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Abstract—This paper deals with the problem of a spherical robot propelled by an internal
omniwheel platform and rolling without slipping on a plane. The problem of control of spherical
robot motion along an arbitrary trajectory is solved within the framework of a kinematic
model and a dynamic model. A number of particular cases of motion are identified, and their
stability is investigated. An algorithm for constructing elementary maneuvers (gaits) providing
the transition from one steady-state motion to another is presented for the dynamic model. A
number of experiments have been carried out confirming the adequacy of the proposed kinematic
model.

MSC2010 numbers: 93B18, 93B52

DOI: 10.1134/S1560354715020033

Keywords: spherical robot, kinematic model, dynamic model, nonholonomic constraint, omni-
wheel.

1. INTRODUCTION

The motion of ball-shaped objects has long been of great interest to engineers and researchers in
mechanics and dynamics. This interest is confirmed by a large number of studies devoted to both
free motion [1, 2, 48–50, 52, 56, 59] and forced [3, 4, 47] motion of spherical objects. Self-propelled
ball-shaped mechanical toys dating back to the late nineteenth century [5] are the prototypes of
modern spherical robots. The first models of spherical robots arose at the end of the twentieth
century, and more than a dozen different models implementing various motion principles were
created within a few years. A detailed review and advantages of ball-shaped mobile robots with
different driving mechanisms are presented in the collection of papers [6].

This paper deals with a spherical robot moving due to the motion of an omniwheel platform
inside a spherical shell (see Fig. 1a). The axes of rotation of the rollers are positioned at an angle of
45◦ to the wheel plane. The platform moves on omniwheels whose axes of rotation of the rollers are
turned through 45◦ relative to the wheel’s plane. The omniwheels provide a higher maneuverability
as compared to the conventional automobile kinematic designs. A detailed description of the design
and the mathematical model of an omniwheel for rolling on a plane and a sphere is provided in [7].
We note that similar wheels can also be used for rolling on the inner surface of the sphere. However,
to ensure continuity of contact between the rollers and the spherical surface, their profile needs to
be adjusted.

A spherical robot design that is closest to the one considered in this paper is presented in [8].
The main difference is that the axes of rotation of the passive rollers are arranged at an angle of
90◦ to the axis of rotation of the wheel. In that paper, kinematic equations of motion are derived,
and results of experiments involving motions in a straight line, a circle and a square are presented.
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THE DYNAMICS AND CONTROL OF A SPHERICAL ROBOT 135

However, the error of movement of the robot was 10 to 50%, indicating a lack of consideration of
the kinematic model.

Unfortunately, the dynamics of motion of a spherical robot have received little attention in
the literature. Among the studies on the dynamics of spherical robots moving due to a variable
gyrostatic momentum created by means of internal rotors we mention [9–14]. The motion due to
the displacement of the own center of mass of the robot is dealt with in [15–20]. In the above-
mentioned works, various forms of dynamical equations for spherical robots are presented and
control actions for the realization of motion along typical trajectories are obtained. The thing is
that the dynamics are described by nonholonomic equations. A large number of works is concerned
with the derivation of these equations. Among them we mention here only the papers published
over the last few years [21–24] (see also references therein). We also mention some recent studies
devoted to the motion of spherical robots (or similar systems) in the presence of various resistance
forces ranging from dry friction to motion in a viscous medium [46, 53–55, 57, 58].

A study of straightforward motion of the spherical robot with an internal pendulum on generic
surfaces is presented in [29]. The authors have conducted numerical simulations for a spherical robot
descending into a crater and moving on an inclined plane. A stability analysis and a discussion of
stabilization of this model of a spherical robot taking into account the recovery of energy during
deceleration are presented in [26, 30]. A control algorithm for the spherical robot of a similar
design moving on an inclined plane, as well as its dynamic stabilization, is also described in [32].
A. Hartl and P.Mazzoleni [27, 28] conducted numerical simulations of the dynamics of a wind-driven
spherical rover, including on rough surfaces. In [31], a novel design of the center-of-mass shifting
mechanism of a spherical robot is proposed, and a kinematic model is provided along with the results
of numerical simulations and experimental investigations. The design of a spherical robot with two
internal pendulums is presented in [25]. In addition to dynamic equations, the authors investigate
nonlinear feedback and discuss the results of numerous experiments. The results of studies presented
in these papers demonstrate a significant discrepancy between theory and experimental results. This
circumstance emphasizes the complexity and relevance of continuing work towards the development
of control algorithms for spherical robots.

2. A MODEL OF A SPHERICAL ROBOT WITH AN INTERNAL OMNIWHEEL
PLATFORM

We consider a model of a spherical robot moving on a horizontal plane as a system of bodies
comprising a spherical shell of radius R0 inside which there is a platform with three identical
omniwheels of radius Rw (see Fig. 1). In this paper, by omniwheels we mean the Mecanum wheels
whose design and nonholonomic model is described in [7], where an omniwheel is modeled as a flat
disk for which the velocity of the point of contact with the supporting surface is directed along a
straight line which forms a constant angle with the plane of the wheel.

To describe the motion of a spherical robot, we consider three coordinate systems. The first one,
OXY Z, is a fixed system with an orthonormal basis α, β, γ; the second one, Cx′y′z′, is a moving
system rigidly attached to the spherical shell, with an orthonormal basis ξ, η, ζ; and the third one,
Cxyz, is a moving system rigidly attached to the omniwheel platform with an orthonormal basis
e1, e2, e3 (see Fig. 1). The design of the moving platform will be described by the following constant
(in the coordinate system Cxyz) vectors: ri — the radius vectors of the centers of the omniwheels,
ni — the unit vectors directed along the axes of rotation of the omniwheels, αi — the unit vectors
defining the directions of the axes of rotation of the rollers of each wheel at points of contact with
the shell, and rm defines the position of the center of mass of the moving omniwheel platform.

The position of the system will be described by the coordinates of the center of the spherical shell
in the fixed coordinate system r = (x, y, 0), the angles of rotation of the wheels χ = (χ1, χ2, χ3),
and two matrices that specify the orientation of the platform and the spherical shell in space

Q = (α, β, γ) , S = (ξ, η, ζ) .

Here and in the sequel (unless otherwise stated), all the vectors are referred to the axes of the
coordinate system Cxyz rigidly attached to the platform. Therefore, the configuration space of the
system under consideration is the product of R2 × T3 × SO(3) × SO(3).
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(a) (b)

Fig. 1. (a) 3D model of a spherical robot with an internal omniwheel platform, (b) schematic of a spherical
robot.

In these coordinates the motion of the spherical shell and the platform is governed by the
following kinematic relationships [36]

ṙ = QT v, Q̇ = ω̃Q, Ṡ = (ω̃ − Ω̃)S, (2.1)

where v is the velocity of the center of the sphere (referred to the axes of the system Cxyz), ω̃ and
Ω̃ are expressed in terms of components of absolute angular velocities of the moving platform ω
and the spherical shell Ω as follows:

ω̃ =

⎛⎜⎜⎜⎜⎜⎝
0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

⎞⎟⎟⎟⎟⎟⎠ , Ω̃ =

⎛⎜⎜⎜⎜⎜⎝
0 Ω3 −Ω2

−Ω3 0 Ω1

Ω2 −Ω1 0

⎞⎟⎟⎟⎟⎟⎠ .

The variables ω, Ω and v are quasi-velocities, and their relation to generalized velocities is given
by (2.1).

We assume that there is no slipping at any point of contact of the spherical shell with the plane
and the omniwheels. This leads to the imposition of nonholonomic constraints on the system. The
absence of slipping of the spherical shell relative to the plane corresponds to the constraint

F = v − R0Ω× γ = 0, (2.2)

while the absence of slipping of the wheels relative to the spherical shell [7] corresponds to

Gi = χ̇i +
R0

(si, ni)Rw
(ω − Ω, si) = 0. (2.3)

where si = ri × αi.
An experimental model of a spherical robot with an internal omniwheel platform was

created at the Laboratory of Nonlinear Analysis and the Design of New Types of Vehi-
cles of the Udmurt State University [33, 37]. The design of this spherical robot corresponds
to the following parameter values: the radius, mass and moment of inertia of the spherical
shell — R0 = 0.15m, m0 = 0.8 kg, I0 = 0.012 kg·m2; the radius of the omniwheels — Rw =
0.07m, the radius vectors defining the position of the omniwheels, the direction of their axes
and the axes of the rollers: ri = 0.057 (cos ϕi, sinϕi, −1) , ni = 1/

√
2 (cos ϕi, sinϕi, 1) , αi =

1/
√

2 (cos(ϕi − π/4), sin(ϕi − π/4), 1), where ϕi = 2π(i− 1)/3, i = 1 . . . 3; the mass and the tensor
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of the moving omniwheel platform — m = 2.5 kg, I = diag(0.016, 0.016, 0.023) kg·m2. All exper-
imental studies have been conducted using this specimen, and the numerical calculations found
below have been carried out for the specified parameter values.

We consider the problem of controlling a spherical robot in the following formulation:

determine a control action required to implement the motion along a given
trajectory x(t), y(t) at t ∈ [0, T ] with a predetermined time dependence of
the projection of the angular velocity of the spherical shell on the vertical
Ωγ(t) for known initial orientations α(0), β(0), γ(0) and the angular
velocity of the platform ω(0).

This problem can be solved in the framework of two different models: the kinematic model and
the dynamic model. We first consider the simpler kinematic model.

3. CONTROL IN THE FRAMEWORK OF THE KINEMATIC MODEL

Within the framework of the kinematic model we will use the angular velocities of the rotating
omniwheels χ̇i as the control actions. Expressing from the constraint equation

Ω =
1
R

γ × v + Ωγγ

and substituting the resulting expression in Eq. (2.3) taking into account Eq. (2.1), we determine
the dependence of control actions on the given trajectory (rc(t), Ωγ(t)) and the variables of the
system under consideration (Q, ω)

χ̇i =
1

Rw

(si, γ × Qṙc + R0Ωγγ − R0ω)
(si, ni)

. (3.1)

We make the following assumption.

Assumption. Within the framework of the kinematic (quasi-static) model we shall assume that
during motion of the spherical robot the center of mass of the platform is always in the lowest
possible position. The radius vector of the center of mass can be expressed as

rm = −Rmγ,

where Rm is the distance from the origin of the moving coordinate system to the center of mass of
the moving platform.

It follows from this assumption that the angular velocity ω is perpendicular to the plane on
which the spherical robot moves, i.e.,

ω = ωγγ. (3.2)

Furthermore, if we write the matrix Q in terms of Euler angles it is easy to show that in this case
the angles of nutation and self-rotation are constant θ = θm, ϕ = ϕm and define up to sign the
spherical coordinates of the center of mass of the omniwheel platform in the moving coordinate
system. Decomposing the matrix Q into the corresponding constant multipliers, we get

Q = QmQψ, (3.3)

where the matrix Qm has the form

Qm =

⎛⎜⎜⎜⎜⎜⎝
cos ϕm cos θm sinϕm sin θm sinϕm

− sinϕm cos θm cos ϕm sin θm cosϕm

0 − sin θm cos θm

⎞⎟⎟⎟⎟⎟⎠ ,
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and the matrix

Qψ =

⎛⎜⎜⎜⎝
cos ψ sinψ 0

− sin ψ cosψ 0

0 0 1

⎞⎟⎟⎟⎠
corresponds to the rotation of the moving platform about the vertical axis through the precession
angle ψ. The vector γ can be expressed as

γ = Qme3, (3.4)

and the vertical projection of the angular velocity of the platform is equal to the derivative of the
precession angle ωγ = ψ̇.

Substituting (3.2), (3.3) and (3.4) into the expression for the calculation of control actions (3.1),
we come to the conclusion that the following proposition holds.

Proposition 1. The dependence of the angular velocities of rotation of the wheels required for the
motion along the trajectory rc(t) for a given function Ωγ(t) has the following form

χ̇i =
1

Rw

(QT
msi, e3 × QT

ψ ṙc + R0(Ωγ − ωγ)e3)
(si, ni)

, (3.5)

where the angular velocity ωγ is a free parameter. That is, within the kinematic model the motion
along a given trajectory can be implemented up to an arbitrary rotation of the platform about the
vertical axis ωγ(t).

Experimental investigations of the motion of the full-scale specimen have shown that at low
velocities the sphere virtually does not rotate about the vertical axis, so we will consider the
motion in the framework of the rubber rolling model [38–41], that is, we will assume that Ωγ ≡ 0.

3.1. Particular Cases

Next, we consider some particular cases of motion within the framework of the kinematic model.
The motion with constant control actions. We consider the motion of the spherical robot

in the framework of the rubber rolling model with constant control actions, i.e.,

χ̇ = const.

It follows from the constraint equation (2.3) that during constant control the vector of relative
angular velocity also remains constant ω̂ = ω − Ω = const. Taking into account that the motion
under consideration is quasi-static (rm ‖ γ, ω ‖ γ), the no-slip condition of the spherical shell (2.2)
can be written as

v =
R0

Rm
rm × ω̂.

Moreover, taking into account the absence of slipping in the rubber rolling model (Ωγ ≡ 0), it is
easy to show that

ω =
1

R2
m

(rm, ω̂)rm.

Therefore, the vectors of velocity of the spherical robot and the angular velocity vector of the
platform in the moving coordinate system remain constant.

Using these equations, as well as the fact that the vectors ω and v are perpendicular (which
follows from the quasi-static condition), we can calculate the radius of curvature of the trajectory
along which the spherical robot is moving

1
ρ

=
| V × V̇ |
| V |3 =

| QT v × QT (ω × v) |
| QT v |3 =

1
R0

(ω̂, rm)√
ω̂2r2

m − (ω̂, rm)2
. (3.6)
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As can be seen from Eq. (3.6), the radius of curvature of the trajectory of motion is constant.
Therefore, since Eq. (3.6) is homogeneous in ω̂ and ω̂ is linearly dependent on χ, the following
proposition holds.
Proposition 2. With constant control actions χ̇ = const the spherical robot moves uniformly in
a circle whose radius is given by Eq. (3.6) and is dependent only on the ratio of control actions
χi/χj.

The motion in a straight line. Analyzing Eq. (3.6), we can conclude that the motion in a
straight line (ρ = ∞) is possible in the case ω = 0. Consequently, by virtue of Eqs. (2.1), the motion
in a straight line does not involve any change in the orientation of the platform, i.e., ψ = const.
Using this fact, as well as the no-spin requirement of the rubber rolling model, the control actions
required for the spherical robot to move with velocity v in a straight line directed at the angle δ to
the axis OX with the platform orientation ψ can be written as

χ̇i =
(QT

msi × e3,QψV )
Rw(si, ni)

, (3.7)

where V = (v cos(δ), v sin(δ), 0).
We note that in order to calculate the control actions (3.5), (3.7), we need to define the position

of the center of mass of the platform. To do so requires the development of sophisticated and high-
precision equipment. At the same time, the motion of the spherical robot without feedback sensors
requires that either these parameters are determined or that the moving platform is balanced.

Determination of displacement of the center of mass of the moving platform. The
displacement of the center of mass of the platform can also be calculated from the results of several
test experiments involving the motion of the spherical robot with constant control actions. Indeed,
we note that the radii of the circles along which the spherical robot moves with constant controls
are related with the radius vector of the center of mass by the ratio (3.6). Moreover, these ratios
depend only on the direction of displacement (the angles ϕm and θm) and are not dependent on
the value of displacement. Consequently, a system of two equations such as Eq. (3.6) for various
control actions is sufficient to determine the direction of displacement of the center of mass of
the moving platform. Thus, to calculate the direction of displacement of the center of mass (ϕm

and θm) we need to conduct two experiments involving spherical robot motion with various constant
control actions and measure the radii of the circles along which the spherical robot moves. For the
developed experimental specimen these values were equal to

ϕm = 1.521 ± 0.018, θm = 0.0535 ± 0.0075. (3.8)

This technique was used in [33] for the experimental determination of displacement of the
center of mass of a prototype of the spherical robot with an internal omniwheel platform. As the
experiments have shown, the correct implementation of motion along a predetermined trajectory
essentially requires that the displacement of the center of mass be taken into account. An example
of experimental trajectories of the spherical robot with controls calculated for the rectilinear
motion taking into account and ignoring the displacement of the center of mass is shown in Fig. 2a.
The heavy lines in the figure show the circles with their radii averaged from the results of ten
experiments for each of the control options. As shown in Fig. 2a, even a small (about 3 degrees)
displacement of the center of mass leads to a more than twofold decrease in the radius of curvature
of the resulting trajectory.

The motion in a circle. As mentioned above, in the general case the trajectory of motion
under constant control actions is a circle whose radius is determined by the ratio of the angular
velocities of the wheels of the spherical robot and the center of mass displacement. In the framework
of the kinematic model the radius is not dependent on the absolute values of control actions (they
determine only the velocity of motion along the trajectory).

Let us investigate the dependence of the radius of the trajectory on the absolute values of control
actions. To this end, we choose as the base case the motion with the following control actions

χ̇1 = −14.28, χ̇2 = 28.57, χ̇3 = 57.14. (3.9)

The corresponding radius of curvature of the trajectory, calculated using Eq. (3.6) and taking into
account the displacement of the center of mass (3.8), is ρ = 100.08 mm. Examples of the trajectory
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are shown in Fig. 2b. The heavy line in the figure shows a circle with a radius averaged from the
results of five experiments. We carried out five series of experiments with control actions greater
than the base case (3.9) by κ = 1 . . . 5 times. The resulting experimental dependence of the radius
of the trajectory on the coefficient κ is shown in Fig. 2c. The horizontal straight line corresponds
to the theoretical value of the radius of the circle calculated for the controls (3.9) in the framework
of the kinematic model. The region shown in gray indicates the confidence interval of the radius of
curvature for a 95% probability.

(a) (b) (c)

Fig. 2. Trajectories of the spherical robot with controls calculated (a) for the rectilinear motion: a ignoring
the displacement of the center of mass, b taking into account the displacement of the center of mass; (b) for
constant control actions. (c) Dependence of the radius of curvature of the trajectory on the angular velocity
of motion along the trajectory with constant control actions.

As shown in Fig. 2, as the velocity of motion increases, the deviation from the kinematic model
also increases, which limits its application. To achieve a higher speed of motion requires investigating
the dynamic model.

4. CONTROL IN THE FRAMEWORK OF THE DYNAMIC MODEL
4.1. Equations of Motion

Let us now consider the problem of controlling a spherical robot taking into account its dynamics.
For the model of a spherical robot described above, we will write the equations of motion in quasi-
velocities (ω, Ω, v, χ̇) taking into account the nonholonomic constraints and controls

d

dt

(
∂L

∂ω

)
=

∂L

∂ω
× ω +

∂L

∂v
× v +

∂L

∂γ
× γ +

(
∂G

∂ω

)T

λ̃,

d

dt

(
∂L

∂Ω

)
=

∂L

∂Ω
× ω +

(
∂G

∂Ω

)T

λ̃ +
(

∂F

∂Ω

)T

λ,

d

dt

(
∂L

∂v

)
=

∂L

∂v
× ω +

(
∂F

∂v

)T

λ,

d

dt

(
∂L

∂χ̇

)
=

∂L

∂χ
+

(
∂G

∂χ̇

)T

λ̃ + K.

(4.1)

Here L is the Lagrangian function, λ = (λ1, λ2, λ3) and λ̃ = (λ̃1, λ̃2, λ̃3) are undetermined
Lagrange multipliers, K = (K1, K2, K3) is the vector of control torques where Ki is the torque
applied to the axis of the i-th wheel, and F and G are the nonholonomic constraints (2.2) and (2.3).
A more detailed description of how the equations of motion were derived can be found in [36].
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The kinetic energy of the system can be represented as the sum of three terms: the kinetic
energy of the spherical shell T0, the kinetic energy of the platform Tp and the kinetic energy of the
wheels Ti

T = T0 + Tp +
3∑

i=1

Ti.

The kinetic energy of the spherical shell and the moving platform has the following form:

T0 =
1
2
m0v

2 +
1
2
I0Ω2,

Tp =
1
2
mpv

2 +
1
2
(ω, Ipω) + mp(v, ω × rp),

where m0 and I0 are the mass and the central tensor of inertia of the spherical shell, mp and Ip
are the mass of the moving platform and its tensor of inertia relative to the center of the sphere,
and rp is the radius vector from the center of the sphere to the center of mass of the platform
(without the omniwheels). The kinetic energy of each of the wheels has the following form:

Ti =
1
2
miv

2 + mi(v, ω × ri) +
1
2
(ω, Iiω) + j(ω, ni)χ̇i +

1
2
jχ̇2

i ,

where mi and Ii are the mass of the i-th wheel and its tensor of inertia relative to the point C,
and j is the axial moment of inertia of the wheels. The total kinetic energy of the system can be
represented as

T =
1
2
(m + m0)v2 +

1
2
I0Ω2 +

1
2
(ω, Iω) + m(v, ω × rm) +

3∑
i=1

jχ̇i(ω, ni) +
1
2

3∑
i=1

jχ̇2
i , (4.2)

where

m = mp +
3∑

i=1
mi is the mass of the moving platform with omniwheels,

rm =
mprp +

3∑
i=1

miri

m
is the radius vector of the center of mass of the moving platform with

omniwheels,

I = Ip +
3∑

i=1
Ii is the tensor of inertia of the moving platform with omniwheels relative to the

center of the sphere.
In this notation, the potential energy of the system can be expressed as

U = mg(rm, γ), (4.3)
where g is the gravitational acceleration.

Defining the Lagrangian L = T − U by means of Eqs. (4.2) and (4.3) and substituting it into
Eqs. (4.1), we get

Iω̇ + m(rm × v̇) +
3∑

i=1

jχ̈ini + ω ×
(

Iω + m(rm × v) +
3∑

i=1

jχ̇ini

)
+ mv × (rm × ω)

=
3∑

i=1

kisiλi − mg(rm × γ),

I0Ω̇ + ω × I0Ω = −(R0γ) × λ̃ −
3∑

i=1

kisiλi,

(m + m0)v̇ + m(ω̇ × rm) + ω × ((m0 + m)v + m(ω × rm)) = λ̃,

jχ̈i + j(ω̇, ni) = λi + Ki,

(4.4)
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where ki =
R0

Rw(si, ni)
. We find the undetermined multipliers from the last two Eqs. (4.4) and the

time derivative of the constraint equations (2.3)

λi = jki(Ω̇− ω̇, si) + j(ω̇, ni) − Ki, i = 1 . . . 3,

λ̃ = (m + m0)v̇ + m(ω̇ × rm) + ω × ((m0 + m)v + m(ω × rm)).

Substituting them into the equations of motion and using the constraint equations (2.2) and (2.3)
to eliminate χ̇i and v, we get

(I + Jss − Jns − Jsn)ω̇ + (Jns − Jss + mR0((γ, rm) − γ ⊗ rm))Ω̇

= −
3∑

i=1

kisiKi − ω × Iω + (Jns(Ω− ω)) × ω − mR0rm × (γ × (Ω× ω)) − mg(rm × γ)

(Jsn − Jss + mR0((rm, γ) − rm ⊗ γ))ω̇ + (I0 + Jss + (m + m0)R0
2(γ2 − γ ⊗ γ))Ω̇

= −(m + m0)R0
2γ × (γ × (Ω× ω)) − mR0(γ × (ω × (ω × rm))) − I0ω × Ω +

3∑
i=1

kisiKi,

(4.5)

where we have used the notation Jss =
3∑

i=1
jki

2(si ⊗ si), Jsn =
3∑

i=1
jki(si ⊗ni), Jns =

3∑
i=1

jki(ni ⊗ si),

and the tensor product of the vectors a and b is defined as follows:

a ⊗ b = ‖aibj‖.

Together with the Poisson equation (one of Eqs. (2.1))

γ̇ = γ × ω (4.6)

Eqs. (4.5) form a closed reduced system of equations.

This system admits two first integrals of motion

γ2 = 1, (M , γ) = Mγ = const, (4.7)

where the vector M has the form

M = (I− Jns + mR0((γ, rm) − rm ⊗ γ))ω

+ (I0 + Jns + mR0((γ, rm) − γ ⊗ rm) + (m + m0)R0
2(1 − γ ⊗ γ))Ω.

(4.8)

In the case of free motion (K = 0) the integrals (4.7) are supplemented by the energy integral,
which, after substituting the constraint equations (2.2) and (2.3) into Eq. (4.2), takes the following
form:

E =
1
2
(m + m0)R2

0(Ω× γ)2 +
1
2
I0Ω2 +

1
2
(ω, Iω) + mR0(Ω× γ, ω × rm)

+ (Ω− ω,Jsnω) +
1
2
(Ω− ω,Jss(Ω− ω)) + mg(rm, γ).

(4.9)

Thus, even in the case of free motion the phase flow in the nine-dimensional space (ω,Ω, γ) is
foliated by six-dimensional level sets of the integrals (4.7) and (4.9), and in the general case is
apparently nonintegrable. Therefore, it appears to be interesting to look for integrable cases of the
system (4.5)–(4.6) and its particular solutions. We note that in the general case the free motion
governed by the nonholonomic system (4.5)–(4.6) may be quite complex and include elements
of both Hamiltonian and dissipative behavior. In particular, both simple and complex attracting
(repelling) sets, including various types of strange attractors, can be observed in the system. Such
behavior in simpler systems with nonholonomic constraints was mentioned in [2, 14, 39, 42–45, 51].
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Remark. The equation of motion for the vector M is independent of control actions and has the
form

Ṁ = M × ω − mg(rm × γ).

Expressing Ω as a function of ω and M from Eq. (4.8) and substituting it into the equation of
motion, we can obtain a closed system in terms of the variables ω, M and γ. However, the resulting
equation for ω̇ is too cumbersome, therefore we are not providing it here. We also note that in the
case when there is no force of gravity the vector M is conserved in the absolute space and is
apparently a generalization of the conserved vector of the angular momentum relative to the point
of contact in the simpler problems of spherical bodies rolling on a plane [9, 10, 34, 35].

4.2. Particular Solutions

Let us next find the fixed points of the system (4.5)–(4.6) that are its simplest particular
solutions. Prior to searching for fixed points of the system, we will prove a simple proposition
about the motion of a spherical robot in the absolute space corresponding to the fixed points of
the reduced system.

Proposition 3. Let ω0,Ω0, γ0 be a fixed point of the reduced system (4.5)–(4.6), then in the
absolute space it corresponds to motion along a trajectory with a constant radius of curvature

1
ρ

=

√
v2

0ω
2
0 − (ω0, v0)2

v2
0

, (4.10)

where

v0 = R0Ω0 × γ0. (4.11)

Proof. We first note that it follows from the no-slip condition (2.2) that with constant vectors Ω
and γ the velocity of the spherical robot (4.11) referred to the axes of the moving coordinate system
is constant.

We express the velocity of the spherical robot V and its derivative in the fixed coordinate
system OXY Z: V = QT v , V̇ = QT (v̇ + ω × v). Substituting these relations into the expression
for calculating the radius of curvature (the first equation of (3.6)) and taking into account (4.11),
we obtain (4.10) for the radius of curvature of the trajectory.

Remark. A similar proposition holds for arbitrary systems governing the rolling of spherical bodies
on a plane. The only thing that changes is the dependence of velocity v0 on the variables of the
reduced system. In particular, the angular velocities ω and Ω coincide in systems without internal
mechanisms such as a ball with a displaced center of mass, hence v = −R0γ̇, that is, the ball is
stationary (possibly rotating around the vertical axis).

Let us find the fixed points of the reduced system (4.5)–(4.6) for free motion that correspond to
steady-state motions of the spherical robot in the absolute space. Substituting Ω̇ = 0, ω̇ = 0, K = 0
into Eqs. (4.6), we obtain a system of algebraic equations for determining these fixed points

(Iω + Jns(Ω− ω) + mR0(rm, γ)Ω) × ω − (mR0(γ, ω)Ω− mgγ) × rm = 0(
(m + m0)R0

2γ × (Ω× ω) + mR0ω × (ω × rm)
)
× γ − I0ω ×Ω = 0

γ × ω = 0.

(4.12)

The system (4.12) has the following solutions.
1. Two three-parameter families of fixed points:

ω = 0, Ω = Ω0, γ = ± rm

|rm| . (4.13)

This solution corresponds to motions of the spherical robot where the center of mass of the platform
is located in the lowest (highest) possible point, its orientation does not change with time, the
spherical shell rotates with constant angular velocity Ω0, and the center of the spherical robot
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either remains stationary (with Ω0 ‖ γ) or moves in a straight line (with Ω0 ∦ γ). Note that since
the nonholonomic constraint (2.3) is unilateral, no solution with the “+” sign can be realized in
practice.

2. A two-parameter family of fixed points defined by the following relations:

ω = ωγ, Ω = ωC1γ − ω
mR0

J0
rm,

γ = −A−1b + rm × (A−1rm × A−1b)
1 − (rm,A−1rm)

,

(4.14)

where

A =
J0

m2R2
0

(I + (C1 − 1)Jns − C2) , b =
J0

m2R2
0

(
mR0C1 −

mg

ω2
− R0

J0
Jns

)
rm,

J0 = I0 + (m + m0)R0
2, and C1, C2 and ω are the parameters of the family, two of which can

be regarded as independent, and the third one can be calculated from the condition γ2 = 1.
The independent parameters can be expressed in terms of the integrals of motion Mγ and E by
substituting (4.14) into the corresponding equations. Further analysis of the fixed points can be
aimed at investigating the solvability of the resulting system of equations and identifying regions
of existence of solutions of (4.13) and (4.14) in the space of first integrals. This matter is quite
complex. It requires separate consideration and is beyond the scope of this study. Note that in the
absolute coordinate system the solutions of (4.14) correspond to the rolling of the spherical robot
in a circle of radius

ρ =
mR0

J0

√
r2

m − (rm, γ)2,

where γ is expressed from the second equation (4.14).

4.3. Stability of Motion in a Straight Line

We now consider the question of linear stability of the particular solution (4.13). To do this,
we linearize the system (4.5)–(4.6) near this solution and obtain a system of linear differential
equations with constant coefficients of the form

Aż = Bz, (4.15)

where z = (ω1, ω2, ω3, Ω1 −Ω01 , Ω2 −Ω02 , Ω3 −Ω03 , γ1 − γ01 , γ2 − γ02 , γ3 − γ03) is the deviation
from the solution considered. The constant matrices A and B have the block diagonal form

A =

⎛⎜⎜⎜⎝
I + Jss − Jns − Jsn Jns − Jss + mR0((γ0, rm) − γ0 ⊗ rm) 0

Jsn − Jss + mR0((rm, γ0) − rm ⊗ γ0) I0 + Jss + (m + m0)R0
2(γ2

0 − γ0 ⊗ γ0) 0

0 0 E

⎞⎟⎟⎟⎠ ,

B =

⎛⎜⎜⎜⎝
Ω̂ − mR0Rm(Ω̃0(γ0 ⊗ γ0) + (Ω0, γ0)γ̃0 0 mgRmγ̃0

−IΩ̃0 − (m + m0)R2
0(Ω̃0(γ0 ⊗ γ0) + (Ω0, γ0)γ̃0 0 0

−γ̃0 0 0

⎞⎟⎟⎟⎠ ,

where E is a 3 × 3 identity matrix, the matrices γ̃0, Ω̃0 and Ω̂ are defined as

γ̃0ij = εijkγ0k
, Ω̃0ij = εijkΩ0k

, Ω̂ij = εijk(JnsΩ0)k,

and εijk is the Levi-Civita symbol.
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In order to determine whether this solution is stable, we need to find the roots of the
characteristic equation of the system (4.15)

det(μA− B) = 0. (4.16)

In the general case, Eq. (4.16) has quite a complex form, therefore here (and in the sequel, in
performing numerical calculations) we restrict ourselves to stability analysis for the given system
parameters corresponding to the experimental specimen of the spherical robot described earlier
in this paper. We assume that the missing dynamic parameters of the full-scale specimen are:
rm = (0, 0, 0.08), j = 0.00011. Furthermore, we restrict ourselves to considering the case when
there is no spinning of the spherical shell at the point of contact with the plane, that is, we assume
that (Ω, γ) = 0. In this case the family of solutions (4.13) can be parameterized as follows:

ω0 = (0, 0, 0), Ω0 = (−Ω0 sin(δ), Ω0 cos(δ), 0), γ0 = (0, 0, 1). (4.17)

Here Ω0 = v
R0

defines the angular velocity of the spherical shell when the spherical robot is rolling
in a straight line with velocity v, and the angle δ (as above) defines the direction of motion relative
to the axis OX.

Substituting the parameter values into Eq. (4.16) taking into account the chosen parameteriza-
tion (4.17), we obtain the following characteristic equation

μ5 · (μ2 + 204.2205)(μ2 + 0.00829 · Ω2
0 + 204.2205) = 0. (4.18)

As can be seen from (4.18), the eigenvalues of the characteristic equation are not dependent on the
angle δ, i.e., the direction of motion. Furthermore, they do not have a positive real component, no
matter what the value of Ω0 is. This suggests that there is no exponential instability of the solution.
The presence of zero eigenvalues means that it is required to decompose the system (4.5) to higher
orders in order to solve the problem of nonlinear stability.

Remark. Note that for the design of a spherical robot considered here the solution (4.14)
degenerates into rotation of the spherical robot at the same place when the spherical shell and
the internal moving platform rotate about the vertical axis with constant but different angular
velocities Ω0 and ω0. For this reason, analysis of stability of these solutions is of no practical
interest.

4.4. Control Along a Prescribed Trajectory

We now consider the problem of controlling the system under consideration as formulated in
Section 2 of this paper. This problem is solved by means of an algorithm comprising the following
steps.

1. We express the angular velocity Ω in the form

Ω = Ωα(t)α + Ωβ(t)β + Ωγ(t)γ, (4.19)

where Ωγ(t) is a known function of time, and Ωα(t), Ωβ(t) are expressed by means of the constraint
equation (3.1) and the first of the kinematic equations (2.1) as follows

Ωα(t) =
ẏ(t)
R0

, Ωβ(t) =
ẋ(t)
R0

.

2. We exclude the control torques K(t) from Eqs. (4.5) (by adding the first and the second
equations of the system). As a result, together with the second kinematic equation (2.1) we get a
closed nonautonomous system of differential equations

(I− Jns + mR0((rm, γ) − rm ⊗ γ))ω̇

+ (Jns + I0 + (m + m0)R0
2(γ2 − γ ⊗ γ) + mR0((γ, rm) − γ ⊗ rm))Ω̇

= −ω × (Iω + I0Ω + Jns(Ω− ω)) − mR0 (rm × (γ × (Ω× ω))) − mg(rm × γ)

−(m + m0)R0
2(γ × (γ × (Ω× ω))) − mR0(γ × (ω(ω, rm) − rm))

α̇ = α × ω, β̇ = β × ω, γ̇ = γ × ω.

(4.20)
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Substituting (4.19) into the resulting equations and numerically integrating the system with the
specified initial conditions α(0), β(0), γ(0) and ω(0) yields an explicit time dependence of the
vectors α, β, γ and ω.

3. Substituting the resulting solutions for α(t), β(t), γ(t), ω(t) into one of Eqs. (4.5), we find
the time dependence of the control torques K(t).

In practice, this algorithm can be applied only hypothetically because under real-time conditions
involving high-velocity motions the process of numerical integration takes quite a long time, which
is critical for the control problems. Moreover, the resulting system is nonintegrable, hence there
exists the probability of obtaining a chaotic solution, which requires a separate analysis.

Let us consider an example of determining control torques necessary for the spherical robot to
move along the segment [0, 1] without rotation of the spherical shell about the vertical axis

x(t) = 0, y(t) = −sin(2πt)
20π

+
t

10
, Ωγ = 0. (4.21)

The results of the numerical solution of the system (4.20) for the angular velocity of the moving
platform ω and the vector γ are shown in Figs. 3a and 3b. The corresponding time dependencies
of the control torques required for the motion along the trajectory (4.21) are shown in Fig. 3c.

(a) (b) (c)

Fig. 3. Dependencies of γ(t) (a), ω(t) (b) and K(t) (c) for spherical robot motion along the trajectory (4.21).

As seen from the graphs, neither the angular velocity of the moving platform ω nor the vector
components γ1 and γ2 are equal to zero at the endpoint. Consequently, after the spherical robot
has moved in a straight line in accordance with the controls shown in Fig. 3c, it will not stop but
will continue to move freely (in the general case, chaotically). The initial conditions for this motion
will be the position and velocity of the platform and the spherical shell at the time of control
deactivation. There are three ways to eliminate such effects.

1. Continue to control the system after the stop to make the spherical shell stay in place while
the omniwheel platform will keep moving inside the stationary shell. In this case it is necessary to
solve the system (4.20) under the condition Ω(t) = Ω̇(t) = 0 in the time interval t > T and to find
the corresponding control K(t), t > T . However, the solution to (4.20) is likely to be divergent.
The search for the solution to (4.20) and its analysis requires a separate study, which is outside of
the scope of this paper.

2. Choose a dependence Ωγ(t) or velocity of passage along the prescribed trajectory such that
the position and velocity of the omniwheel platform at the final time t = T correspond to a steady-
state solution of the free system. In this case, after control deactivation the spherical robot will
move in accordance with a steady-state solution (in a particular case, stand still). This method
involves solving a variational problem with respect to the velocity of motion along the trajectory
and/or the dependence Ωγ(t) and is quite laborious.

The third method is associated with control by means of gaits and is described in more detail
in the next section.
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5. CONTROL BY MEANS OF GAITS

This method consists in calculating the control actions with which the spherical robot will
invariably move in accordance with a steady-state solution (in a particular case, stand still) at the
initial and final instants of time. However, in this case the trajectory of motion of the spherical
robot is not pre-determined. Here, the control problem is reduced to choosing a maneuver with
which the final trajectory of motion of the spherical robot will meet the necessary requirements.
An example of such control for a spherical robot with an internal Lagrange pendulum is given
in [15]. We consider a similar algorithm of searching for a suitable maneuver that connects two
straight-line motions (4.13).

Straight-line motions corresponding to the fixed points (4.13) can be parameterized by four
variables: v — the velocity of motion in a straight line, δ — the angle between the straight line
and the axis OX, Ωγ — the angular velocity of spinning of the shell at the point of contact with
the plane, and ψ — the constant precession angle that defines the orientation of the omniwheel
platform during motion. Note that the other two Euler angles θ and ϕ are also constant in the
case of straight-line motion and are defined by the vector γ ‖ rm. These parameters relate to the
vectors α, β, γ and Ω as follows:

Ω = Ωγγ +
v

R0
(cos(δ)β − sin(δ)α), tg(ψ) = −β3

α3
. (5.1)

It is easy to show that the following proposition holds.

Proposition 4. Let the spherical robot move along a straight line with the parameters v0, δ0, Ωγ0 , ψ0,
with t < 0. In addition, when making a maneuver the vector γ and the value of ωγ are specified
functions of time

γ = γ(t), ωγ = ωγ(t), t ∈ [0, T ]

such that

γ(0) = γ(T ) =
rm

|rm| , γ̇(0) = γ̇(T ) = 0, ωγ(0) = ωγ(T ) = 0.

Then, after making the maneuver (with t > T ) the spherical robot will move in a straight line
with the parameters vf , δf , Ωγf

, ψf related with the vectors α(T ), β(T ),Ω(T ) by ratios similar
to (5.1). The time dependencies α(t), β(t),Ω(t) are found by solving the first three equations of
the system (4.20) in which the vector ω is a known function of time expressed in terms of γ(t) and
ωγ(t) as follows:

ω(t) = γ(t)ωγ(t) + γ̇(t) × γ(t).

The controls required to realize this maneuver can be obtained by substituting ω(t),Ω(t) and γ(t)
into one of Eqs. (4.5), and the explicit form of the trajectory of the spherical robot connecting two
straight-line motions can be obtained by integrating the first of the kinematic equations (2.1).

As an example, let us consider the spherical robot controls required to accelerate from rest and
to make a turn during straight-line motion. We express the vector γ defining the maneuver (gait)
as

γ(t) = (sin(θ(t)) cos(ϕ(t)), sin(θ(t)) sin(ϕ(t)), cos(θ(t))) ,

where the orientation of the moving platform during the maneuver is defined by the Euler angles
ϕ(t) and θ(t). We choose the dependencies ϕ(t), θ(t), ωγ(t) for both maneuvers as

θ(t) = θmax sin2(πt), ϕ(t) = ϕ0 = 0, ωγ(t) = 0, t ∈ [0, 1], (5.2)

where θmax for the purpose of numerical calculations is assumed to be θmax = 0.2. The only
difference between these two maneuvers lies in the different initial conditions. Accelerating from
rest corresponds to the following initial conditions

Ω0 = 0, α0 = (1, 0, 0), β0 = (0, 1, 0), (5.3)
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while making a turn from initially straight-line motion corresponds to the following initial
conditions:

Ω0 = (−1, 0, 0), α0 = (1, 0, 0), β0 = (0, 1, 0). (5.4)

The results of the numerical solution of the system of Eqs. (4.20) for the maneuver (5.2) with
the initial conditions (5.3) and (5.4) are shown in Fig. 4 and Fig. 5, respectively.

(a) (b)

Fig. 4. The angular velocity Ω(t) (a) and the trajectory of motion y(x) (b) of the spherical robot during
acceleration in accordance with the initial conditions (5.3).

(a) (b)

Fig. 5. The angular velocity Ω(t) (a) and the trajectory of motion y(x) (b) of the spherical robot when
making a turn in accordance with the initial conditions (5.4).

As shown in Fig. 4, since the design of the omniwheel platform is not axially symmetric, changing
γ(t) in the vertical plane on the Poisson sphere (ϕ = const) results in curvilinear, albeit quite close
to rectilinear, motion of the spherical robot. This is what makes this system different from a
spherical robot with the Lagrange pendulum, where such controls lead to purely linear motion.

Using the above procedure we can obtain the (numerical) dependence of the parameters of the
final motion on the parameters of the initial motion and the maneuver

pf = f(p0, θmax, ϕ0), (5.5)

where the notation p = (v, δ, Ωγ , ψ) is introduced. However, the reverse dependence is usually
required in practice to find control parameters depending on the desired final motion. Inverting
any two equations of the system (5.5) (for example, for v and δ), we can obtain the (numerical)
dependence of θmax and ϕ0 on the parameters of the initial and final motions

(θmax, ϕ0) = f̃(p0, vf , δf ). (5.6)

This dependence includes only two parameters of the final motion, while the remaining two
parameters (Ωγf

, ψf ) are found from Eqs. (5.5). Note that the chosen pair of Eqs. (5.5) is not
always solvable for θmax and ϕ0. The conditions of their solvability impose restrictions on the
possible maneuvers accomplished by means of the dependence (5.2).
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Using the numerical dependence (5.6), we can define the maneuver parameters θmax and ϕ0

that will allow one to make a turn by a predetermined angle with acceleration (deceleration) to
the desired velocity. The final motion parameters (Ωγf

, ψf ) are not controlled. That is, after the
maneuver the omniwheel platform will move with a different orientation (relative to the initial one),
and the shell may acquire some rotation about the vertical axis.

Remark. For a fully controlled maneuver, we need to consider the four-parameter time dependence
γ(t), ωγ(t) and ensure that equations such as (5.5) are solvable for input parameters.

6. CONCLUSION

In conclusion, we summarize the main results of this paper and the questions that remain to be
answered.

– The problem of controlling the motion of a spherical robot in the kinematic (quasi-static)
formulation has been solved.

– It has been proven that in the framework of the kinematic (quasi-static) model the trajectory
of a spherical robot with an internal omniwheel platform with constant control actions
(rotational velocities of the omniwheels) is a circle or a straight line.

– A method for determining the position of the center of mass of the omniwheel platform based
on experimental determination of the radii of curvature of trajectories during motion with
two different constant control actions has been developed. This allows one, in particular, to
create a theory of spherical robot control taking into account possible mass redistribution
inside the spherical robot (for example, when changing the payload, etc.).

– An experimental validation of the theoretical results obtained in the framework of the
kinematic model has been conducted. It has been shown that at low speeds this model
is in satisfactory agreement with experimental results.

– Equations of dynamics of a spherical robot with an internal omniwheel platform have been
obtained in the framework of the nonholonomic model. First integrals of motion for these
equations, and all the fixed points of the reduced system corresponding to the motion of the
spherical robot in a straight line or in a circle have been found.

– The stability of free straight-line motion of a spherical robot in the framework of linear
approximation with fixed parameters of the spherical robot has been investigated. It would
be interesting to analyze the stability of this solution as a function of parameters of the
spherical robot. It would be also interesting to analyze the stability of free motion in a circle.

– A motion planning algorithm for a spherical robot has been developed. A shortcoming of
this algorithm is that after the end of rolling along a prescribed trajectory (and control
deactivation) the spherical robot continues its free motion, which in the general case is
chaotic.

– In order to eliminate this shortcoming, a numerical algorithm for constructing elementary
maneuvers (gaits) for transition from one steady-state motion to another has been developed.
This algorithm has been illustrated by the acceleration and turning of the spherical robot
during initially straight-line motion.
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