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Abstract—This paper is concerned with free and controlled motions of a spherical robot of
combined type moving by displacing the center of mass and by changing the internal gyrostatic
momentum. Equations of motion for the nonholonomic model are obtained and their first
integrals are found. Fixed points of the reduced system are found in the absence of control
actions. It is shown that they correspond to the motion of the spherical robot in a straight line
and in a circle. A control algorithm for the motion of the spherical robot along an arbitrary
trajectory is presented. A set of elementary maneuvers (gaits) is obtained which allow one to
transfer the spherical robot from any initial point to any end point.
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INTRODUCTION

Over the last twenty years, starting with the work of Halme [1], the development and
investigation of robots in the form of a sphere has attracted the attention of both many researchers
in the area of mechanics and mechanical engineers. The advantage of such devices is that the
spherical robots are more mobile and maneuverable than wheeled vehicles, and the spherical form
protects well the fragile and moving parts of the robots against external damage. Also, the behavior
of such robots is described by mathematical models providing a detailed study of their dynamics
and allowing control strategies for them to be developed.

Indeed, the investigation of the dynamics and controllability of spherical robots is a completely
new and popular model problem relating to a rapidly developing field, called the dynamics and
control of nonholonomic systems. This problem is a tool for testing the methods of controlling
dynamical systems in the presence of nonholonomic constraints. These nonholonomic constraints
arise since slipping at the point of contact is neglected (model of an absolutely rough surface).

Elementary control problems concerning the stabilization of motion were discussed as early
as 1972 in the classical monography [2]. But with the advent of various mathematical software
packages allowing computer simulations to be carried out and with the development of new
approaches in dynamical systems theory, new interesting results were obtained in the dynamics and
control problem. In particular, we point out that the behavior of nonholonomic systems essentially
differs from standard Hamiltonian mechanics. Nonholonomic systems can display properties that
are typical of both Hamiltonian systems and dissipative and reversible systems and can exhibit
both interesting regular [7–9] and complex chaotic behavior [11, 12]. The free dynamics of the
nonholonomic system we consider here are apparently nonintegrable and require a separate study.

To date, a huge number of prototypes of spherical robots have been developed for a variety of
applications ranging from different toys to devices for the exploration of other planets. The main
difference between the existing designs of spherical robots lies in the internal drive mechanism.
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There have been many literature reviews concerning the description of the existing models and
their technical realization (see, e.g., [13–16] and references therein), so we present here only some
of the most recent results in this area (as compared to the review [17]). A detailed review of the
principles of motion of spherical robots is made in [13]. Here we mention two main types of spherical
robots: those moving by displacement of the center of mass [15, 18–22] and those set in motion by
producing a variable gyrostatic momentum [17, 23].

We consider in more detail one of the most popular (most studied) forms of locomotion,
namely, displacement of the common center of mass of the whole robot, which causes it to
move. This mechanism is implemented most commonly using a pendulum [18, 19] or an internal
moving platform [15]. In [18], the dynamics of a spherical robot with a spherical pendulum is
studied. The authors propose a path planning algorithm for a limited contact area of the spherical
shell with the plane. They also consider the controlled motion “acceleration – deceleration” in a
straight line. We note that the forcing actions described by the authors for such a maneuver are
analogous to the controls obtained in [19] for a ball with the Lagrange gyroscope. The paper [20]
is devoted to the path planning for a spherical robot with a pendulum mechanism within the
framework of the kinematic and dynamic models. We also mention the recent paper [21], where
the local controllability of a mobile spherical robot with a two-dimensional (spherical) pendulum is
investigated. In [15], the dynamics and control of the motion of a spherical robot with an internal
omniwheel platform is discussed. In the same paper, particular solutions of the system are found,
their stability is analyzed and control algorithms are presented for the motion along an arbitrary
trajectory and using elementary maneuvers (gaits). Also in [15], the theoretical results obtained
are compared with the experimental results.

The dynamics of spherical robots controlled by changing the internal gyrostatic momentum is
considered, for example, in [17, 23]. In [17], the controlled motion of a dynamically asymmetric
balanced ball by means of three noncoplanar rotors is investigated and the construction of an
explicit algorithm for controlling the ball along a given trajectory is presented. Related problems
for the case of shortage of control actions (planning of paths realized by means of two rotors
placed on orthogonal axes) are discussed in [23]. Unfortunately, in practice this model exhibits
unsatisfactory dynamical behavior due to the influence of spinning friction and rolling friction.

Despite a large number of models of spherical robots and their technical realizations, the question
remains open as to what type of propulsion device is best-suited to ensure a simple control and
efficiency of maneuvers. Experimental investigations of the dynamics of spherical robots with
different internal propulsion devices (pendulum, rotors, omniwheel platform) have shown that a
mechanism combining the above-mentioned effects may become the most promising for controlled
motion. Motivated by this, we study the dynamics and controllability of a spherical robot of
combined type that uses for its motion both the displacement of the center of mass and the change
of gyrostatic momentum.

1. EQUATIONS OF MOTION AND FIRST INTEGRALS

Consider the motion of a spherical robot of combined type rolling without slipping on a
horizontal, absolutely rough plane (Fig. 1). The spherical robot is a spherical shell of radius Rs to
the center of which an axisymmetric pendulum (gyroscopic pendulum) is attached. We shall model
the gyroscopic pendulum by a weightless rod at the end of which a massive rotor is installed. The
rotor is an axisymmetric body (disk) rotating about the symmetry axis coinciding with the rod
(see Fig. 1). The technical design of the spherical robot has been realized so that the pendulum is
capable of executing oscillations only in a given plane related to the shell, which we shall call the
plane of rotation of the pendulum in what follows. The spherical robot is set in motion by forced
oscillations of the pendulum and by the rotation of the rotor by means of two motors.

To describe the dynamics of the spherical robot, we define two coordinate systems. The first
one, Oαβγ, is a fixed (inertial) coordinate system with the basis vectors α, β, γ. The second one,
Ce1e2e3, is a moving coordinate system with the basis vectors e1, e2, e3, the axes of which are
attached to the pendulum so that the basis vector e1 is perpendicular to the plane of rotation of
the pendulum and the basis vector e3 is directed along its symmetry axis. The origin of the moving
coordinate system coincides with the geometric center of the shell, C (see Fig. 1). In what follows,
unless otherwise stated, we shall refer all vectors to the moving coordinate system Ce1e2e3.
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Fig. 1. Schematic model of a spherical robot of combined type.

We shall specify the position of the system by the coordinates of the center of the sphere
r = (x, y, 0), by the angles of rotation, θ and ϕ, of the pendulum relative to the axes e1 and e3,
respectively, and by the matrix Q of transition from the fixed coordinate system to the moving
coordinate system, the columns of which contain the coordinates of the fixed vectors α, β,γ referred
to the moving coordinate system Ce1e2e3

Q =

⎛
⎜⎜⎜⎝

α1 β1 γ1

α2 β2 γ2

α3 β3 γ3

⎞
⎟⎟⎟⎠ .

Thus, the configuration space of the system considered is the product N = {(r, θ, ϕ,Q)} =
R

2 × T
2 × SO(3).

The absence of slipping at the point of contact of the shell with the plane is described by the
nonholonomic constraint

F = v − RsΩ × γ = 0, (1.1)

where v and Ω are, respectively, the velocity of the center and the angular velocity of rotation of
the shell.

The kinetic energy of the sphere+pendulum system can be represented as

T =
1
2
msv

2 +
1
2
IsΩ2 +

1
2
mbv

2
b +

1
2
(ω, Ibcω),

where ms and Is are the mass and the moment of inertia of the spherical shell, mb and Ibc =
diag(Ibc1, Ibc1, Ibc3) are the mass and the central tensor of inertia of the pendulum, and the velocity
of the center of mass of the pendulum vb and its angular velocity ω are given by

vb = v − Rbω × e3, ω = Ω + θ̇e1 + ϕ̇e3, (1.2)

where Rb is the distance from the center of the sphere to the center of mass of the pendulum.
Let us write the dynamical equations of the system in the form of the D’Alembert – Lagrange

equations of genus 2 in quasi-velocities with undetermined multipliers and forcing actions (for a
detailed derivation, see the Appendix)

(
∂L

∂ϕ̇

)·
− ∂L

∂ϕ
= Kϕ,

(
∂L

∂θ̇

)·
− ∂L

∂θ
+

(
e1,Ω × ∂L

∂Ω

)
+

(
e1,v × ∂L

∂v

)
+

(
e1,γ × ∂L

∂γ

)
= Kθ,

(
∂L

∂Ω

)·
+

(
Ω + θ̇e1

)
× ∂L

∂Ω
+ v × ∂L

∂v
+ γ × ∂L

∂γ
=

(
∂F

∂Ω

)T

λ,

(
∂L

∂v

)·
+

(
Ω + θ̇e1

)
× ∂L

∂v
=

(
∂F

∂v

)T

λ,

(1.3)
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where λ is the vector of undetermined multipliers, Kϕ and Kθ are the moments of external forces
(control actions) applied to the point of attachment of the pendulum to the ball and to the point
of attachment of the rotor to the rod of the pendulum, L = T − U is the Lagrangian function,
and U = −mbRbg(γ,e3) is the potential energy of the system. For some aspects of the theory of
nonholonomic systems, see [2].

Supplementing Eqs. (1.3) with the kinematic relations describing the motion of the center of the
spherical robot and the rotation of the moving axes relative to the fixed axes

Q̇ = Ω̃Q + θ̇AQ, ṙ = Q�v, (1.4)

where the matrices Ω̃ and A have the form

Ω̃ =

⎛
⎜⎜⎜⎝

0 Ω3 −Ω2

−Ω3 0 Ω1

Ω2 −Ω1 0

⎞
⎟⎟⎟⎠ , A =

⎛
⎜⎜⎜⎝

0 0 0

0 0 1

0 −1 0

⎞
⎟⎟⎟⎠ ,

we obtain a closed system of equations completely describing the rolling motion of the spherical
robot on the plane.

The resulting system admits obvious geometric integrals

α2 = 1, β2 = 1, γ2 = 1, (α,β) = (β,γ) = (γ,α) = 0.

After reduction to these integrals, Eqs. (1.3) and (1.4) define the flow in the twelve-dimensional
phase space with two control actions. Thus, the system under consideration is an underactuated
system. We recall that systems in which the number of controls is smaller than the number of
degrees of freedom are called underactuated systems. A description of control with similar systems
can be found, for example, in [23, 24].

The explicit expression for the Lagrangian of the system considered has the form

L =
1
2
(ms + mb)v2 − mbRb(v,Ω × e3) +

1
2
(Ω, (Is + Ib)Ω) + (Ω,e1)Ib1θ̇ + (Ω,e3)Ib3ϕ̇

+
1
2
Ib1θ̇

2 +
1
2
Ib3ϕ̇

2 − mbRb(v,e1 × e3)θ̇ + mbRbg(γ,e3), (1.5)

where Ib = diag(Ib1, Ib1, Ib3) = diag(Ibc1 + mbR
2
b , Ibc1 + mbR

2
b , Ibc3) is the tensor of inertia of the

pendulum relative to the center of the sphere.
Since the Lagrangian L is independent of α, β and r, the equations of motion for ϕ̇, θ̇, Ω, γ

decouple from the complete system after substituting (1.5) into (1.3) and eliminating the
undetermined multipliers, and take the following form:
(
e3, Ib(Ω̇ + ϕ̈e3)

)
= Kϕ,(

e1, Ib(Ω̇ + θ̈e1) − mbRbRse3×(Ω̇×γ + Ω×γ̇)
)
−

(
e1,mbRbRs(Ω×γ) ×

(
(Ω + θ̇e1) × e3

))

+
(
e1,Ω ×

(
mbRbRs(Ω×γ) × e3 + (Is + Ib)Ω + Ib1θ̇e1 + Ib3ϕ̇e3

))
+ mbRbg (e1,γ × e3) = Kθ,

mbRbRs(Ω̇×γ + Ω×γ̇) × e3 + (Is + Ib)Ω̇ + Ib1θ̈e1 + Ib3ϕ̈e3 − mbRbRs(Ω×γ) ×
(
(Ω + θ̇e1) × e3

)

+ (Ω + θ̇e1) ×
(
mbRbRs(Ω×γ) × e3 + (Is + Ib)Ω + Ib1θ̇e1 + Ib3ϕ̇e3

)
+ mbRbgγ × e3

= Rs

(
(ms + mb)Rs(Ω̇×γ + Ω×γ̇) − mbRb(Ω̇ + θ̈e1) × e3

)
× γ

+ Rs

(
(Ω + θ̇e1) ×

(
(ms + mb)RsΩ×γ − mbRb(Ω + θ̇e1) × e3

))
× γ,

γ̇ = γ×(Ω + θ̇e1).
(1.6)
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Equations (1.6) govern the dynamics of the reduced system and define the flow in the eight-
dimensional phase space M = {(Ω,γ, θ̇, ϕ̇)}. The dynamics of the complete system can be
reconstructed from the solution of Eqs. (1.6) with the help of the quadratures (1.4) and the no-slip
condition (1.1).

2. DYNAMICS OF THE FREE SYSTEM

Consider the dynamics of the free motion of the spherical robot. By the free motion we mean
the motion in the absence of control actions (Kθ = Kϕ = 0).

The free system admits, along with the geometric integral γ2 = 1, another two integrals of
motion

– the integral linear in the angular velocities

F1 = (Ω + ϕ̇e3,e3) = Ω3 + ϕ̇; (2.1)

– the energy integral

E =
1
2
msv

2 +
1
2
IsΩ2 +

1
2
mbv

2
b +

1
2
(ω, Ibω) − mbRbg(γ,e3). (2.2)

The reduced system (1.6) needs three integrals and an invariant measure to become completely
integrable by the Euler – Jacobi theorem1). It can be shown that the system does not admit the
existence of an invariant measure depending only on the positional variables γ and additional first
integrals linear in the velocities. Hence, apparently, the system is integrable. Moreover, the absence
of an invariant measure can lead to complex chaotic behavior. In particular, the system may exhibit
strange attractors, as, for example, in rattleback dynamics [10].

In this paper we restrict the study of the dynamics of the free system to analysis of its simplest
particular solutions, namely, fixed points of the reduced system (1.6). Fixed points of the reduced
system correspond to steady-state solutions of the complete system (1.3)–(1.4), which can be of
practical interest. The experiments conducted with different models of spherical robots have shown
that such steady-state solutions can be technically realized by means of constant forcing actions.
For this to be done, constant velocities of rotation of the control elements must be given and the
ball must be brought to a certain initial position by means of the motors.

Let us find fixed points of the reduced system. Setting in (1.6) the derivatives Ω̇, γ̇, θ̈, ϕ̈ and
Kθ, Kϕ to be equal to zero, we obtain the following system of algebraic equations:

(
e1,Ω ×

(
mbRbRs (Ω × γ) × e3 + (Is + Ib)Ω + Ib1θ̇e1 + Ib3ϕ̇e3

))

−
(
e1,mbRbRs(Ω × γ) ×

(
(Ω + θ̇ e1) × e3

))
+ mbRbg (e1,γ × e3) = 0,

mbRbRs(Ω × γ) ×
(
(Ω + θ̇ e1) × e3

)
− mbRbg γ × e3

+
(
mbRbRs(Ω × γ) × e3 + (Is + Ib)Ω + Ib1θ̇e1 + Ib3ϕ̇e3

−
(
(ms + mb)R2

s(Ω × γ) − mbRbRs(Ω + θ̇e1) × e3

)
× γ

)
×

(
Ω + θ̇e1

)
= 0,

γ × (Ω + θ̇e1) = 0.

(2.3)

We present all possible solutions of this system.
1) Two two-parameter families of fixed points

γ = ±e3, Ω =
v0

Rs
e1, θ̇ = − v0

Rs
, ϕ̇ = ϕ̇0, (2.4)

1)We recall that the function ρ(x) that satisfies the equation div (ρ(x)v(x)) = 0 is called the invariant measure for
the system of differential equations ẋ = v(x).
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where v0 and ϕ̇0 are the free parameters of the family. In absolute space, to fixed points of this
family there correspond motions of the ball in a straight line with constant velocity v0 where the
pendulum is in a vertical position and the rotor rotates with constant angular velocity ϕ̇0. For
e3 the sign is chosen depending on whether the pendulum is in the upper or lower position. The
parameters of the family are related to the values of the first integrals by

ϕ̇0 = F1, v2
0 =

2E − Ib3F
2
1 − 2mbRbg

Is + (ms + mb)R2
s

R2
s.

2) Three-parameter family of fixed points

θ̇ =
v0

Rsγ3
, γ = (sin ξ, 0, cos ξ), Ω =

v0

ρ
γ − v0

Rsγ3
e1,

ϕ̇ = −
(
−R2

s((ms+mb)ρ +mbRbγ1)− Rsγ3(mbRbρ+γ1(Ib1− Ib3))+ Isρ
)
v2
0+mbRbgRsρ

2γ1

ρRsv0Ib3γ1
,

(2.5)

where ρ, v0, ξ are the parameters of the family. In absolute space, to this family there corresponds
a motion in a circle of radius ρ with velocity v0 where the plane of rotation of the pendulum is
inclined through the angle ξ relative to the vertical.

Thus, the reduced system of equations (1.6) describing the free motion of the spherical robot
(Kθ = Kϕ = 0) admits three families of fixed points:

1) two two-parameter families (2.4), which in absolute space correspond to the motion of the
ball with an arbitrary velocity in a straight line with an arbitrary angular velocity of rotation
of the rotor;

2) the three-parameter family (2.5), to which in absolute space there corresponds the motion of
the spherical robot with an arbitrary velocity v0 in a circle of arbitrary radius ρ. In this case
the inclination angle of the plane of rotation of the pendulum is constant and can be arbitrary
too.

Remark. It follows from the relations v0 = Rsθ̇γ3 and |γ3| � 1 that the angular velocity of the
pendulum, θ̇, is larger than or equal to the quantity v0/Rs. As γ3 → 0 (as the plane of rotation
of the pendulum tends to the horizontal position), the angular velocity of the pendulum tends to
infinity. This means that the larger the angle of inclination of the plane of rotation of the pendulum,
the faster the pendulum must rotate relative to the shell to ensure that the spherical robot moves
with the same velocity v0 in a circle of the same radius ρ. Also, the absolute angular velocity of
the moving coordinate system Ω + θ̇e1 remains constant.

3. CONTROLLED MOTION
3.1. Control along an Arbitrary Trajectory

Consider the following version of the problem of controlled motion of the spherical robot.
Suppose that at the initial instant of time we are given the position of the spherical robot

r(0), Q(0), the velocity of rotation of the shell about the vertical Ωγ(0) and the angular velocities
of rotation of the pendulum θ̇(0), ϕ̇(0). Can the control actions Kθ and Kϕ be chosen such
that during the interval t ∈ [0, T ] the spherical robot (its center) moves along a given trajectory
r(t) = (x(t), y(t))?

A similar problem in the case where the projection of the angular velocity Ωγ(t) is given along
with the trajectory was solved in [17] for the Chaplygin ball with rotors and in [15] for a ball
with an internal omniwheel platform. In the case we consider here the general solution of the
control problem with an arbitrarily given function Ωγ(t) apparently cannot be obtained. This is
due to a smaller number of control actions in the model considered. Therefore, in this section we
restrict ourselves to controlling only a part of the variables, that is, we specify only the dependence
x(t), y(t), and the projection of the angular velocity onto the vertical Ωγ(t) remains an unknown
function of time.

Below we present an algorithm that allows us to solve this problem.
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1. Write the the angular velocity of the shell Ω as

Ω = Ωα(t)α + Ωβ(t)β + Ωγγ, (3.1)

where Ωα(t) and Ωβ(t) are expressed from (1.4) using the constraint equation (1.1) as

Ωα(t) =
ẏ(t)
Rs

, Ωβ(t) = − ẋ(t)
Rs

,

and are known functions of time.
2. Substitute the expression for the angular velocity (3.1) into the third equation of (1.6).

The resulting equation, combined with the kinematic relations describing the rotation of the
moving axes (1.4), forms a closed, explicitly time-dependent system of equations in the variables
α, β, γ,Ωγ , θ̇, ϕ̇:

mbRbRs(Ω̇×γ + Ω×γ̇)×e3 + (Is + Ib)Ω̇ + Ib1θ̈e1 + Ib3ϕ̈e3 − mbRbRs(Ω×γ)×
(
(Ω + θ̇ e1)×e3

)

+(Ω + θ̇e1) ×
(
mbRbRs (Ω×γ) × e3 + (Is + Ib)Ω + Ib1θ̇e1 + Ib3ϕ̇e3

)
+ mbRbg γ × e3

= Rs

(
(ms + mb)Rs(Ω̇×γ + Ω×γ̇) − mbRb(Ω̇ + θ̈ e1) × e3

)
× γ

+Rs

(
(Ω + θ̇e1) ×

(
(ms + mb)RsΩ×γ − mbRb(Ω + θ̇ e1) × e3

))
× γ,

α̇ = α×(Ω + θ̇e1), β̇ = β×(Ω + θ̇e1), γ̇ = γ×(Ω + θ̇e1),
(3.2)

where Ω should be viewed as the function Ω(α,β,γ,Ωγ , t).

3. Solve this system numerically under the given initial conditions α(0), β(0), γ(0), Ωγ(0), θ̇(0),
ϕ̇(0). This yields the time dependence of the vectors α, β, γ, of the vertical projection of the
angular velocity of the ball, Ωγ , and of the angular velocities of the pendulum, θ̇ and ϕ̇.

4. Substitute the dependencies obtained into the first two equations of (1.6) and find the explicit
time dependence of the control torques Kϕ, Kθ.

Example. As an example, we consider the motion of a ball in a circle of radius R0 in time T . We
specify the law of motion of the center of the ball along the trajectory in the form

x(t) = R0 cos s(t), y(t) = R0 sin s(t),

s(t) = wt − sin wt,
(3.3)

where w = 2π
T . Figure 2 shows the resulting dependencies of the components of the vector γ, of the

angular velocities θ̇ and ϕ̇ and of the control torques Kθ and Kϕ for the motion of the ball in a circle
of radius R0 = 0.5 in time T = 78. The dependencies of the control torques and angular velocities
have the form of oscillations near zero with pronounced maxima and minima, and so Figs. 2b and 2c
are represented on a modified (signed) logarithmic scale, i.e., instead of the functions f(t) the graphs
arcsh(5 · f(t)) are presented. Here and in the sequel, the numerical simulation was carried out for
the following system parameters:

mb = 1, ms = 0.1, Rs = 1, Rb = Rs/4, Ib1 = 0.3, Ib3 = 0.47, Is = 0.07. (3.4)

Remark. The problem of construction of control actions is not solvable for all trajectories of the
spherical robot. Indeed, equations (3.2) can be reduced to the form

A(ż) = f(z, t),

where z = (α,β,γ,Ωγ , θ̇, ϕ̇), and A(z) and f(z, t) are, respectively, a matrix and a vector that
depend on the variables z and time. The system under consideration contains a singularity on the
manifold given by the degeneracy condition of the matrix A

detA(z) = 0.
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Fig. 2. Time dependence of the components of the vector γ (a), of the angular velocities θ̇ and ϕ̇ (b) and
of the control torques Kθ and Kϕ (c) for the motion of the ball in a circle (3.3). The dependence graphs (b)
and (c) are represented on a modified logarithmic scale.

If the trajectory of the system with given initial conditions passes near this manifold, then the
velocities ż take large values. Such a motion is technically not realizable since the velocities
of rotation of the rotor and the pendulum are bounded by the parameters of the motors. But
if the trajectory enters this manifold in finite time, then the construction of control for larger
times is impossible even theoretically. Thus, the presence of the above-mentioned singularities
imposes restrictions on possible trajectories of the system and on the maneuverability of the model
considered.

3.2. Control Using Gaits

Above we have shown that the system under consideration admits two kinds of steady-state
solutions: the motion in a straight line (2.4) and that in a circle (2.5). Obviously, combining these
solutions, one can realize the motion from any initial point to any end point. Moreover, since the
steady-state solutions (particularly the stable ones) are the most applicable in practice, we consider
here the problem of definition of control torques for the realization of transition from one steady-
state solution to another. Using standard terminology, we shall refer to the elementary maneuvers
realizing such transitions as gaits.

Rotation about a fixed point. The special features of the design of the spherical robot we
consider here allow it to move in a straight line only in a direction parallel to the plane of rotation
of the pendulum. Consequently, before the start of the motion (acceleration), it is necessary to
execute rotation about the vertical axis so that the direction of motion coincides with the plane of
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rotation of the pendulum. Therefore, as the first gait we consider the rotation of the spherical robot
by a given angle ψ0 about the vertical axis passing through the fixed point in time T . Obviously,
this gait connects two steady-state solutions corresponding to the state of rest.

The rotation about the vertical lies on the invariant manifold of Eqs. (1.4) and (1.6), which is
given by

Ω = (0, 0,Ω3), θ̇ = 0, α = (α1, α2, 0), β = (β1, β2, 0), γ = (0, 0, 1), (3.5)

where Ω3 = ψ̇ with ψ being the precession angle of the spherical shell. On this invariant manifold,
Eqs. (1.6) take the simple form

ϕ̈ = −Is + Ib3

Ib3
ψ̈, Kϕ = −Isψ̈. (3.6)

Integrating the first equation of (3.6) and noting the initial conditions corresponding to the state
of rest

ϕ(0) = ϕ̇(0) = 0, ψ(0) = ψ̇(0) = 0, (3.7)
we obtain

ϕ = −Is + Ib3

Ib3
ψ. (3.8)

Now, defining ψ(t) in the form of an arbitrary function satisfying the initial conditions (3.7) and
the required boundary conditions

ψ(T ) = ψ0, ψ̇(T ) = 0,
we obtain, from (3.8) and the second equation of (3.6), the dependencies ϕ(t) and Kϕ(t) which
realize the rotation by the angle ψ0.
Example. As an example, we consider the case where the angle ψ is given as

ψ =
ψ0

2π
(wt − sinwt),

where w = 2π
T . In this case, it is easy to find an explicit form of the control

Kϕ = −Isψ0w
2

2π
sin wt.

Acceleration in a straight line. We now consider the acceleration (deceleration) maneuver
in the case of motion in a straight line. Since the acceleration is possible only in a direction parallel
to the plane of rotation of the pendulum, we assume in what follows that this plane now coincides
with the required direction of motion. Suppose that at the initial instant of time the ball moves in a
straight line according to the solution (2.4) with initial velocity v0. After completing the maneuver
(at time t = T ) it keeps moving according to the steady-state solution (2.4) in the same straight
line, but now with velocity vT . Let us find the control torque Kθ connecting these two solutions.

The motion under consideration lies on the invariant manifold of (1.4) and (1.6), which is given
by

Ω = (Ω1, 0, 0), ϕ̇ = 0, α = (1, 0, 0), β = (0, β2, β3), γ = (0, γ2, γ3). (3.9)
After parameterization of the vector γ by the angle ϑ

γ = (0, sin ϑ, cos ϑ), (3.10)
Eqs. (1.6) on the manifold (3.9) take the form

Ω̇1 = −
mbRbRs sinϑ

(
Ib1(θ̇+Ω1)2+mbRbg cos ϑ

)
−Kθ (mbRbRs cos ϑ−Ib1)

Ib1I0−m2
bR

2
bR

2
s cos2 ϑ

,

θ̈=
mbRb sin ϑ

(
Rs(Ω1+θ̇)2(Ib1−mbRbRs cos ϑ)+g(mbRbRs cos ϑ−I0)

)
+Kθ(I0+Ib1−2mbRbRs cos ϑ)

Ib1I0−m2
bR

2
bR

2
s cos2 ϑ

,

ϑ̇ = θ̇+Ω1,
(3.11)

where the notation I0 = Is + (ms + mb)R2
s is used for brevity.
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When t < 0 and t > T , the spherical robot moves in a straight line according to the steady-state
solution (2.4), hence, at the initial and the final instant of time the pendulum must be in the lower
vertical position, and its velocity must be equal to zero. The corresponding boundary conditions
for the system (3.11) have the form

ϑ(0) = ϑ(T ) = 0,

Ω(0) = −θ̇(0) =
v0

Rs
, Ω(T ) = −θ̇(T ) =

vT

Rs
.

(3.12)

Moreover, it follows from (3.12) and the third equation of (3.11) that the function ϑ(t) must satisfy
the additional condition

ϑ̇(0) = ϑ̇(T ) = 0. (3.13)

Eliminating θ̇ from the first two equations of (3.11) using the third one, we obtain

Kθ =
ϑ̈
(
m2

bR
2
bR

2
s cos2 ϑ + I0Ib1

)
+ mbRb sin ϑ

(
mbRbR

2
s cos ϑϑ̈ + gI0

)

mbRbRs cos ϑ − I0
,

Ω̇1 =
mbRb sinϑ(g + Rsϑ̇

2) − ϑ̈(mbRbRs cos ϑ − Ib1)
mbRbRs cos ϑ − I0

.

(3.14)

We now choose some dependence ϑ(t, p) satisfying the conditions (3.12) and (3.13), where p is
some parameter of the maneuver. Substituting this dependence into (3.14), we obtain an explicit
expression for Kθ(t) and Ω̇1(t), which realize the maneuver we consider here.

Integrating the second equation of (3.14) over time, we obtain the value of the angular velocity
of the spherical robot Ω(T ) at the final instant of time T . Now, using the constraint equation (1.1),
it is easy to obtain the value of linear velocity vT at the final instant of time and hence the change
in the velocity Δv(p) depending on the maneuver parameter. Inverting this function, we obtain the
dependence p(Δv), which will allow us to determine the maneuver parameters for acceleration to
a given velocity.

Example. As an example, we consider a controlled motion where the spherical robot with
parameters (3.4) accelerates from rest with the initial conditions

Ω(0) = 0, α(0) = (1, 0, 0), β(0) = (0, 1, 0), γ(0) = (0, 0, 1), ϕ̇(0) = 0

to a given velocity vT . Let us choose the dependence ϑ(t) in the form

ϑ(t) = p sin2
(πt

T

)
, (3.15)

where p is the oscillation amplitude of the pendulum. Assume that it is necessary to accelerate
the ball in time T = 3 to the velocity vT = 0.04. Integrating the second equation of (3.14)
using (3.15), we obtain the (numerical) dependence vT (p). Inverting this dependence, we find that
the acceleration to vT = 0.04 is performed with the amplitude p = 0.1. Substituting the resulting
value of p and the dependence (3.15) into the first equation of (3.14), we obtain an explicit form
of the control torque Kθ(t). Figure 3 shows this time dependence of the control torque Kθ and the
projections of the vector γ onto the axis e3 and of velocity v. The figure shows that after completion
of the maneuver γ returns to the vertical position, and the further motion is a rolling motion in a
straight line with new velocity vT .

Combining the gaits that realize acceleration (deceleration), rotation about a fixed point and
steady motion in a straight line (2.4), one can execute the motion of the spherical robot along
an arbitrary trajectory. But in this case a stop is necessary before each change in the direction
of motion. To eliminate this limitation, it would be interesting to construct other gaits, for
example, those connecting the motions along straight lines having different directions, without
an intermediate stop. Examples of such gaits for a ball with the Lagrange pendulum are given
in [19]. In the case at hand the construction of such controls is much more complicated and is
beyond the scope of this paper.
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Fig. 3. Example of the time dependence Kθ (a) and γ3, v (b) during the acceleration of the ball in a straight
line to a given velocity.

CONCLUSION

In conclusion, we highlight some open problems which we believe to be of particular interest.
It would be interesting to examine in more detail the possibility (or impossibility) of controlled

motion along some curve r(t) from the point of view of solvability of the system (3.2). This would
allow one to determine the maneuverability of the model considered and the class of “permissible”
trajectories along which a controlled motion can be executed.

Another open problem is that of construction of gaits realizing the rotation without a stop, in
particular, the construction of gaits connecting steady motions in straight lines located at an angle
to each other, and of gaits connecting the motions in a straight line and in a circle.

Also of interest is an experimental testing of the results obtained: realization of steady-state
solutions by specifying constant angular velocities of the control elements; realization of controlled
motion in a straight line and of rotation about a fixed point using the gaits obtained. Based on such
an experimental testing, it would be possible, in particular, to determine the scope of applicability
of the model considered.

APPENDIX

We present here a derivation of equations that are a generalization of the Poincaré – Hamel
equations [25] in quasi-coordinates to systems with nonholonomic constraints.

Consider the equations of motion of a Lagrangian dynamical system defined by the generalized
coordinates qi = {Q, r, θ, ϕ} and the quasi-velocities wi = {Ω, v, θ̇, ϕ̇}, which are expressed in
terms of the generalized velocities q̇i by the formulas

q̇i =
k∑

s=1

vs
i (q)ws, i = 1 . . . 8,

or in the explicit form

Q̇ = Ω̃Q + θ̇AQ, ṙ = Q�v, θ̇ = θ̇, ϕ̇ = ϕ̇.

To derive the equations of motion, it is necessary to find the velocity components of the system
in the nonholonomic basis of the vector fields

vs =
∑

i

vs
i (q)

∂

∂qi
. (A.1)

To do so, we write explicitly the total time derivative of some function f :

ḟ =
(

Q̇ij
∂

∂Qij
+ ṙi

∂

∂ri
+ θ̇

∂

∂θ
+ ϕ̇

∂

∂ϕ

)
f =

(
(Ω̃ + Aθ̇)ikQkj

∂

∂Qij
+ Qjivj

∂

∂ri
+ θ̇

∂

∂θ
+ ϕ̇

∂

∂ϕ

)
f

=
(

QkjΩ̃ik
∂

∂Qij
+ Qjivj

∂

∂ri
+ θ̇

(
∂

∂θ
+ AikQkj

∂

∂Qij

)
+ ϕ̇

∂

∂ϕ

)
f = (Ωiξi + viζi + θ̇η + ϕ̇ν)f,
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where the vector fields have the form

ξi = −εijk

(
αj

∂

∂αk
+ βj

∂

∂βk
+ γj

∂

∂γk

)
, ζi =

(
αi

∂

∂r1
+ βi

∂

∂r2
+ γi

∂

∂r3

)
,

η =
∂

∂θ
− ε1jk

(
αj

∂

∂αk
+ βj

∂

∂βk
+ γj

∂

∂γk

)
=

∂

∂θ
+ ξ1, ν =

∂

∂ϕ
,

(A.2)

here εijk is the Levi-Civita symbol, i, j, k = 1 . . . 3. Then the nonholonomic basis of the vector fields
has the components v = (ξ1, ξ2, ξ3, ζ1, ζ2, ζ3,η,ν).

The equations of motion in quasi-velocities with undetermined Lagrange multipliers have the
form [26]

d

dt

(
∂L

∂wi

)
=

∑
r,s

cs
riwr

∂L

∂ws
+ vi(L) +

∑
j

λj
∂Fj

∂wi
, i = 1 . . . 8, (A.3)

where the differentiation along the vector fields vi is defined using (A.1) and cs
ri are the commutators

of the vector fields (Poincaré parameters):

[vr,vi] = cs
ri(q)vs,

where [ · , · ] is the Lie bracket of the vector fields. The commutation relations of the vector
fields (A.2) have the form

[ξi, ξj ] = εijkξk, [ξi, ζj ] = εijkζk, [ξi,η] = −ε1ikξk, [ζi,η] = −ε1ikζk,

[ζi, ζj ] = [η,η] = [ξi,ν] = [ζi,ν] = [ν,ν] = 0.

Adding the forcing actions Kθ, Kϕ to the explicit form of (A.3), we obtain Eqs. (1.3).
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