneracy, Geometric Linearization (Nguyen Tien Zung)

Definition 1. A dynamical system given by a vector field X on an m-dimensional manifold
M is called integrable in the non-Hamiltonian sense if there exist p vector fields X1 = X,
X2, . . . , Xp and q functions F1, . . . , Fq on M , such that the vector fields commute pairwise and
X1 ∧ · · · ∧ Xp �= 0 almost everywhere, the functions are common first integrals for these vector
fields and dF1 ∧ · · · ∧ dFq �= 0 almost everywhere. The integers p, q satisfy p � 1, q � 0, p + q = m.
We call (X1, . . . , Xp, F1, . . . , Fq) an integrable system of type (p, q), and the first integrals F of the
system, defined by dF ∧ dF1 ∧ · · · ∧ dFq = 0, form an algebra FX1,...,Xp .

Definition 2. Let (X1, . . . , Xp,F) be an integrable system of type (p, q) on M with a coor-
dinate system around a common zero O of the vector fields. Denote by Y1, . . . , Yp the linear
parts of X1, . . . , Xp, respectively. If there exist q homogeneous functions G1, . . . , Gq which
are the homogeneous parts of lowest degree of certain first integrals F1, . . . , Fq ∈ F such that
(Y1, . . . , Yp, G1, . . . , Gq) is an integrable system of type (p, q) and the linear vector fields are
semisimple, namely, dY1, . . . , dYp are all diagonalizable over C, then we call O a nondegenerate
equilibrium point and (X1, . . . , Xp,F) is nondegenerate around O.

Definition 3. An integrable dynamical system (X1, . . . , Xp, F1, . . . , Fq) of type (p, q) around a
nondegenerate equilibrium point in R

m is geometrically linearizable if there exists a coordinate
system in which

Xi =
∑

j

aijX
(1)
j ∀ i = 1, . . . , p,

where X
(1)
i is the linear part of Xi and the aij ’s are common first integrals of X

(1)
1 , . . . , X

(1)
p .

2.2. Statement of the Theorem

Hypothesis 1. Let X1, X2, . . . , Xp be p vector fields defining an integrable system of type (p, q) in
a neighborhood of 0 in R

m, for which 0 is a nondegenerate equilibrium point.

We assume that all the eigenvalues of dXi(0) are real for i = 1, . . . , p. Hence [2, 10], modulo a
linear change of coordinates in R

m, the linear parts of the vector fields are diagonal:

X
(1)
i =

m∑
k=1

cikxk
∂

∂xk
, i = 1, 2, . . . , p,

where cik ∈ R. These linear vector fields define an action of R
p on R

m.
We assume this linear action weakly hyperbolic, which means the following: if ck denotes the

linear form (t1, . . . , tp) �→ c1kt1 + · · · + cpktp on R
p for k = 1, 2, . . . , m, the convex hull in (Rp)∗ of

any p elements of {c1, . . . , cm} does not contain the origin (the action is called strongly hyperbolic
if any p elements of {c1, . . . , cm} are linearly independent. Obviously,strong hyperbolicity implies
both weak hyperbolicity and nondegeneracy in the sense of [10], as the latter means that c1, . . . , cm

generate (Rp)∗).

We can now state the main theorem of this article:

Theorem 1. Under those hypotheses, the system is geometrically linearizable around 0.

If p = m, i.e., q = 0, this means that the vector fields Xi are simultaneously linearizable, a
straightforward consequence [2] of Sternberg’s linearization theorem for contractions (in that case,
nondegeneracy coincides with strong hyperbolicity). In the sequel, we assume q > 0.
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3. PRELIMINARIES: FORMAL FIRST INTEGRALS OF THE LINEAR PART
Note that a nonconstant monomial xγ := xγ1

1 · · ·xγm
m , γ = (γ1, . . . , γm) ∈ N

m, is a first integral
of the linear part of the system if and only if γ lies in

P := {γ ∈ N
m \ {0} :

m∑
k=1

γkck = 0}. (3.1)

Of course, up to the addition of a constant, a formal first integral of the linear part is an infinite
linear combination of such monomials.
Proposition 1. The subset P of N

m defined by (3.1) is finitely generated in the following sense:
there exists a finite set P0 ⊂ P such that every element of P can be expressed (in a nonunique way
in general) as the sum of finitely many elements of P0.

The proof will use the following consequence of the fact that N is well-ordered:

Lemma 1 ([2], Lemma4, p. 135). For each integer m > 0, one defines an ordering of N
m by

“γ := (γ1, . . . , γm) � (γ′
1, . . . , γ

′
m) =: γ′ if and only if γk � γ′

k for all k”. For every nonempty subset
P of Nm, the set minP := {γ ∈ P : if γ′ � γ, then γ = γ′} of minimal elements of P for this
ordering is finite and every γ ∈ P satisfies γ′ � γ for some γ′ ∈ minP .

Proof. The proof in [2] being somewhat cryptic, we provide one. If m = 1, this is the well-
orderedness of N. Otherwise, assume the lemma proved for m − 1, and let πγ := (γ1, . . . , γm−1)
for all γ ∈ N

m. By our induction hypothesis, the set πP ⊂ N
m−1 has a minimal set Q0 and the

projection πγ of every γ ∈ P is comparable to at least one element of Q0. Clearly, the set Q̃0 of all
(γ̄, γ′

m) with γ̄ ∈ Q0 and γ′
m = min{γm : γ ∈ P ∩ π−1γ̄} is finite (it has as many elements as Q0)

and included in minP . Moreover, every γ ∈ P with γm � max{γ′
m : γ′ ∈ Q̃0} =: μ is comparable

to some element of Q̃0; in other words, every γ ∈ P that is not comparable to any γ′ ∈ Q̃0 lies in
some Pn := {γ ∈ P : γm = n} with n < μ. Now, by our induction hypothesis, each Pn has a finite
minimal set and every element of Pn is comparable to some element of minPn. It follows that minP

is included in the finite set Q̃0 ∪
⋃

0�n<μ minPn, of which it is the minimal set, and every element
of P is comparable to an element of the finite subset minP . �

Proof of Proposition 1. To prove that P0 = minP satisfies our requirements, we should show
that every γ ∈ P is the sum of finitely many elements of P0, which we can do using induction
on |γ|1 := γ1 + · · · + γm. If |γ|1 = min{|γ′|1 : γ′ ∈ P}, one must have γ ∈ P0, which proves our
contention in that case. Otherwise, by Lemma 1, there exists γ̄1 ∈ P0 with γ̄1 � γ, hence either
γ̄1 = γ or γ2 := γ − γ̄1 ∈ P ; in the first case, our claim is proved; otherwise, as |γ2|1 is less than |γ|1,
we can assume inductively that γ2 = γ̄2 + · · · + γ̄n with γ̄2, . . . , γ̄n ∈ P0, hence γ = γ̄1 + · · · + γ̄n

with γ̄1, . . . , γ̄n ∈ P0. �
Corollary 1. Every monomial first integral xγ of the linear part of the system is the product of
finitely many monomial first integrals xγ with γ ∈ P0. Thus, every formal first integral of the linear
part can be written as a formal power series in the variables xγ with γ in the finite set P0.

4. PROOF OF THE MAIN THEOREM
Lemma 2. We can put the smooth vector fields X1, . . . , Xp of the nondegenerate integrable system
(X1, . . . , Xp, F1, . . . , Fq) around the origin in R

m into the following normal forms up to some flat
terms: more precisely, in some smooth coordinate system, we have

Xi =
p∑

j=1

aijX
(1)
j + Flati, i = 1, . . . , p, (4.1)

where X
(1)
1 , . . . , X

(1)
p are the linear parts of X1, . . . , Xp, respectively, under the coordinates, the aij’s

are smooth first integrals of the linear vector fields and the vector fields Flat1, . . . , Flatp are flat at
the origin.
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Proof. Denote by X̂i the ∞-jet of Xi and by F̂j the ∞-jet of Fj at the origin. Then we get a
formal integrable system (X̂1, . . . , X̂p, F̂1, . . . , F̂q). The procedure in [11] also works in the formal
category [10], so that we have a formal coordinate system in which

X̂i =
p∑

j=1

âijX
(1)
j , i = 1, . . . , p,

where each X
(1)
j is identified to its ∞-jet at 0 and the âij ’s are formal first integrals of X

(1)
1 , . . . , X

(1)
p .

By Corollary 1, there exist monomial first integrals I1, . . . , Ir of the linear part and formal
power series ĝij such that âij = ĝij(I1, . . . , Ir). The Borel extension theorem implies that there
exist smooth coordinates whose ∞-jets are the formal ones and smooth functions gij ’s whose ∞-
jets are ĝij ’s, respectively, hence the lemma with aij = gij(I1, . . . , Ir). �

We now use the following generalization of the Sternberg –Chen theorem:

Theorem 2 (Chaperon [3]). Two weakly hyperbolic smooth R
m-action germs are smoothly

conjugate if and only if they are formally conjugate.

This implies the existence of a smooth coordinate system in which the flat terms Flati’s in (4.1)
are all zero, i.e.,

Xi =
p∑

j=1

aijX
(1)
j , i = 1, . . . , p, (4.2)

hence Theorem 1. �

Expanding the linear vector fields X
(1)
j in (4.2), we get

Corollary 2. Let X1, . . . , Xp be the p vector fields of an integrable system of type (p, q) near a
nondegenerate equilibrium point. If they generate a weakly hyperbolic action germ, then they can be
put into a special type of the Poincaré –Dulac normal forms simultaneously by a smooth conjugacy,
i.e., in some smooth coordinate system (x1, . . . , xm), we have

Xi =
m∑

k=1

fikxk
∂

∂xk
, i = 1, . . . , p,

where the fik’s are smooth first integrals of the vector fields X1, . . . , Xp. �

Remark 3. These results are not in contradiction with the counterexample we gave in an appendix
to [4], as no completely integrable Hamiltonian system in dimension � 4 can have a weakly
hyperbolic germ at an equilibrium point.

APPENDIX. A REMARK

Under Hypotheses 1 (weak hyperbolicity is not needed), we start from the linear vector fields

X
(1)
i =

m∑
k=1

cikxk
∂

∂xk
, i = 1, . . . , p.

We will show that the cik’s can be assumed to lie in Z.
These linear vector fields have q = m − p common first integrals which are independent almost

everywhere. Moreover, we have q monomials G1, . . . , Gq as the common first integrals of the linear
vector fields and dG1 ∧ · · · ∧ dGq �= 0 almost everywhere. We can assume the monomials to have
coefficient 1, i.e.,

Gj = xγj , γj = (γj1, . . . , γjm) ∈ N
m, j = 1, . . . , q. (A.1)
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Then, off the coordinate hyperplanes, we get⎛
⎜⎜⎜⎝

dG1

...

dGq

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

γ11
G1
x1

· · · γ1m
G1
xm

...
...

...

γq1
Gq

x1
· · · γqm

Gq

xm

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

dx1

...

dxm

⎞
⎟⎟⎟⎠ ;

hence (still off the coordinate hyperplanes), we have dG1 ∧ · · · ∧ dGq �= 0 if and only if the matrix⎛
⎜⎜⎜⎝

γ11
G1
x1

· · · γ1m
G1
xm

...
...

...

γq1
Gq

x1
· · · γqm

Gq

xm

⎞
⎟⎟⎟⎠ has rank q, i.e.,

Γ :=

⎛
⎜⎜⎜⎝

γ11 · · · γ1m

...
...

...

γq1 · · · γqm

⎞
⎟⎟⎟⎠

has rank q. Thus, our hypotheses imply rank Γ = q.
Now, as 0 = L

X
(1)
i

Gj =
( ∑m

k=1 γjkcik

)
Gj by (A.1), we have

∑m
k=1 γjkcik = 0 for 1 � i � p and

1 � j � q, i.e.,
∑m

k=1 γjkck = 0 for 1 � j � q; this writes

ΓC = 0, where C =

⎛
⎜⎜⎜⎝

c1

...

cm

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

c11 · · · c1p

...
...

...

cm1 · · · cmp

⎞
⎟⎟⎟⎠ , (A.2)

and our nondegeneracy hypothesis that X
(1)
1 ∧ · · · ∧ X

(1)
p �= 0 almost everywhere means that

rankC = p. (A.3)

As Γ is a matrix with rational coefficients and has rank q, its kernel as a linear map R
m → R

q has
dimension m − q = p and admits a basis (n1, . . . , np) with nj = (nj1, . . . , njm) ∈ Z

m for 1 � j � p.
Now, by (A.2)–(A.3), the columns c,1, . . . , c,p of C form another basis of ker Γ, hence there exists
an invertible p × p real matrix A = (aij) such that

∑p
i=1 aijc,i = nj for 1 � j � p, which proves

Proposition A.1. There exist an invertible p × p real matrix (aij) and integers njk such that∑p
i=1 aijXi =

∑m
k=0 njkxk

∂
∂xk

for 1 � j � p. In other words, up to a linear change of coordinates
in the group R

p acting on R
m, the matrix C has integer coefficients, i.e., the eigenvalues of every

X
(1)
i are integers. �
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