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Abstract—The problem of motion of a heavy particle on a sphere uniformly rotating about a
fixed axis is considered in the case of dry friction. It is assumed that the angle of inclination of
the rotation axis is constant. The existence of equilibria in an absolute coordinate system and
their linear stability are discussed. The equilibria in a relative coordinate system rotating with
the sphere are also studied. These equilibria are generally nonisolated. The dependence of the
equilibrium sets of this kind on the system parameters is also considered.
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Based on the results of computer simulation (see [1, 2]), it is possible to investigate the dynamics
of systems with a large number of moving parts. However, the output of such a simulation usually
does not represent any qualitative results. That is why it is reasonable to consider some simple
problems such as the motion of a material particle on some surface under the action of friction
force. In [3] the problem of motion of a heavy bead on a circular hoop rotating about its vertical
diameter was studied. A similar problem for a circular hoop rotating about some other vertical axis
was investigated in [4].

In these papers the dependence of the nonisolated equilibrium sets of a bead on system
parameters was considered. The fact of existence of these sets for systems with dry friction is
well known (see [5, 6]). The investigation of the existence and stability of nonisolated equilibria in
gyro systems with friction [7, 8] laid a foundation for the development of the stability theory for
systems with dry friction [9]. Methods of stability analysis of equilibria of this kind based on the
general theory of systems with discontinuous right-hand sides were later developed in [10–12]. An
original approach to studying the dependence of nonisolated equilibrium sets on the parameters of a
system for two-dimensional and three-dimensional problems was suggested by A.P. Ivanov [13, 14].
The same kind of bifurcations, as well as sufficient conditions for stability of equilibrium sets, were
considered in [15].
Remark 1. The motion of rigid bodies on moving surfaces is generally investigated in the presence
of nonholonomic constraints and under the assumption of no slippage (see, for example, [16]). The
same problems for nonholonomic systems under the assumption of dry friction are still very poorly
understood.
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1. FORMULATION OF THE PROBLEM

Fig. 1. A point on a rotating
sphere.

Let P be a heavy material point of mass m. This point moves
on the surface of a two-dimensional sphere of radius � under the
action of the dry friction force, with the coefficient of friction
being μ. The sphere is rotating with a constant angular velocity
�ω about a fixed axis. It is assumed that the axis passes through
the center of the sphere O and its unit vector is �e. Denote the
angle of inclination of the axis by α, 0 � α � π/2.

Let Ox1x2x3 be an absolute coordinate system such that the
plane Ox1x2 is horizontal and the axis Ox3 is directed along
the upward vertical. Assume that the rotation axis belongs to
the plane Ox1x3. Denote the spherical angles that specify the
position of the point on the sphere by θ and ϕ, 0 � θ � π,
0 � ϕ < 2π (Fig. 1).

Using these coordinates, the absolute velocity of the point
P and its relative velocity can be written as

�υ = υθ�eθ + υϕ�eϕ = �θ̇�eθ + � sin θϕ̇�eϕ,

�υ1 = υ1θ�eθ + υ1ϕ�eϕ

= (�θ̇ + �ω sin α sin ϕ)�eθ

+ (� sin θϕ̇ + �ω sinα cos θ cos ϕ − �ω sin θ cos α)�eϕ.

Assume that the point is slipping, then the equations of motion can be written as
⎧
⎪⎨

⎪⎩

m�(θ̈ − sin θ cos θϕ̇2) = mg sin θ − F
υ1θ

| �υ1|
,

m�(sin θϕ̈ + 2ϕ̇θ̇ cos θ) = −F
υ1ϕ

| �υ1|
,

(1.1)

where F is a friction force.
Equations (1.1) are obtained by projecting the Newton equation of motion on the axes �eθ and �eϕ.

In the case of slippage of the point the friction force can be found from the following equation:

F = μ|N |, N = mÑ, Ñ = �(− sin2 θϕ̇2 − θ̇2) + g cos θ, (1.2)

where �N is a normal reaction. It is also assumed that the constraint is bilateral, so the point always
remains on the surface of the sphere.

Now consider two different cases of the inclination angle of the rotation axis.

2. THE CASE OF AN INCLINED ROTATION AXIS
We first consider the case of an inclined rotation axis. The system for equilibria can be obtained

by putting θ̇ = ϕ̇ = 0, θ̈ = ϕ̈ = 0 in Eqs. (1.1) and (1.2). Dropping tildes, one arrives at the equations
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 = g sin θ − μ|N | sin α sin ϕ · R−1(θ, ϕ, α),

0 = −μ|N |(sin α cos θ cos ϕ − sin θ cos α) · R−1(θ, ϕ, α),

N = g cos θ,

(2.1)

where R(θ, ϕ, α) =
√

(sin α sin ϕ)2 + (sin α cos θ cos ϕ − sin θ cos α)2.
Now there are two cases for the disposition of a point on a sphere.
Case 1. Let the point be placed on the upper hemisphere. Then cos θ > 0. Using Eq. (2.1), one

obtains the solution
⎧
⎨

⎩

cos ϕ = μ ctg α,

tg θ = μ,
(2.2)

when sinϕ > 0.
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Let μ be fixed and α be varying from π/2 to 0. For every allowed value of α the point is placed
on a circle C defined by the angle θ = arctg μ. If α = π/2, i.e., the rotation axis is horizontal, from
Eq. (2.2) one obtains ϕ = π/2. Thus, the point is placed on the intersection of this circle and
the vertical great circle, perpendicular to the rotation axis. If the angle α decreases from π/2 to
α∗ = arctg μ, then the equilibrium is moving along C, and when α = α∗, one obtains ϕ = 0. There
are no equilibria if α < α∗ or sin ϕ < 0.

Case 2. Similarly for the point located on the lower hemisphere. In this case cos θ < 0 and if
sin ϕ > 0, the solution becomes

⎧
⎨

⎩

cos ϕ = −μ ctg α,

tg θ = −μ,
(2.3)

and there are no solutions if sinϕ < 0.

Thus, if α varies from π/2 to α∗ = arctg μ with μ being fixed, the equilibria move along the
circle given by θ = π − arctg μ. If the rotation axis is horizontal, then cos ϕ = 0, i.e, ϕ = π/2, so
the point is placed on the vertical great circle, perpendicular to the rotation axis. With decreasing
angle α the equilibrium is moving along the circle, and when α = α∗, one obtains ϕ = π. There are
also no equilibria if α < α∗.

Figure 2 illustrates the dependence of the coordinate ϕ on the angle of inclination of the rotation
axis in cases of different magnitudes of the coefficient of friction μ. The coordinate θ remains
constant on each of the curves. Thus, if the angle α is increasing, then the upper and the lower
equilibria are moving on the horizontal plane from ϕ = π/2 to ϕ = 0 and from ϕ = π/2 to ϕ = π,
respectively. Figure 3 illustrates the displacement of equilibria on a sphere with the parameter μ
increasing from 0 to 1 for α = π/4.

Fig. 2. The dependence of the coordinate ϕ on the inclination angle α increasing from 0 to π
2

at different

values of the friction coefficient μ: 1 — 0.1, 2 — 1√
3
, 3 — 1, 4 —

√
3: (a) for the upper equilibrium, (b) for

the lower equilibrium.

In order to discuss the stability of the equilibria, we linearize the equations of motion near the
equilibria by introducing small perturbations θ = θ0 + θ̂, ϕ = ϕ0 + ϕ̂. Since these perturbations are
assumed small, the perturbed normal reaction N̂ = g cos θ0 − gθ̂ sin θ0 for θ0 �= π/2 is of the same
sign as the normal reaction for equilibrium. Introducing the parameter ε = ±1, one obtains the
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Fig. 3. The displacement of equilibria on a sphere with increasing μ: (a) top view, (b) side view.

linearized equations on the equilibria found:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�
¨̂
θ − g cos θ0θ̂ − εμg sin θ0θ̂ = 0,

�ω sin θ0 sin ϕ0 sin α ¨̂ϕ + εμg cos θ0 sin θ0
˙̂ϕ − εμgω cos2 θ0 sin ϕ0 sinαϕ̂

−εμgω(sin θ0 cos θ0 cos ϕ0 sin α + cos2 θ0 cos α)θ̂ = 0

(2.4)

The characteristic equation of the system is

�2ω sin θ0 sinϕ0 sin αP1(σ) = (�σ2 − g cos θ0 − εμg sin θ0)

×(�ω sin θ0 sin ϕ0 sinασ2 + εμg cos θ0 sin θ0σ − εμgω sin ϕ0 cos2 θ0 sin α),
(2.5)

where θ0 and ϕ0 can be found from Eqs. (2.2) and (2.3).
The expression inside the first parentheses of Eq. (2.5) is equal to zero when

σ1,2 =
√

εg

�

√
1 + μ2.

If ε = 1, then the characteristic equation has a root with a positive real part and the equilibrium
is unstable.

The expression inside the second parentheses is equal to zero when

σ3,4 =
−μ2g ±

√

μ4g2 + 4εμ2
√

1 + μ2g�ω2(1 − μ2 ctg2 α) sin2 α

2�ωμ sin α
√

1 + μ2
√

1 − μ2 ctg2 α
.

If ε = −1, i.e., the lower equilibrium is considered, then the characteristic equation has two pure
imaginary roots and two roots with negative real parts. Thus, this equilibrium is linearly stable.

Remark 2. In [17] a similar problem for the viscous friction force was discussed. The set of
equilibria in this case differs from that obtained above, but in both of them it is necessary to
consider the case of two pure imaginary roots to conduct a full investigation of stability (see,
e.g., [18]).

3. THE CASE OF A VERTICAL ROTATION AXIS
In the case of a vertical rotation axis the spherical coordinate system degenerates in equilibrium

positions. That is why in this case the problem should be considered using the Cartesian coordinates
Ox1x2x3.

Let �r be the vector �OP and let �ω = ω�e3 be the angular velocity of a sphere. The point is slipping,
so the equations of motion are

m�̈r = −mg�e3 − μ|λ�r| �̇r − �ω × �r

|�̇r − �ω × �r|
+ λ�r,
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where λ is the Lagrange multiplier. These equations should be considered together with the
constraint equation

1
2
((�r,�r) − �2) = 0.

In this case the solution of the equations of motion is

r10 = 0, r20 = 0, r30 = ±�, λ0 = ±mg

�
, �̇r = 0,

i.e., the equilibria are placed on the poles of the sphere.
Since these solutions do not specify the slippage of the point on the sphere, it is difficult to

analyze the stability of these equilibria using the linearized equations of motion. However, these
equilibria are also the equilibria in a relative coordinate system that is rotating with the sphere.
In the case of a vertical axis of rotation the problem is spherically symmetric. That is why the
investigation of the existence of solutions of this kind can be reduced to the one conducted in [3].
Other sets of relative equilibria are discussed in the next section of this paper.

4. SETS OF RELATIVE EQUILIBRIA

Let us now introduce a relative coordinate system Oy1y2y3 with the axis Oy3 coinciding with
the rotation axis. The position of the point in this system will be specified by two spherical angles
ξ and η. Let ξ be the angle between the axis Oy3 and �OP and let η be the angle between the axis
Oy1 and �OP ′, where P ′ is a projection of the point P on the plane Oy1y2 (Fig. 4).

Fig. 4. Spherical angles ξ and η specifying the position of the point P .

Now introduce dimensionless time t �→

√
l

g
t and dimensionless a parameter Ω2 =

l

g
ω2. The

derivative with respect to the new time will be denoted by a stroke. Then the system of motion in
the relative coordinate system can be rewritten as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(− sin2 ξη′2 − ξ′2) = −(sin ξ cos η sin ωt sinα + sin ξ sin η cos ωt sin α

+ cos ξ cos α) + Ñr + Ω2 sin2 ξ + 2Ω sin2 ξη′,

(ξ′′ − sin ξ cos ξη′2) = −(cos ξ cos η sinωt sin α + cos ξ sin η cos ωt sinα

− sin ξ cos α) − F̃ξ + Ω2 cos ξ sin ξ + 2Ω sin ξ cos ξη′,

(sin ξη′′ + 2ξ′η′ cos ξ) = (sin ωt sin η sin α − cos ωt cos η sinα) − F̃η

−2Ω cos ξξ′,

(4.1)
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where F̃ξ = Fξ/mg, F̃η = Fη/mg are dimensionless projections of the friction force on the coordinate
axes �eξ and �eη, and Ñr = Nr/mg is a dimensionless normal reaction. By introducing an angle

γ = η − π

2
+ ωt and omitting tildes the system becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(− sin2 ξγ′2 − ξ′2) = −(sin ξ sin α cos γ + cos ξ cos α) + Nr + Ω2 sin2 ξ

+2Ω sin2 ξγ′,

(ξ′′ − sin ξ cos ξγ′2) = −(cos ξ sinα cos γ − sin ξ cos α) − Fξ

+Ω2 cos ξ sin ξ + 2Ω sin ξ cos ξγ′,

(sin ξγ′′ + 2ξ′γ′ cos ξ) = sin α sin γ − Fη − 2Ω cos ξξ′.

(4.2)

The equilibria can be found from these equations by supposing ξ′ = 0, γ′ = 0, ξ′′ = 0, γ′′ = 0. If
the point is in a state of equilibrium, then

√
F 2

ξ + F 2
η � μNr,

or

F 2
ξ + F 2

η � μ2N2
r , (4.3)

where

Fξ = − cos ξ sinα cos γ + sin ξ cos α + Ω2 cos ξ sin ξ, Fη = sin α sin γ,

Nr = sin ξ sin α cos γ − cos ξ cos α − Ω2 sin2 ξ.

Using these expressions and inequality (4.3), one obtains

(− cos ξ sinα cos γ + sin ξ cos α + Ω2 cos ξ sin ξ)2 + sin2 α sin2 γ

� μ2(sin ξ sin α cos γ − cos ξ cos α − Ω2 sin2 ξ)2.
(4.4)

Now introduce

P (x) = ax2 + bx + c, x = cos γ,

where

a = −(μ2 + 1) sin2 ξ sin2 α,

b = 2 sin ξ sin α(g cos ξ cos α(1 − μ2) − Ω2(cos2 ξ − μ2 sin2 ξ)),

c = cos2 α(sin2 ξ − μ2 cos2 ξ) + sin2 α + Ω4 sin2 ξ(cos2 ξ − μ2 sin2 ξ)

−2Ω2 sin2 ξ cos ξ cos α(1 + μ2),

and a < 0 if α �= 0, π. Then inequality (4.4) reads

P (x) � 0, (4.5)

where x ∈ [−1, 1].
The boundary of the area of relative equilibrium is the parabola y = ax2 + bx + c. The

coordinates of the vertex A of this parabola are

xA = − b

2a
=

cos ξ cos α(1 − μ2) − Ω2(cos2 ξ − μ2 sin2 ξ)
(μ2 + 1) sin ξ sin α

,

yA = −b2 − 4ac

4a
=

(cos ξ cos α(1 − μ2) − Ω2(cos2 ξ − μ2 sin2 ξ))2

μ2 + 1
+ cos2 α(sin2 ξ − μ2 cos2 ξ) + sin2 α + Ω4 sin2 ξ(cos2 ξ − μ2 sin2 ξ)

−2Ω2 sin2 ξ cos ξ cos α(1 + μ2).
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If yA � 0, then inequality (4.5) is fulfilled. If yA > 0, then the inequality is fulfilled when: 1) the
condition holds true for the right boundary x = 1, i.e., P (1) = a + b + c � 0 and xA � 1 or 2) the
condition holds true for the left boundary x = −1, i.e., P (−1) = a − b + c � 0 and xA � −1.

Thus, bifurcation diagrams can be drawn as conjugations of these three sets. Figures 5–9
represent the bifurcation diagrams for different values of the inclination angle α and μ = 0.7. The
equilibrium sets can be obtained by a rotation through angle 2π about an axis that coincides
with the rotation axis. When α = 0, the diagram represents a half of a “fat fork” F and an
equilibrium set in the form of a needle G near the axis ξ = π, which converges as ω → ∞ (Fig. 5,
see also [3]). With increasing angle α the area G and the “bridge” between the “jags” of the fork
are getting thinner (Fig. 6), then the “bridge” disappears (Fig. 7), and when α > arctan μ, there is
only the bigger jag left (Fig. 8), which straightens itself with further increase in α (Fig. 9). When
ω → ∞, the bifurcation diagram for every α is a strip with the boundaries ξ = arctan(1/μ) and
ξ = π − arctan(1/μ).

Fig. 5. Bifurcation diagram for α = 0.

Fig. 6. Bifurcation diagram for α = 0.6077. Fig. 7. Bifurcation diagram for α = 0.6087.
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Fig. 8. Bifurcation diagram for α = arctan(0.7) + 0.01. Fig. 9. Bifurcation diagram for α = π/2.

Remark 3. In [19, 20] an approach to the question of the nature of dry friction, which is based
on Painlevé’s investigations [21], was developed. The question of using this approach to solving the
problem of existence and stability of equilibria of systems with dry friction is of interest.
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